Advancements in Analytical Techniques for PFAS Detection in Environmental Samples

NaCH

RemPlex 2025 Summit November 2025

Sarah Choyke

Technical Director, Eurofins Environment Testing

Environment Testing

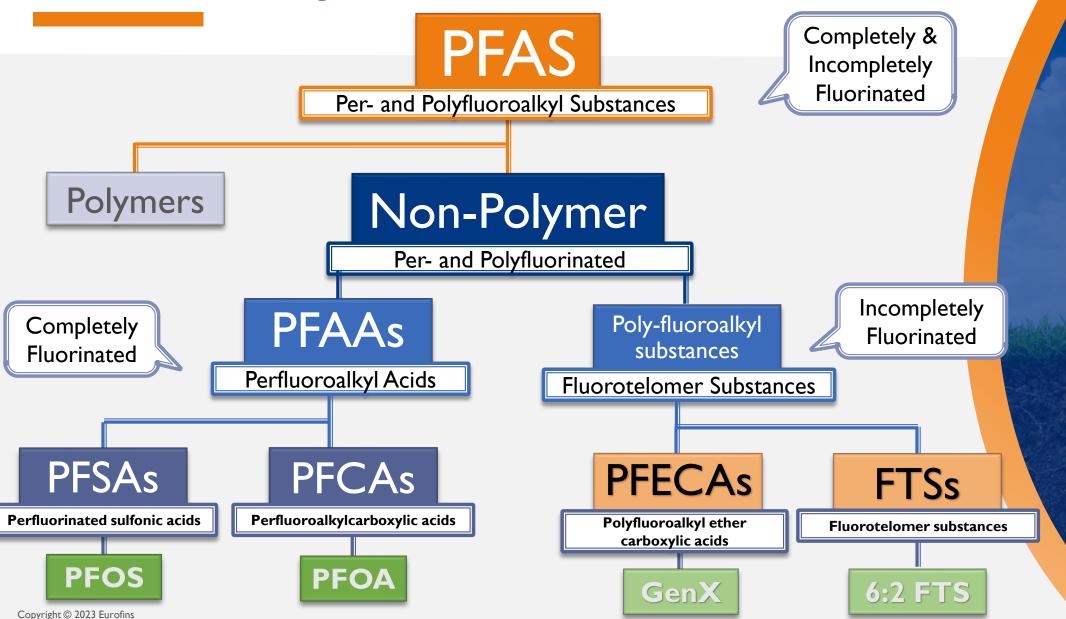
Topics for Discussion

PFAS Introduction

 Pre-Planning & Method Selection

PFAS Methodology

 Advanced Analytical Tools More analytes
More methods
More data



What are PFAS?

- A group of synthetic compounds formed from Carbon-Fluorine chain.
- Known for water- and grease-resistant properties
- Persistent in the environment and long half life in organisms
- Linked to Health outcomes
 - high cholesterol, thyroid disease, liver damage, decrease immune response, certain types of cancer

PFAS Family

NOW W N

Analyzing PFAS? You've got options

PFAS

Methods

Drinking Water

EPA Method 53325 PFAS

EPA Method 537.1 18 PFAS

Unknowns

Combustion Ion Chromatography
EPA 1621 Adsorbable Organic Fluorine

Extractable Organic Fluorine

Total Oxidizable Precursor (TOP) Assay

Forensics Analysis

Branched & Linear

Non-Targeted Analysis & Suspect Screening

Non-Potable Water, Solid, & Tissue

EPA Method 1633A 40 PFAS

Rapid Screening

ASTM D8421 / EPA 8327 (Aq)

D7968 (Solids)

Isotope Dilution: Quantitation method uses ¹³C- or deuterated stable isotopes for internal standardization

Isotope Dilution Analysis: Wastewater Matrix

		External Standard		
		MS	MSD	
Analyte	CAS No.	% Rec	% Rec	
PFBA	375-22-4	0	0	
PFHxA	307-24-4	63	86	
PFOA	335-67-1	142	139	
PFNA	375-95-1	129	129	
PFDA	335-76-2	61	65	
PFBS	375-73-5	84	99	
PFHxS	355-46-4	100	108	
PFOS	1763-23-1	117	111	
6:2FTS	27619-97-2	297	295	
HFPO-DA	13252-13-6	39	40	

Copyright © Eurofins Environment Testing

1633A OPR Limits				
Lower	Upper			
70	140			
70	145			
70	150			
70	150			
70	140			
60	145			
65	145			
55	150			
65	155			
70	140			

Non-Potable Water, Solids and Tissues

EPA Method 1633A

NPW, Solids, Biosolids & Tissues

40 PFAS (including branched)

Solid Phase Extraction Preparation

TSS in bottle < 50 mg

Hold Time: 28 days for aqueous 90 days for solids & tissues

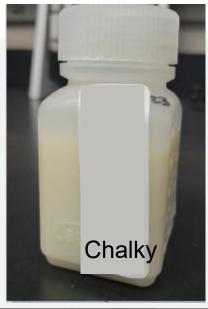
LC-MS/MS with confirmation ion

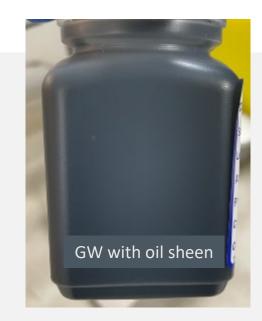
Extracted internal standard (EIS) quantification

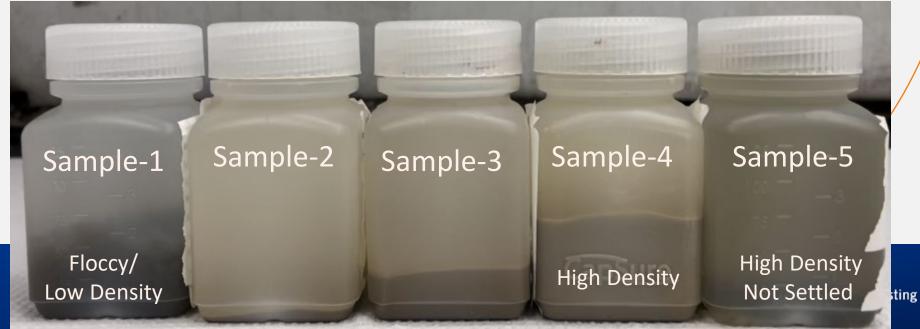
RL: 2-10 ppt

Method 1633, Revision A

Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS




Aqueous Sample:


- EPA 1633A Section 11.2
- Aqueous (not solvent)
- Low TSS (<50mg/bottle)
 - Must <u>not</u> be filtered
- Does not foam
- Not multiphasic
- Homogenous

Advances and Lessons in EPA Methods 1633A

TSS Matters (>50 mg TSS/sample bottle)

Density, Amount, Type, etc.

Procedural Options:

- Multiple SPE Cartridges
 - Unknown bias for all analytes
- Subsample
 - Whole bottle represented
 - Elevated RL all analytes
- Spike > Equilibrate* > Centrifuge > Decant
 - Only Water Fraction analyzed
 - Potential data bias for longer chain PFAS due to sorption

What happens to analytes during equilibration?

EIS may sorb to particulates

Long-Chain EIS may have significant losses

Let isotopes (EIS) quantitate

			Waste	Ground	1633A %R
Ánalyte	LCS	LCSD	Water	Water	Limit
13C4 PFBA	95	96	56	55	5-130
13C5 PFPeA	92	97	45	61	40-130
M2-4:2 FTS	92	84	62	96	40-200
13C3 PFBS	88	94	51	71	40-135
13C5 PFHxA	94	96	60	67	40-130
13C3 HFPO-DA	94	95	75	74	40-130
13C4 PFHpA	94	96	66	74	40-130
M2-6:2 FTS	89	95	57	108	40-200
13C8 PFOA	95	96	45	72	40-130
13C3 PFHxS	91	95	34	70	40-130
13C9 PFNA	95	97	23	69	40-130
M2-8:2 FTS	96	95	10	93	40-130
13C6 PFDA	94	97	8	65	40-130
d3-NMeFOSAA	86	83	3	46	40-170
13C8 PFOS	89	90	4	62	40-130
d5-NEtFOSAA	83	81	3	46	25-135
13C7 PFUnA	91	92	2	46	30-130
13C2 PFDoA	88	93	1	36	10-130
13C8 FOSA	91	96	4	70	40-130
13C2 PFTeDA	68	73	1	24	10-130
d7-N-MeFOSE-M	81	87	0	20	10-130
d3-NMePFOSA	66	66	NR	46	10-130
9-N-EtFOSE-M	79	83	NR	12	10-130
d5-NEtPFOSA	55	60	NR	37	10-130
			-		

What have we learned?

- Screen every sample for high concentration
- Unknown & known biases introduced by:
 - Improper sample collection
 - Increased sampling handling
 - Potential biases (high and low)
 - Increased potential for contamination
 - Complex matrices
- Communication:
 - Field Staff <> Lab <> DOE Project Managers
 - Tell the lab about:
 - Known high concentrations or heavy matrix samples
 - Understand the bias of sampling & sample handling

1633A Project Directives

Preserve lowest possible RLs and accept potentially compromised data quality from poor recoveries of EIS or Preserve data quality and accept elevated RLs up to 5x.

Over-Calibration results are acceptable as addressed by method 1633A.

"Projects may accept such an estimated value if the result is so high that is it well above the project criteria or action level, especially if additional samples is planned for the site." If multiple analyses are performed due to failing QC, report on the data with passing QC.

Emerging Technologies

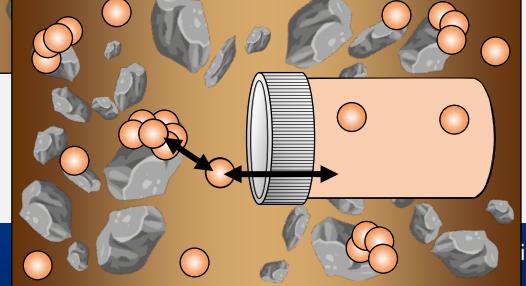
PFASsive TOP Assay Total Organic Fluorine (TOF) Non-Targeted Analysis (NTA)

Environment Testing

PFASsive™ – The Solution for PFAS Monitoring


- Provide Critical Data for:
 - Fate and risk assessment
 - Toxicity identification
 - Remediation Design
 - Long Term Monitoring
- SiREM & Eurofins partnered to provide a passive solution for dissolved PFAS monitoring.

PFASsive™ – The Solution for PFAS Monitoring



Solution in sampler equilibrates with freely-dissolved species in sediment (days-weeks)

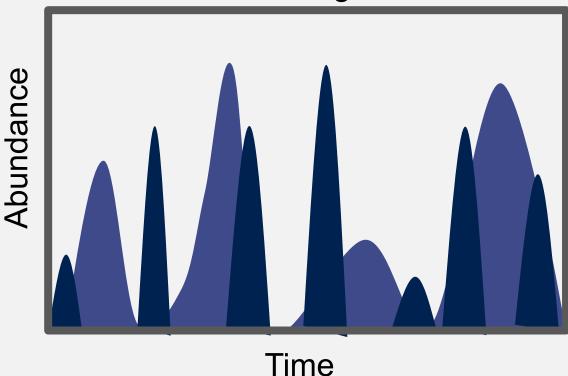
 Sampler removed from sediment, solution transferred and preserved, measured for target analytes using standard methods for water (e.g., EPA 1633A)

Unavailable Analyte Freely-dissolved Analyte

Results in ng/L

Screening Methods for PFAS

EPA Method 8327 ASTM D8421 (aq.) ASTM D7968 (solid) TOP Assay
AOF/EOF
Non-Targeted Analysis



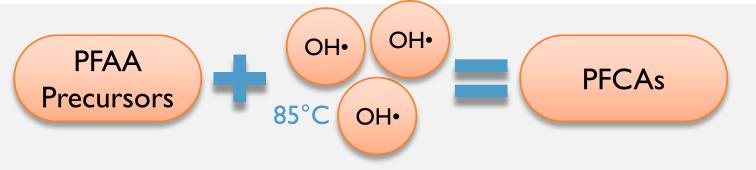
- Select compounds
- Specific matrix
- Analytical Standards
- Quantitative
- Closed Analysis

Targeted Methods: How much PFOA is in the sample?

Chromatogram

Why explore non-targeted analysis?

1-5% identified


95-99% unidentified

- TSCA inventory >86,000 chemicals in commerce (2019)
 - 100s-1000s of suspect PFASs
- >219 million entries in the CAS registry
- Current standard methods include a very limited number of chemicals

We will only find what we are looking for!

How much transformable PFAS?

	Pre-Treatment (ng/L)	Post-Treatment (ng/L)	
PFBA	ND	46	
PFPeA	15	15	
PFHxA	11	42	
PFHpA	ND	6.3	
PFOA	13	14	
Total PFCAs	39	148.3	
eu	PFCA Difference:		

TOP Assay

Cons:

- Matrix effects quench rxn
- Un-measureable transformation products
- Not robust

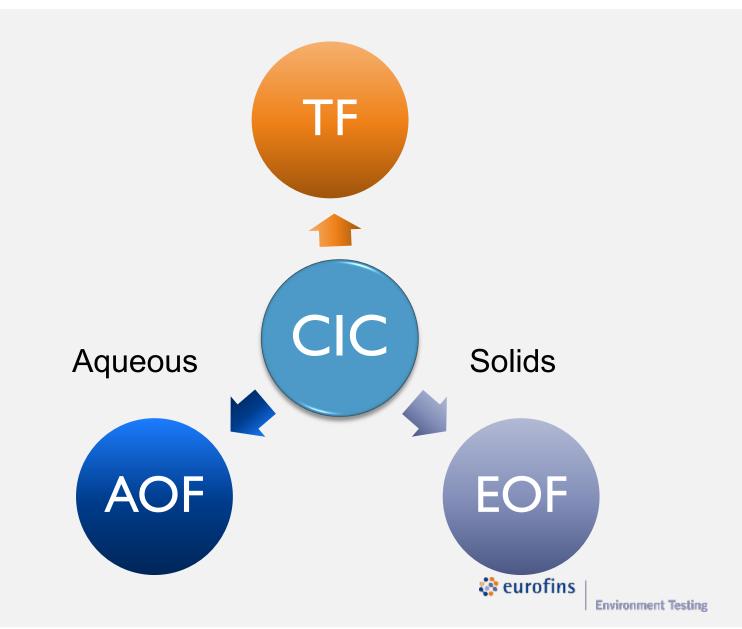
Pros:

Quantify oxidizable precursors with some chain length information

AOF/EOF

Cons:

- Not PFAS specific
- High reporting limits


Pros:

- EPA Method 1621 AOF
- Robust analysis
- Single result

CIC: Combustion Ion Chromatography

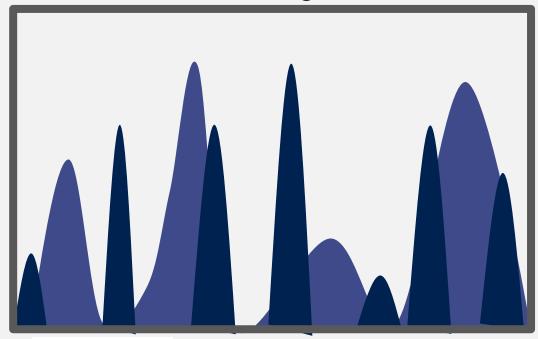
How much organic fluorine?

NTA

Cons:

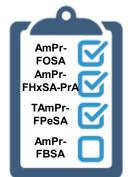
- High Resolution Mass Spectrometry
- Semi-Quantitative

Pros:


- User Defined Compound Lists
- No Standards required
- Open Ended Analysis

Non-Targeted & Suspect Screening

What is in my sample?


Chromatogram

Abundance

Time

Drinking Water

Non-Potable Water, Solid, & Tissue

EPA Method 533 25 PFAS

EPA Method 537.118 PFAS

Screening

EPA 1621 Adsorbable Organic Fluorine Extractable Organic Fluorine

Rapid Screening

ASTM D8421 (Aq) & D7968 (Solids)

EPA 8327 (Aq)

Total Oxidizable Precursor (TOP) Assay

Forensics Analysis • Branched & Linear

Non-Targeted Analysis & Suspect Screening

PFAS

Methods

40 PFAS

EPA Method 1633/A

Air

OTM 45 - Polar Semivolatile PFAS

OTM 50- Non-polar Volatile PFAS

OTM 55/0010/8270 – Non-polar Semivolatile PFAS

QUESTIONS?

Environment Testing

