

Forecasting Groundwater Levels and Optimizing Monitoring Networks for Remediation Design Using Diffusion Models

Tse-Chun Chen, Xuehang Song, Grigoriy Kondyukov, Zhangshuan Hou, Inci Demirkanli, Rob Mackley

Pacific Northwest National Laboratory

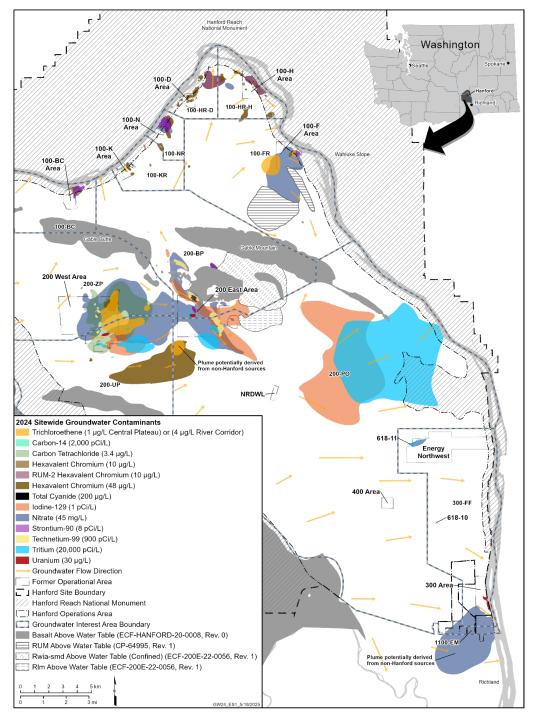
PNNL is operated by Battelle for the U.S. Department of Energy

Motivation: Optimize the Groundwater-Level

Monitoring Network

► Continuous groundwater-level (GWL) mapping is essential to anticipate plume migration and inform remedy decisions.

- ➤ Traditional workflows are periodic, manual and static; they don't include per-well information-value metrics.
- Need: a method that generates uncertainty-aware, time-resolved GWL maps to optimize monitoring-network design—prioritizing wells and setting measurement-frequency targets.



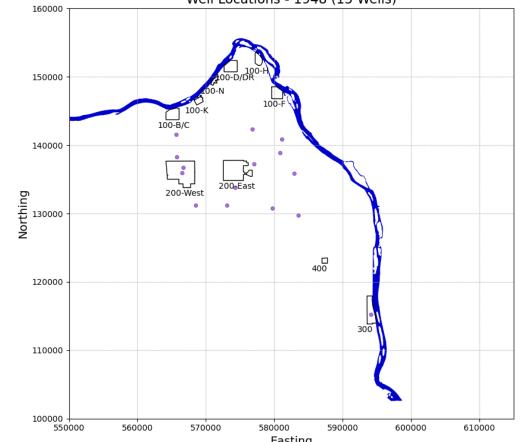
Hanford Sitewide Plumes, 2024 (Source: DOE/HFO-2024-41. Rev. 0)

From 15 to nearly 1,200 Wells — Evolving Coverage Well Locations - 1948 (15 Wells) Well Locations - 1948 (15 Wells)

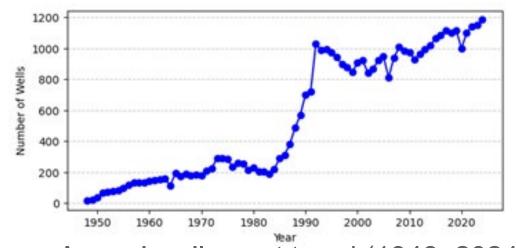
Across 75 Years

➤ The Hanford Environmental Information System (HEIS) archives 187,000+ GWL measurements from 2,151 wells (1948–2024).

- Sampling remains uneven—half of wells have fewer than 57 readings, while a small subset exceeds 200 measurements.
- This irregular space-time coverage complicates interpolation and uncertainty quantification, motivating approaches that account for monitoring network coverage and measurement frequency explicitly.



spatial snapshots of network evolution



Annual well count trend (1948–2024)

Physics Simulations Provide Spatiotemporal Patterns for Learning

- ► The Hanford Plateau-to-River (P2R) model, calibrated to historical wells, outputs GWL fields over a 1943–2018 history-matching period and extending through a projection interval to 2137.
- ► These physics-consistent sequences capture regional gradients, barrier effects, capture/low-flow zones—the sitescale spatiotemporal patterns we can learn from.



P2R Model Extent and Boundary Conditions (CP-53037)

Simulation fields define reference patterns; HEIS data later anchor the mapping to actual observations.

Diffusion + Score-Based Data Assimilation for Observation-Consistent GWL Mapping

- ▶ **Diffusion prior (learns physics patterns):** 1) forward stochastic differential equation (SDE) perturbs from P2R GWL sequences \mathbf{x} , inducing a family of noisy densities $p_s(\mathbf{x})$ over diffusion time/step s; 2) The model then learns the score $\nabla_x \log p_s(\mathbf{x})$ and uses the reverse SDE to denoise, generating physically coherent GWL fields.
- ▶ Score-Based Data Assimilation (SDA): conditions on well observations by, at each reverse step s and observed time t, the observation operator H_t maps gridded GWL field \mathbf{x}_t to HEIS GWL measurements \mathbf{y}_t with Gaussian observation errors R_t .

$$\nabla_{x_t} \log p(\mathbf{y}_t | \mathbf{x}_t) = H_t^T R_t^{-1} (\mathbf{y}_t - H_t \mathbf{x}_t)$$

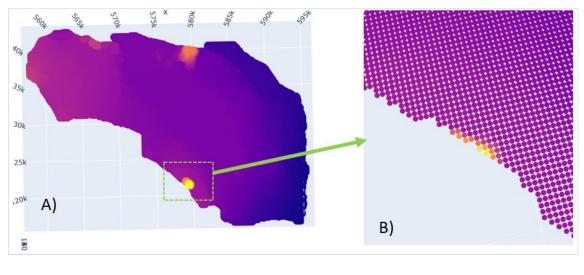
► Joint update (physics prior + data): balances physics patterns and field measurement under sparse, irregular sampling.

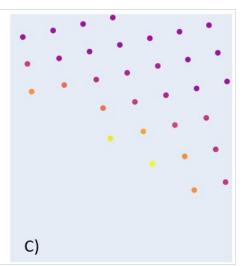
$$\Delta \mathbf{x}_t = \alpha_s \nabla_{x_t} \log p_s(\mathbf{x}_t) + \beta_s \nabla_{x_t} \log p(\mathbf{y}_t | \mathbf{x}_t)$$

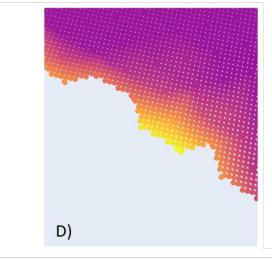
where α_s , $\beta_s > 0$ are step/weight schedules as functions of diffusion time.

Geosamplerite: Consistent Sampling for Model Grid and Irregular Well Locations

- ► A lightweight Python toolkit with CUDA acceleration for fast rasterization and easy loading of model and field data
- Samples HEIS well locations on the same grid (the H_t operator), enabling observation conditioning in SDA.
- ➤ Supports super-sampling near boundaries and GPU-friendly I/O for long time series.
- Produces model-ready tensors for diffusion/SDA with reproducible preprocessing.







Geosamplerite harmonizes unstructured P2R outputs and irregular well data onto a common grid, preserving boundary features and enabling consistent grid-to-well mapping for diffusion—SDA training and conditioning.

End-to-End Workflow: From Physics to Monitoring Design

- ► Physics simulation: captures gradients, capture zones, and barriers.
- ► **Diffusion prior:** learns spatiotemporal GWL structure.
- ► SDA + ensemble reconstruction: conditions on sparse well data, quantifies uncertainty.

► Monitoring-network assessment: derives well-value maps through add/drop analysis

Conditions on and generates ensembles for uncertainty.

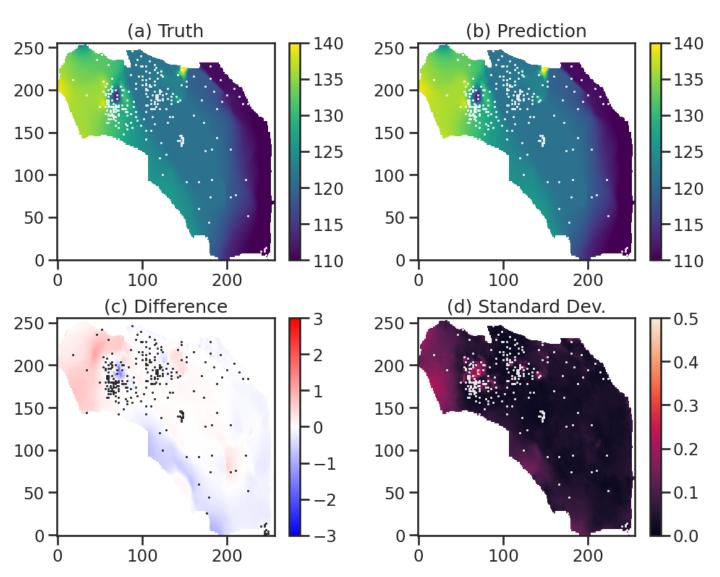
sparse well data

Physics Simulation Capture spatiotemporal GWL structure (gradients, capture zones, barriers). Diffusion Prior Training Score-Based Data Assimilation Ensemble-Based GWL Reconstruction Derives well-value maps via add/drop analyses Monitoring-Network Assessment

Integrated workflow connecting physics, data assimilation, and monitoring-network evaluation.

Observation-Conditioned GWL Mapping Results

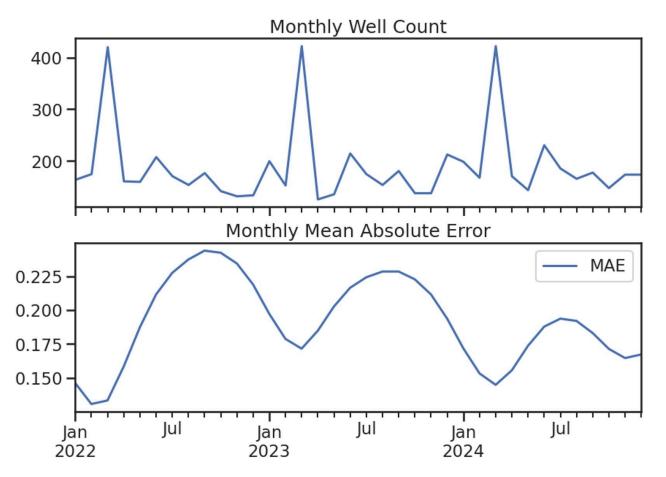
- ► March 2023 is randomly chosen as a representative month. Assimilate all available HEIS wells for that date.
- ▶ Diffusion–SDA reconstruction agrees closely with the P2R reference (residuals mostly within ±0.5 m)
- Uncertainty (ensemble spread) mirrors residuals.
- Denser well clusters → smaller residuals → lower spread → confidence increases with observation density.



Observation-conditioned GWL maps (meters above sea level, m ASL): (a) Reference (P2R),(b) Diffusion—SDA prediction, (c) Residual (m), (d) Ensemble SD (m). Points = assimilated wells.

Monitoring Coverage vs. Mapping Accuracy

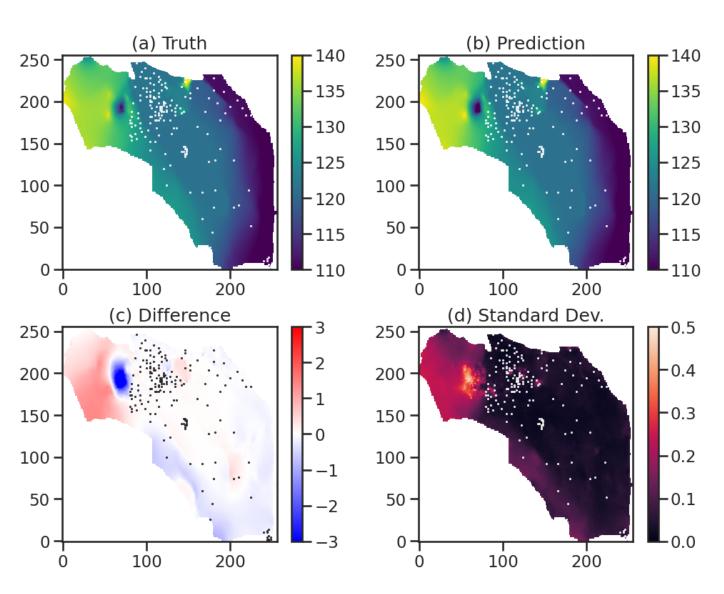
- Coverage analyzed for January 2022 December 2024 (24 monthly steps).
- Active well counts per month range from ≈ 300 to > 1000, with domain-wide mean absolute error (MAE) ≈ 0.12–0.24 m across months.
- ► Higher active-well counts → lower MAE. MAE is computed over all grid cells vs. the reference field, indicating a domain-wide accuracy gain with denser sampling.
- Coverage-sensitive mapping establishes a basis for evaluating well contribution and setting measurement-frequency targets.



Top: Number of wells with measurements each month. Bottom: Monthly MAE (unit, m) between the diffusion–SDA prediction and the reference field

Monitoring-Network Sensitivity (Remove-Well Demonstration)

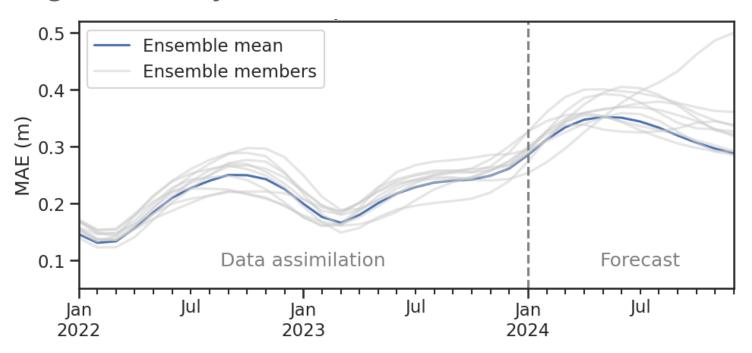
- About 5% of the wells (23 total) were withheld for coverage-sensitivity testing.
- Local areas around the removed wells show increased MAE and larger ensemble spread, while the rest of the domain remains stable.
- Spatial ΔMAE and Δspread maps highlight zones most affected by coverage loss, providing a quantitative signal of well's information value.
- The remove-well analysis links well coverage to GWL mapping performance and can be used to guide monitoring-network optimization.



Observation-conditioned GWL maps (meters above sea level, m ASL): (a) Reference (P2R) ,(b) Diffusion–SDA prediction, (c) Residual (m), (d) Ensemble SD (m). Points = assimilated wells.

Forecast Baseline without New Observations

► Ensemble initialized from the December 2023 observation-conditioned state and advanced through January–December 2024 with the likelihood term disabled.



► Monthly MAE is low and stable during Jan 2022–Dec 2023, then increases through 2024; the ensemble spread widens in the forecast window.

► This prior-only run establishes a baseline for error growth and uncertainty in the absence of observation updates, which informs minimum re-anchoring (monitoring) frequency.

Implications and Next Steps

- ➤ The diffusion—SDA framework supports time-resolved, uncertainty-aware GWL mapping to optimize monitoring design, set measurement-frequency targets, and evaluate coverage trade-offs.
- ► For Hanford, this effort supports cost-effective, high-quality GWL mapping to inform remedy activities such as capture-zone monitoring for P&T and plume-migration prediction.
- ► Next steps
 - ► Model tuning: adjustment of diffusion/noise schedule, network capacity, learning rate, and conditioning weights.
 - ► Error model: refine the observation-error model and the prior—data balance in SDA.
 - ► Toolkit: build an automated add/drop module for well information value (rolling leave-one-out/add-one-in, ΔMAE/Δspread, ranked recommendations).

Funding for this work was provided by the U.S. Department of Energy Hanford Field Office under the Deep Vadose Zone – Applied Field Research Initiative. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL01830.

Thank you

