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ABSTRACT: The prerequisite of therapeutic drug design and
discovery is to identify novel molecules and developing lead
candidates with desired biophysical and biochemical properties.
Deep generative models have demonstrated their ability to find
such molecules by exploring a huge chemical space efficiently. An
effective way to generate new molecules with desired target
properties is by constraining the critical fucntional groups or the
core scaffolds in the generation process. To this end, we developed
a domain aware generative framework called 3D-Scaffold that takes
3D coordinates of the desired scaffold as an input and generates 3D coordinates of novel therapeutic candidates as an output while
always preserving the desired scaffolds in generated structures. We demonstrated that our framework generates predominantly valid,
unique, novel, and experimentally synthesizable molecules that have drug-like properties similar to the molecules in the training set.
Using domain specific data sets, we generate covalent and noncovalent antiviral inhibitors targeting viral proteins. To measure the
success of our framework in generating therapeutic candidates, generated structures were subjected to high throughput virtual
screening via docking simulations, which shows favorable interaction against SARS-CoV-2 main protease (Mpro) and nonstructural
protein endoribonuclease (NSP15) targets. Most importantly, our deep learning model performs well with relatively small 3D
structural training data and quickly learns to generalize to new scaffolds, highlighting its potential application to other domains for
generating target specific candidates.

■ INTRODUCTION

The discovery and development of a new therapeutic is a long
and expensive process with a high degree of uncertainty that
sometime takes many years before clinical approval.1,2 The
ongoing novel coronavirus pandemic (COVID-19), caused by
SARS-CoV-2, has highlighted the need for novel therapeutics
to counter the threat of emerging viral pathogens.3 One of the
challenges in the very early stage of drug design and discovery
is to find novel hits with desired functionalities.4 This is a
daunting task with conventional methods, which has slowed
the discovery of high impact candidates for diverse
applications.5 Recently, with the rise of deep learning models,
several approaches to efficiently explore the astronomically
large chemical space of drug-like molecules have been
proposed. The majority of existing approaches focus mainly
on de novo drug design using variational autoencoders,
generative adversarial networks, or reinforcement learning to
generate molecules mainly in the form of SMILES strings.6−18

An alternate and robust way to find compounds of interest is
by generating molecules with desired functional groups, core
structures, or scaffolds.19,20 Such scaffolds play an important
role in fine-tuning the properties of a generated molecule by
reducing the vast chemical space for exploration to local space
of interest thus generating targeted molecules. Moreover, the

scaffolds can be selected in a way that they influence crucial
interactions with a given protein target. Thus, scaffold-based
approaches allow the incorporation of such prior knowledge
and rule-based learning during the generation process in order
to increase the likelihood of identifying molecules with desired
properties as compared to simply generating molecules from
scratch. Several approaches have been proposed recently to
generate compounds of interest built on a core structure.20−23

Some of these methods are constrained to certain definitions of
scaffolds (e.g., Murcko24 scaffolds) or do not guarantee that
the desired scaffold is always preserved during molecule
generation, while others do not generalize well for new
scaffolds.21,23 To the best of our knowledge, none of the
existing approaches focus on generating 3D coordinates of
therapeutic molecules that can be directly tested against the
protein target via computational and experimental screening.
However, 3D coordinates of generated molecules are required
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for physics-based simulations as well as for robust graph-based
predictive models for estimating drug-like properties. These
candidates can be directly used for high-throughput virtual
screening through structure-based docking to determine their
affinity, activity, and efficacy against a particular disease. It is
imperative to have a generative model that quickly generates
3D coordinates of effective therapeutic candidates from the
massive drug-like chemical space. This will accelerate hit
identification and lead optimization in drug discovery and
development.1,2

In this work, we propose a deep learning framework called
3D-Scaffold that can generate 3D coordinates of therapeutic
candidates given a desired scaffold. It is guaranteed that 100%
of the generated molecules contain the desired scaffold.
Moreover, our model generalizes well to previously unknown
scaffolds that are not included in the training data. Our current
framework is different from existing scaffold-based approaches
for multiple reasons: (I) In contrast to existing approaches,
which generate SMILES strings or molecular graphs, our
model generates 3D coordinates of the candidates with a given
core structure; (II) It works equally well for all possible
scaffold definitions including cyclic skeletons, Bemis−Murcko,
or side chains based on SMILES strings; (III) Our model is
transferable to generate molecules with new scaffolds; (IV)
Without explicitly constraining the model to desired proper-
ties, generated molecules show properties similar to the
training set.
A few issues arise when constructing physics informed

machine learning approaches based on 3D nuclear coordinates
in contrast to more abstract molecular representations such as
SMILES strings or molecular graphs.25 The coordinate
representation is not invariant to rotation, translation, and
indexing of atoms, while most properties of interest (e.g., the
potential energy or the logP score) are invariant to these
transformations or change equivariantly. For instance atomic
forces rotate and translate with the coordinates. Our 3D-
Scaffold framework systematically obeys these constraints by

building on the G-SchNet26,27 architecture. It allows our model
to extract features from the coordinates that capture local
symmetries and are invariant to rotation, translation, and
indexing of the input coordinates. The distributions it predicts
for atom positions equivariantly rotate and translate with
respect to the coordinates. Most importantly, we show that our
framework designs reasonable molecules even with small
training data sets due to the robust architecture of the
underlying model. By training it on limited, yet known
therapeutic candidates, we aim to generate more and
previously unseen novel molecules with desired scaffolds that
can be synthesized, which ultimately will contribute toward
accelerating the discovery of therapeutic drugs.
In this contribution, we applied our 3D-Scaffold for de novo

discovery of molecules specifically tailored to bind with given
SARS-CoV-2 protein targets. Our methodology is exemplified
by the task of designing antiviral candidates to target SARS-
CoV-2 related proteins. Using carefully curated covalent and
noncovalent antiviral data sets, we were able to constrain the
generation space for domain-aware deep generative framework
to generate novel covalent and noncovalent inhibitor
candidates. The key properties of generated molecules are
compared with the molecules in the training set. Generated 3D
coordinates of molecules were further examined for their
affinity as antiviral inhibitors against SARS-COV-2 main
protease (Mpro) and a SARS-CoV-2 nonstructural protein
endoribonuclease (NSP15).

■ METHODS

3D-Scaffold Framework. To build novel therapeutic
candidates with key functionalities critical for drug design
and development, we developed the 3D-Scaffold framework. It
is built on a deep neural network named G-SchNet,26,27 which
generates molecular structures from scratch by iteratively
placing one atom after another in 3D space. In 3D-Scaffold,
instead of starting from scratch, molecules are built around a
desired scaffold.

Figure 1. 3D-Scaffold framework used as generative model to produce therapeutic molecules with desired functionality. The bottom panel shows
the scaffold-based molecular generation scheme, where the origin token, focus token, and stop type aid the generation of the molecules from
scaffolds. Our framework generates only atoms in 3D-space which are connected with bonds in bottom panel for visual clarity.
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From a computational perspective, the neural network used
in our 3D-Scaffold framework for de novo therapeutic
candidate design can be broken into two major blocks−feature
learning and atom placement as shown in Figure 1. In the
feature learning block, the embedding and interaction layers of
SchNet28−31 are used to extract and update rotationally and
translationally invariant atom-wise features that capture the
chemical environment of an unfinished molecule. Here, the
neural network utilizes continuous-filter convolution layers as a
means to learn robust representations of molecules starting
only from the positions of atoms and corresponding nuclear
charges. In the atom placement block, the extracted features
are used to predict distributions for the type of next atom and
its 3D coordinates, where the latter distribution is constructed
from predictions of pairwise distances between the next atom
and all preceding atoms. In order to do the actual placement of
the next atom in 3D space, a distribution on a small grid with

candidate positions focused on one of the preceding atoms is
constructed from the predicted pairwise distances. The whole
procedure is repeated successively to build a complete
molecule with the desired scaffold. After the type and position
of the next atom has been sampled from the predicted
distributions, new atom-wise features incorporating the added
atom are extracted in the feature learning block and then used
to place the following atom in the atom placement block.
The generation process is aided by two auxiliary tokens with

unique, artificial types, namely the origin and focus tokens. At
each generation step, one of the already placed atoms is
uniformly randomly chosen as the focus token. The origin
token, in contrast, stays fixed throughout the entire generation
procedure. In previous work with G-SchNet by Gebauer et
al.,26 the origin token marks the center of mass of the molecule.
In our 3D-Scaffold framework, however, we instead use it to

mark the center of mass of the scaffold that is the starting point

Table 1. Pseudo Code for Training and Generation Phases in the 3D-Scaffold Framework

training phase

Input: M, Iscaff ▷training molecule, indices of the atoms in the desired scaffold

origin ← get_center_of_mass(M, Iscaff) ▷set position of origin token to center of mass of atoms in the scaffold
Mpart ←{origin, focus} ▷initialize partial molecule with the two auxiliary tokens
A ← {origin} ▷initialize set of available atoms with origin token
while A ≠ {ϕ} ▷while set of available atoms is not empty, i.e. not all atoms marked as finished

focus ← random(A) ▷randomly select any atom available as focus
neighbors ← get_unplaced_neighbors(focus, M, Mpart) ▷get all neighbors of focus not in Mpart

if neighbors = {ϕ} then ▷no neighbors left for the current focus
next_atom ← stop ▷predict stop type to mark current focus as finished
A ← A \ {focus} ▷remove focus from the set of available atoms, i.e., mark it as finished

else
next_atom ← get_closest_atom(origin, neighbors) ▷find atom in neighbors closest to origin
A ← A ∪ {next_atom} ▷add next atom to set of available atoms

model.predict_and_backprop(Mpart, next_atom) ▷predict distributions for type and distances and update model weights
if next_atom ≠ stop then ▷if the next atom is not the stop type

Mpart ← Mpart ∪ {next_atom} ▷add next atom to the partial molecule
if focus = origin then ▷in the very first step (focus is on the origin)

A ← A \ {origin} ▷remove origin from the set of available atoms to only focus proper atoms afterward
generation phase

Input: model, max_atoms, Ascaff ▷trained model, maximum number of atoms, atoms in the scaffold

origin ← get_center_of_mass(Ascaff) ▷set position of origin token to center of mass of atoms in the scaffold
M ← {origin, focus, Ascaff} ▷initialize molecule with auxiliary tokens and the atoms in the scaffold
A ← {Ascaff} ▷initialize set of available atoms with atoms in the scaffold
t ← 2 ▷number of tokens (origin and focus)
N ← |Ascaff| ▷number of atoms in the scaffold
for i = t + N+1 to t + max_atoms do ▷atom placement loop

while A ≠ {ϕ} ▷type prediction loop
focus ← random(A) ▷randomly select an atom to be focused from set of available atoms
next_type ← sample(model.predict_type(M)) ▷predict and sample from distribution over type of the next atom
if next_type = stop then ▷if stop type was sampled

A ← A \ {focus} ▷remove current focus from A and repeat type prediction loop
else ▷if a proper atom type was sampled

break ▷proceed to the actual atom placement
if A = {ϕ} then ▷no atoms in set of available atoms, i.e., all are marked as finished

return M \ {origin, focus} ▷return the finished molecule without auxiliary tokens
p(dij) = model.predict_dists(M, next_type) ∀j < i ▷predict distributions over pairwise distances dij to preceding atoms

p p dr r r r( ) ( )i j
i

j
1

1
1

ij 2= = ∏ = ∥ − ∥
α =

− ▷compute probabilities of grid positions r from distance probabilities

next_position ← sample(p(ri)) ▷sample position of next atom from computed 3d grid distribution
M ← M ∪{(next_type, next_position)} ▷Add sampled atom to molecule
A ← A ∪{(next_type, next_position)} ▷Add sampled atom to set of available atoms

del M ▷max_atoms atoms are placed but not all of them marked as finished, thus discard the molecule
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of the generation procedure. At each step, the unplaced
neighbor of the focus token that is closest to the origin token is
supposed to be sampled. This means that while the structure
grows around the center of mass of the resulting molecule in
the previous G-SchNet model, in our current 3D-Scaffold
framework it grows from the center of mass of the desired
scaffold given to the model as a starting point. If the currently
focused atom has no neighbors left to place, the model should
predict the stop type instead of a proper atom type and in this
way mark the focused atom as finished. Atoms marked as
finished cannot be chosen as focus anymore, and after all
atoms have been marked as finished, the generation process
terminates. The resulting schemes for training of the model
and generation of molecules are summarized as pseudo code in
Table 1.
The model is trained end-to-end with backpropagation using

the ground truth types and pairwise distances of atoms in
training data molecules split into sequential atom placement
steps as described in the pseudo code. At each training step,
the model predicts the type of the next atom and its distances
to all preceding atoms. The distributions predicted by the
model are discrete: the type distribution contains a probability
value for each atom type occurring in the training data set and
the stop type and the distance distributions cover distances
between 0 and 15 in 300 equally spaced bins. At any step, let
Znext be the ground truth type of the next atom and p̂type

Znext the
probability that the model assigns to that type at the current
step. Then, we use negative log-likelihood as the loss for the
type prediction:

pl log( )Ztype
type

next= − ̂ (1)

For the loss on distance predictions, we use the cross-entropy
between true and predicted distances

q pl log( )
j

N

b B
j
b

j
bdists

1

∑ ∑= ̂
= ∈ (2)

with Gaussian expanded ground truth distances

q
e

ej
b

b

b B
b

r r

r r

( )

( )

j

j

next 2
2

next 2
2=

∑

γ

γ

− ∥ − ∥ −

′∈
− ∥ − ∥ − ′

(3)

Here rnext is the ground truth position of the next atom, rj is the
position of an already placed atom, N is the number of

preceding atoms, γ determines the width of the expansions, B
are the 300 binned distances between 0 and 15, and p̂j

b is the
probability that the model assigns for the distance between rj
and rnext to fall into distance bin b ∈ B at the current step. In
steps where the ground truth type is the stop type, the loss on
distance predictions is set to zero as no distances are predicted.
Descriptions about the hyperparameters used in this work is
provided in the Supporting Information.

Training Data. Therapeutic candidates interact with target
proteins either by forming a covalent bond or noncovalently
through nonbonding interactions. Depending on the kind of
interaction, the molecule is identified as either a covalent or
noncovalent drug candidate.32 The focus of our study is to
develop a general framework capable of producing both
covalent and noncovalent novel therapeutic candidates with
specific scaffolds, and so we performed experiments on two
different data sets.
First, we performed experiments on covalent inhibitor data

(hereafter called covalent data set) taken from multiple
sources.33,34 For the covalent data set, we used ∼4000
candidates from a database of FDA approved drugs33 and
cysteine molecules from the enamine database34 with six
different scaffolds namely acrylamides, chloroamides, nitriles,
disulfides, maleimides, and pyrodines.33 These functional
groups react with the cysteine residue of the target protein
by forming covalent bonds. The distribution of each scaffold in
the data set is provided in the pie chart in Figure 2. Nearly 95%
of the training set is dominated by three scaffolds. We later
show that, irrespective of the fraction of data for each scaffold,
our model generalize equally well for all of them. SMILES
strings of the molecules are extracted from the respective
databases. RDkit35 with MMFF9436 force field was used to
convert SMILES into the 3D coordinates required as an input
for our model.
In addition, for noncovalent inhibitor design, we curated and

filtered a large data set of synthesizable molecules from
BindingDB37 to create the noncovalent data set. We used
different filtering criteria as shown in Figure 2 for creating the
data set. Our noncovalent inhibitor design model is trained
with 36k molecules consisting of 10k unique scaffolds. For the
noncovalent data set, we use Murcko scaffolds24 as a definition
of scaffolds, which demonstrates the flexibility of our model
not only in allowing different scaffold definitions, but also for
generating noncovalent inhibitors. We used RDkit to obtain
Murcko scaffolds from SMILES strings of molecules in the

Figure 2. (a) Distribution of covalent data set based on scaffolds. (b) Filtering criteron used to generate noncovalent training data set.
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training set. For generation with this data set, we randomly
select 25 out of the 10k scaffolds and generate 1000 molecules
for each of them, providing ample generated molecules to
assess the performance of the model.

■ RESULTS AND DISCUSSION
Accurate prediction of advanced hit candidates and fragment
specific lead optimization is crucial for the design and
development of novel therapeutics to combat the threat
posed by new and emerging viruses.32,38 There continues to be
significant need for the development of small-molecule
inhibitors that directly target viral proteins to complement
existing therapeutics, not only for SARS-CoV-2, but also for
related β-coronaviruses SARS-CoV and MERS-CoV, which
have high mortality rates.39 To this end, our 3D-Scaffold
framework represents a unique opportunity for target-specific
noncovalent and covalent drug development and efficient
integration of warhead-optimization. We exemplify the
application of our scaffold informed ML framework to generate
covalent electrophiles and noncovalent inhibitor candidates
against the SARS-CoV-2 main protease (Mpro) and SARS-
CoV-2 nonstructural protein endoribonuclease (NSP15),
essential for viral replication.
Covalent Antiviral Inhibitor Design for Mpro. Tar-

geted covalent inhibitors represent a viable strategy to inhibit
the main proteases involved in different disease pathologies
including SARS-CoV-2.32 Using the covalent antiviral data set,
we first trained the model to generate molecules with six
different scaffolds that are common electrophilic warheads for
different drug applications. For each of the scaffolds, we
generated 2000 molecules and inspected them for their
validity, uniqueness, and novelty. To calculate the percentage
of valid, unique, and novel molecules, we use

validity
number of valid molecules

number of generated molecules
=

unique
number of unique molecules

number of valid molecules
=

novelty
number of generated molecules not in training set
number of unique and valid generated molecules

=

The validity of generated molecules is examined by
converting generated 3D coordinates into canonical SMILES
strings using the xyz2 mol script from the Jensen group,40,41

which relies on Rdkit.35 The conversion can also be
accomplished using Rdkit alone or other open source tools
like Open Babel, but these tools are less reliable when
determining bond orders during conversion. We then used the
sanitize functionality of Rdkit to examine the validity of the
obtained SMILES strings. Alternatively, the validity of
generated molecules can be measured by performing physics-
based simulations such as density functional theory. Due to the
enormous computational cost required to perform such
calculations on thousands of generated molecules, we resort
to empirical approaches. To examine the novelty of the
generated molecules, we compare the Rdkit topological
fingerprint similarity of the molecules in the training set and
the generated set. The uniqueness metric is determined
similarly by using molecular fingerprints. In addition, to further
validate the performance of our model in generating valid and

synthesizable molecules, we also query the MCULE database42

for generated molecules to check how many already exist in the
MCULE data set. The performance of our model in terms of
these metrics is listed in Table 2.

The performance of our model is similar to existing scaffold-
based generative models in terms of generating valid, unique,
and novel molecules. For all the scaffolds in the covalent data
set, our model performs similarly well, with on average 92%
uniqueness among the generated molecules. 81% of generated
molecules are valid and ∼100% are novel. These metrics
remain similar even for the molecules generated using a novel
scaffold (piperazine) as starting point, thus demonstrating the
transferability of our model to scaffolds not in the training set.
Compared to the existing generative models in the literature,
our model shows superior performance in generating unique
and novel molecules, while the percentage of valid molecules
generated is in general slightly lower than for other generative
models. We, however, note that these models were trained on
different data sets, making a direct comparison of the reported
numbers difficult. Moreover, the performance of our model is
especially promising when one takes into account the relatively
small amount of training data used (4000) compared to cited
models from the literature which were trained on larger
training sets. Training our model on larger training sets might
further improve the reported statistics as has been reported for
other generative models.44 In addition, compared to ours,
models from the literature were trained to generate relatively
small molecules with the QM9 data set. Size of molecules
generated from our model varies from the size of scaffolds to
“N” number of atoms provided by user as input. When
querying the MCULE database, we found that some of the
molecules generated for each scaffold are already known and
available in the database, demonstrating the success of our

Table 2. Table Showing the Statistics of Valid, Unique, and
Novel Molecules Generated for Different Scaffoldsa

scaffolds/methods validity (%) uniqueness (%) novelty (%) known

covalent data set
acrylamides 79 96 99 59
chloroamides 83 93 99 34
pyrodines 84 83 100 71
maleamides 86 85 99 73
nitriles 81 97 100 59
disulfides 75 98 100 1
piperazineb 80 92 100 52

noncovalent data set
90 73 100

literature
G-SchNet26 77 92 88 −
Lim et al.21 99 85 99 −
DeepScaffold23 99 69 − −
GraphVAE43 56 76 62 −
MolGAN43 98 10 94 −

aThe number of generated molecules that exist in MCULE database
(not in the training set) is also listed in the “known” column. For the
model trained on the non-covalent dataset, mean values of validity,
uniqueness, and novelty for 25 different scaffolds is provided. For
comparison, performances of recent methods from the literature are
also provided. However, note that literature results stem from
experiments with different datasets than the ones used in this work.
bNovel scaffold.
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model in generating synthesizable molecules. This also holds
for the molecules generated with the novel scaffold piperazine.
An important goal of our work is to generate novel

molecules with therapeutic properties while retaining desired
scaffolds. To this end, we do not directly condition molecule
generation on the desired properties but instead constrain it to
the generation of molecules with desired scaffolds. We expect
that this will indirectly constrain the properties, as well. The
properties of interest are synthetic accessibility (SA) score,
quantitative estimation of drug-likeness (QED), and the
partition coefficient (logP). The SA score measures the
synthesizability of generated molecules and has values in the
range 0−10, where the lower end suggests increased
accessibility. QED is a useful measure for quantifying and
ranking the drug-likeness of a compound. The values range
from 0 for unfavorable to 1 for favorable molecules. The
partition coefficient, logP, estimates the lipophilicity or
hydrophilicity of a compound. It measures the physical nature
of a compound and its permeability and ability to reach the
target in the body. A positive logP value indicates the
compound is lipophilic, and a negative logP value indicates a
hydrophilic compound.
We compare the properties of the generated molecules with

the ones in the training set to see whether our model can
generate new molecules with properties similar to those of the
molecules in the training set. Ideally, having similar statistics of
properties is an indicator that our model is performing as
expected with the constraints imposed upon it. For the

statistical analysis, we report the mean and standard deviation
of the SA, logP, and QED scores in both the training and the
generated sets in Table 3. The mean SA score of both
generated and training set molecules falls in the lower half of
the SA scale 0−10, implying in general synthesizability of
generated molecules. Slight deviation observed between the
two sets can be attributed to the lack of explicit conditioning
on target properties.45 The mean value of QED for generated
molecules is slightly lower (on average by 0.2 units) compared
to molecules from the training set. However, the model also
generated molecules with high QED, i.e. strong drug-likeness.
Here, logP follows similar trends for its mean value among two
sets. We consistently observed relatively large standard
deviation for SA, QED, and logP in generated molecules for
each scaffolds, reflecting diversity in generated molecules
compared to the well curated training data set. To further
visualize this data, we display the probability density plots for
SA, QED, and logP of the molecules in the training set and the
generated set for each scaffolds in Figure 3. Solid lines mark
the distributions of generated molecules while dashed lines
correspond to molecules in the training set. The distributions
of generated molecules with respect to the SA score in Figure
3a show that a good fraction of generated molecules are
experimentally synthesizable. Moreover, the distribution of the
SA score for the novel functional group, piperazine (not in
training set), is similar to other scaffolds in the training set,
showing the transferability of our model. This also
demonstrate the success of our model in generating

Table 3. Statistics of Molecules from the Training and Generated Data Set, Respectively, for Each Scaffolda

training set generated set

SA logP QED SA logP QED

chloroamides mean 2.55 2.30 0.84 4.59 1.73 0.65
std 0.57 1.00 0.15 1.31 1.97 0.23

acrylamides mean 2.65 2.40 0.76 4.26 2.00 0.60
std 0.55 1.33 0.21 1.42 1.99 0.25

disulfides mean 2.94 2.64 0.88 5.60 3.15 0.52
std 0.89 0.82 0.22 0.95 2.15 0.26

pyrodines mean 2.90 1.62 0.70 4.62 0.80 0.52
std 0.59 1.47 0.25 1.55 1.71 0.28

maleamides mean 2.30 1.32 0.66 4.36 0.72 0.63
std 0.27 1.02 0.17 1.40 1.62 0.24

nitriles mean 2.40 3.12 0.87 4.47 2.10 0.61
std 0.40 1.00 0.13 1.28 1.84 0.23

piperazineb mean − − − 4.75 1.09 0.54
std − − − 1.31 1.86 0.29

aThe mean and standard deviation for each property in each set are provided. bNovel scaffold.

Figure 3. Probability density plots of SA score, logP, and QED for molecules in the training set as well as generated set for each functional group.
Solid lines correspond to metrics of data in the generated set, whereas dashed lines of same color correspond to molecules in the training set.
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experimentally synthesizable molecules, which is a big issue
with most generative models. For the logP metric (see Figure
3b), similar distributions are observed between generated and
training molecules. We were able to generate both lipophilic as
well as hydrophilic compounds as indicated by positive and
negative logP, respectively, with the former category being the
majority, similar to the molecules in the training set. This again
indicates that our model is generating novel molecules with
properties similar to the training set. From the QED
distribution plot (Figure 3c), we see that the majority (6̃0%)
of the molecules have a QED score greater than 0.5, with a
good chunk of molecules being close to 1 as evident from the
peaks of probability distribution curves around 0.9. Minor
discrepancies between the properties of generated molecules
and the training set may be due to the lack of directly
constrained property optimization in our work. Although our
model generates molecules with desired properties, it would be
interesting to see its performance when explicitly constraining
the desired property range. However, this is beyond the scope
of our current work and is kept aside for future work.

We further analyzed the diversity of molecules using
heatmaps of the Tanimoto coefficient between molecules
within the training set (Figure 4a) and within the generated set
(Figure 4b). The Tanimoto coefficient is a measure of the
similarity of molecules. The heatmap shows that the training
set we use is quite diverse as evident by the many green spots
(low similarity). A similar heatmap is observed for the
generated set, showing that generated molecules are quite
different from each other, while predominantly maintaining
similar properties (as discussed before). We also note that our
model generates diverse molecules in terms of their size, i.e.,
the number of atoms, while always preserving the given
scaffolds.
To check the transferability of our model to generate valid

molecules for functional groups that are not in training set, we
generated 2000 molecules with piperazine as the starting
building block. Generated molecules are checked against the
MCULE databases to see if any of the generated molecules are
already known. We found that nearly 50 of the molecules
generated are available in the MCULE database. This shows

Figure 4. Heatmap showing the fingerprint similarity between molecules in the training set (a) and the generated set (b) for the acrylamide
scaffold.

Figure 5. Sample of generated candidates along with their SA score, QED, logP values, and corresponding MCULE ids. These candidates are
synthesizable and available to order from MCULE database.
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the capacity of our model to generate valid, synthesizable
molecules even for novel scaffolds. The distribution plot for
the SA, logP, and QED of the molecules generated for
piperazine is included in Figure 3. It shows that the properties
of molecules generated follow similar distributions as for other
functional groups.
We visualize representative generated molecules that we also

found in the MCULE database with corresponding SA score,
QED, and log P values along with the corresponding MCULE
ids in Figure 5. Overall, our results show that our model
constrained to generating molecules with desired scaffolds
indirectly also successfully constrains the properties. Despite
the significant variation in the amount of training data for each
scaffold, our model consistently generates valid, unique, novel,
and experimentally synthesizable molecules with desired
therapeutic properties for each scaffold within and outside of
the training set.
Binding Affinities of Covalent Inhibitors against

Mpro. As a proof of concept application for generated
molecules, we docked them against main protease (Mpro).
Mpro is the key enzyme of SARS-CoV-2 that gets the
maximum attention because of its ability to trigger viral
replication and transcription.46,47 Significant effort has been
made since the rapid increase of SARS-CoV-2 worldwide to
find therapeutic small molecules and vaccines that have desired
activity. Most of the early efforts were focused on drug
repurposing using already known drug molecules. For future
pandemic events, it is possible that an effective drug molecule
for repurposing is not yet known. In those scenarios, models
that generate novel molecules with certain functionalities as
proposed here will be an efficient alternative. First step for such
generated molecules is to examine their binding affinity and
activity against the target protein using docking simulations.
Docking simulations use empirical approaches to determine
the favorable/unfavorable binding of ligands with target
proteins and numerically rank them using a docking score.
For our molecular docking simulations we utilized the

AutoDock for Flexible Receptors (ADFR) package.48 Gen-

erated ligands were covalently bound to Cysteine-145 of the
target protein (PDB ID:6WQF), which is part of a catalytic
dyad formed with Histidine-41. We compared the docking
score of generated molecules against the training molecules in
the covalent data set which is shown in Figure 6. A larger
magnitude of the docking score implies higher favorability for
the docking process. We found that generated molecules show
similar docking performance to molecules in the training
covalent data set, as illustrated in the violin plots and the
corresponding mean docking score noted in the labels of the x-
axis. For the majority of scaffolds, including the novel scaffold
piperazine and the three scaffolds that make up 95% of the
training data, the generated molecules on average show higher
affinity for docking against the Mpro-target protein than
molecules in the covalent data set. The only scaffolds that have
a smaller mean docking scores compared to the training
molecules are maleamide and pyrodine, with docking scores of
8.96 and 8.64, respectively.

Noncovalent Antiviral Inhibitor Design for NSP15.
With the goal of generating noncovalent inhibitors for SAR-
Cov-2 targets, we trained our model on the noncovalent data
set using Murcko scaffolds. The training data consist of 36k
molecules with 10k unique scaffolds. The performance of our
model trained for generating noncovalent inhibitors is similar
(Table 2) to the one for the covalent data set in terms of
validity and novelty. However, the percentage of unique
molecules generated drops to a mean value of 73% for about
25 different scaffolds. This may be a direct consequence of the
limited number of molecules (on average 4) for each scaffold
in the noncovalent training set. When generating 1000
molecules for each of the 25 scaffolds, the model repeats
some of the generated molecules. However, the absolute
amount of uniquely generated molecules per scaffold is still
remarkable considering the limited number of training
examples per scaffold.
As a part of the DOE National Virtual Biotechnology

Laboratories (NVBL) therapeutic design project, we screened
millions of compounds in repurposing libraries of drug

Figure 6. Violin plots showing the distribution of the docking score against the MPro protein for generated molecules with different scaffolds and
training molecules in the covalent data set. Larger values imply favorable binding.
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compounds for activity against NSP1−NSP15 from SARS-
CoV-2, followed by experimental validation. In particular, the
coronavirus nonstructural protein NSP15 is highly conserved
among coronaviruses.38 It is also a key component for viral
replication with no corresponding counterpart in host cells,
which makes it an intriguing candidate for drug development.
Our recent computational and experimental results demon-
strated that Exebryl-1, a β-amyloid antiaggregation molecule
designed for Alzheimer’s disease therapy, can bind to NSP15,
but it did not have sufficient antiviral activity in cell-based
assays for immediate drug repurposing efforts.49 This provides
us an interesting target to optimize the Exebryl-1 hit based on
the 3D-Scaffold framework to obtain improved activity and
antiviral properties. Our goal is to lead optimization together
with in silico molecular docking calculations onto the crystal
structure of NSP15.
As a test case, we generated noncovalent inhibitors for the

SARS-CoV-2 nonstructural protein endoribonuclease (NSP15)
target (PDB ID: 6XDH) by optimizing Exebryl-1 based
compounds.49 Exebryl-1 has experimentally been found to be
active49 against NSP15 from high-throughput assay screening
from drug and lead repurposing libraries. Our goal is to modify
and generate more active compounds against the NSP15 target
by building molecules on top of Murcko scaffolds of the
Exebryl-1 molecule. When examining the structure−activity
relationship, some of the generated molecules (see Figure 7)
show good binding activity (docking score) against the NSP15
target. Moreover, these molecules are easily synthesizable (low
SA scores) and have desired drug-likeness (large QED values).
Generated molecules from our work that showed high activity
against NSP15 from docking and molecular dynamics
simulations are further being investigated by our experimental
collaborators.

■ CONCLUSIONS
In this report, we developed a generative framework based on
deep neural networks that can generate 3D coordinates of
therapeutic candidates with desired scaffolds for covalent and
noncovalent drug development. The 3D-Scaffold model is

trained end-to-end incorporating robust atomistic representa-
tion learning techniques and generates 3D coordinates from
the learned probability distributions of atom types and the
pairwise distances. Due to the sequential atom-by-atom
generation scheme of our framework starting from a given
scaffold, the desired scaffold is 100% guaranteed in the
generated 3D coordinates. We use covalent and noncovalent
antiviral data sets to optimally narrow the search toward novel
compounds with therapeutic significance that are reasonable to
design as covalent and noncovalent inhibitors. Most
importantly, our generated library of covalent warheads with
the same scaffold represents a unique opportunity for the
efficient integration of warhead optimization into the covalent
drug development process. This ligand-based approach that
targets desired scaffolds can be used for cell-based probe
design.
We demonstrated that our model generates predominantly

valid, unique, and novel molecules that have therapeutic drug-
like properties similar to the molecules in the training set. The
success of our framework lies in generating synthesizable
molecules with desired properties without directly constraining
on the target properties. Moreover, it performs well for
relatively small volumes of training data and generalizes equally
well for generating molecules with a new scaffold, which
demonstrates the transferability of the proposed framework.
Our framework offers the advantage that the generated 3D

coordinates of molecules can be directly used for further
simulations such as density function theory, MD, or docking
calculations, compared to SMILES strings or graph-based
models, where empirical approaches are used to generate 3D
coordinates. As an application, the 3D coordinates of
generated molecules from our work were examined for their
interaction against the Mpro and NSP15 targets of SARS-CoV-
2 using docking simulations. Our results show that generated
molecules have strong binding affinity against the target
protein similar to the molecules in the training set. This holds
true for novel scaffolds as well. Although we used our
framework to generate covalent and noncovalent inhibitors in
this work, our model in principle can be used to generates any

Figure 7. Exebryl-1 and representative generated molecules from our 3D-Scaffold framework with high binding affinity against NSP15 protein-
target. For each molecule, we list the SA score, QED, logP, binding affinity, and fingerprint similarity (labeled sim in the figure) with respect to
experimentally known NSP15 inhibitor Exebryl-1. The scaffold used for optimization is highlighted in red in generated molecules.
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kind of molecules with desired scaffolds, making it applicable
to many domains. We believe that the robust performance of
our model on relatively small data sets and its generalization on
new scaffolds provides an efficient and flexible way of
generating new molecules while simultaneously optimizing
the functionalities by constraining the types of scaffolds
included. Further improvement in the performance of the
3D-Scaffold framework may be observed by generating
molecules while also explicitly constraining on the target
properties or by generating molecules with more than one
critical scaffold. We note that our current framework only
generates single conformer of a generated molecules. This
framework can be further extended to generate rationally
different conformers while also considering desired interaction
with the protein receptors.
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