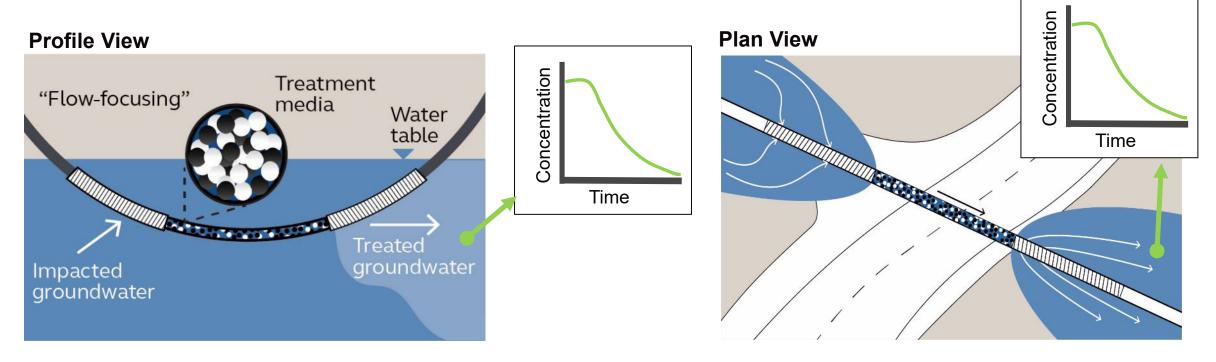


Multi-Year Passive In Situ Treatment of Perand Polyfluoroalkyl Substances (PFAS) with an HRX Well®

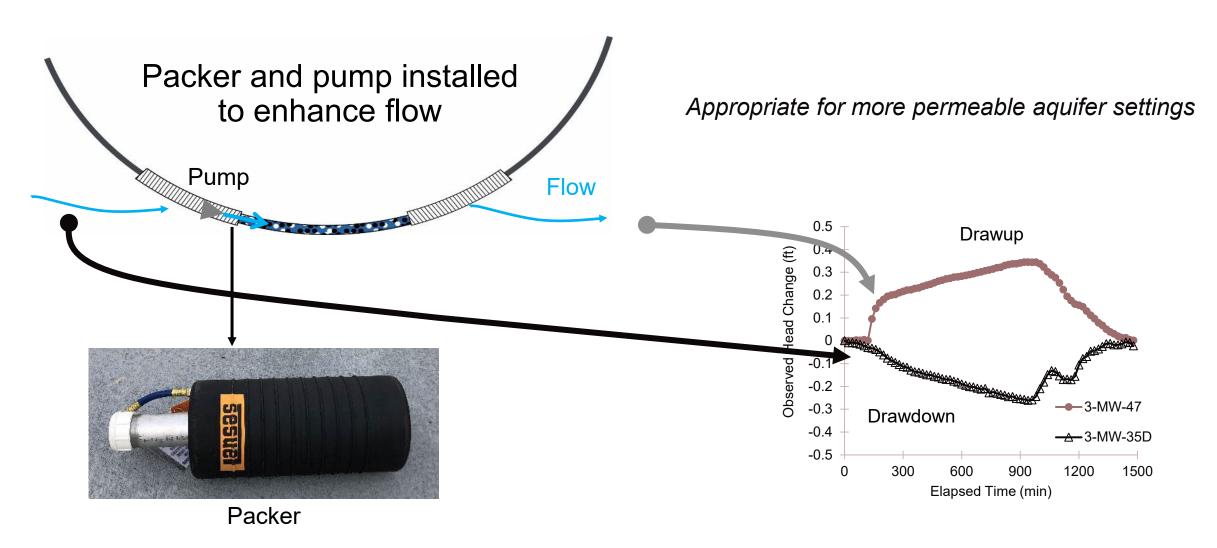
Jesse Wright and Craig Divine

November 2025

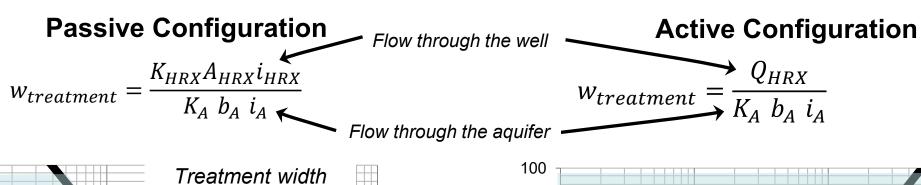


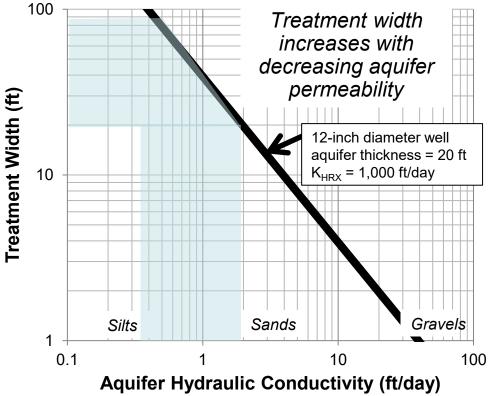
HRX Well® Description (Passive Configuration)

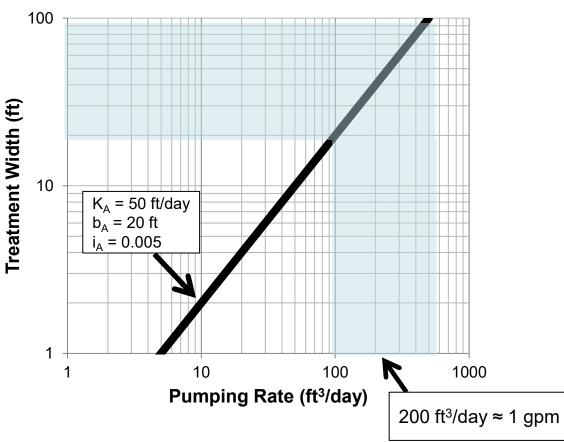
The HRX Well* is a large-diameter horizontal well installed along the groundwater flow path that is filled with


treatment media for long-term in situ mass flux/discharge control

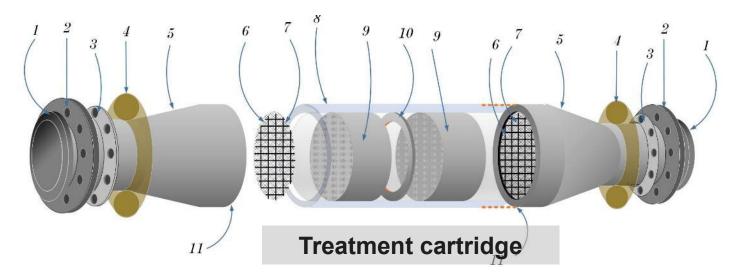
© Arcadis 2024 11 November 2025




HRX Well Description (Active Configuration)



Treatment Zone Size



Treatment Media Cartridges

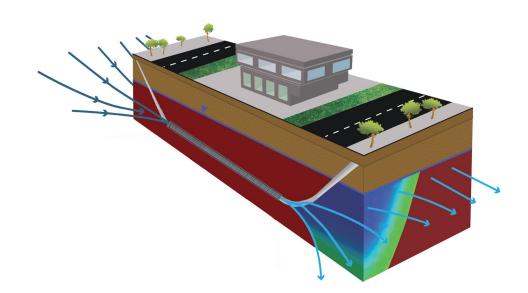
© Arcadis 2024

Potential Reactive Media and Contaminants

Target Groundwater Contaminant	Reactive Media		
Chlorinated solvents (CVOCs), Arsenic, Cobalt, Chromium, Molybdenum, Selenium, Thallium, nitrate, perchlorate, energetics	Zero valent iron (ZVI), Bimetallics (e.g., ZVI + Pd, Pt, or Ni)		
PFAS, CVOCs, hydrocarbons, halomethanes	Granulated Activated Carbon (GAC), Organosilicates (e.g., Osorb®)		
CVOCs, 1,4-dioxane, hydrocarbons, polyaromatic hydrocarbons (PAHs), phenolic compounds (e.g., pentachlorophenol; PCP), energetics	Sustained Release Oxidants (e.g., RemOxSR+ISCO)		
CVOCs, nitrate, perchlorate	Biodegradable particulate organic carbon (e.g., mulch)		
Boron, brines, PFAS	Ion exchange resins		
Cobalt, Low pH, acid rock drainage	Limestone, lime, magnesium oxide		
Chromium, Molybdenum, high pH	Iron sulfide		
Antimony, Selenium, Ammonium, radionuclides, PFAS	Zeolites		
Radium	Barium sulfate (barite)		
Lithium	Hydrotalcite		
Boron, Arsenic, Thallium	Activated Alumina		

Advantages

Treatment and Contaminants


- Many solid-phase reactive media options
- Efficient use of reactive media (replaceable/serviceable)
- Treatment trains for multiple contaminants

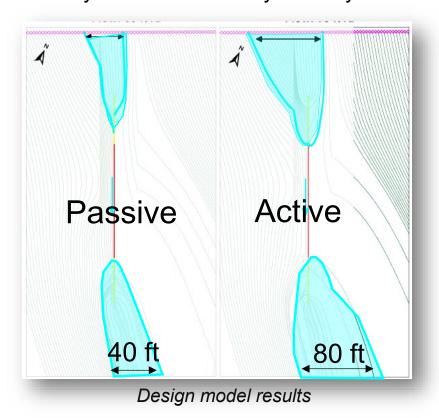
Site Conditions

- Works for both low and highpermeability aquifers
- Can be applied in relatively deep settings
- Access under infrastructure
- Limited above-ground footprint

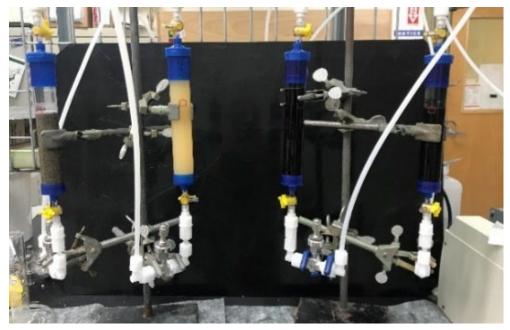
Operation

- Minimal O&M, energy use
- In situ; no above-ground water management
- Pumping can optimize residence time and treatment zone size

HRX Well Field Installation



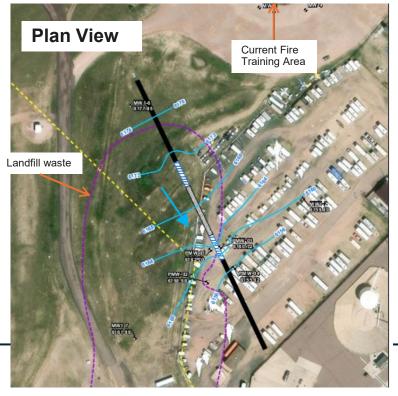
PFAS - Passive and Active Configuration

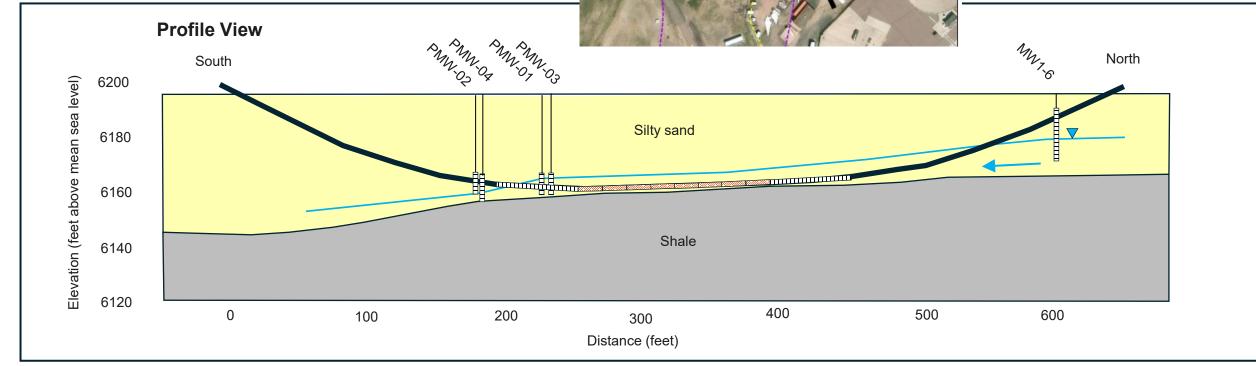


- Aquifer thickness 5-10 ft
- Target depth: 35 ft
- Sandy alluvium within paleochannel
- Hydraulic conductivity: 3 ft/day

Passive: 40 ft width, residence time 8 hrs

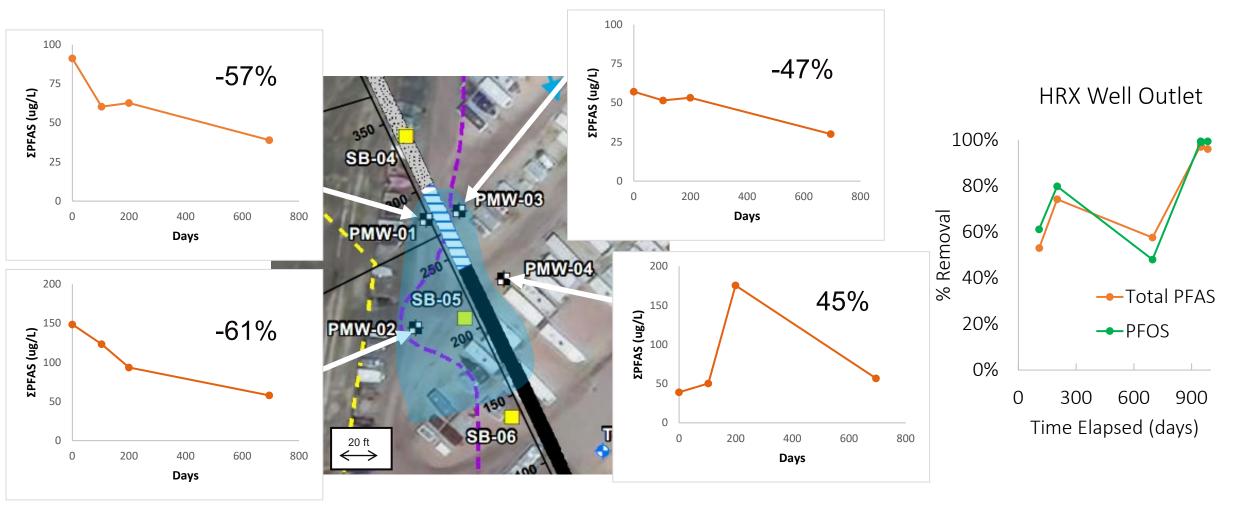
Active: 80 ft width, residence time 4 hrs


Column testing to support adsorbent media selection

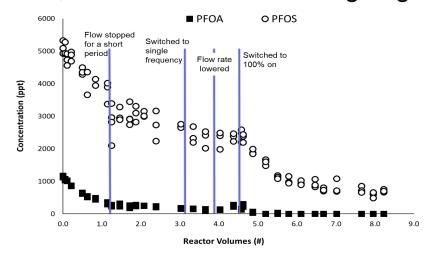

Tested media: Fluorosorb 400, Osorb 4-mesh, Filtrasorb 400 GAC, Purolite IX

Selected: Filtrasorb 400, Filtrasorb 800 pretreatment

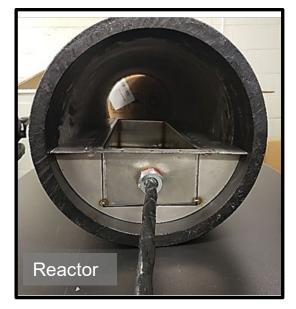
Both being field tested


HRX Well Location

Performance



- Treatment zone width at least 20-40 ft under passive configuration
- 50-99% PFAS treatment for 3 yrs at HRX Well Outlet
- 47-61% ΣPFAS concentration reduction at wells


In Situ Reactors for Destructive PFAS Treatment



- Sonolytic reactor developed for destructive PFAS treatment in PSFB HRX Well (ESTCP ER21-5045)
- Lab prototype achieved 99% PFOA and 86% PFOS treatment, field data collection on-going

- Electrochemical oxidation reactor will be installed in Summer 2026 (ESTCP ER25-8685)
- Multiple reactors could be installed in series, could be paired with GAC

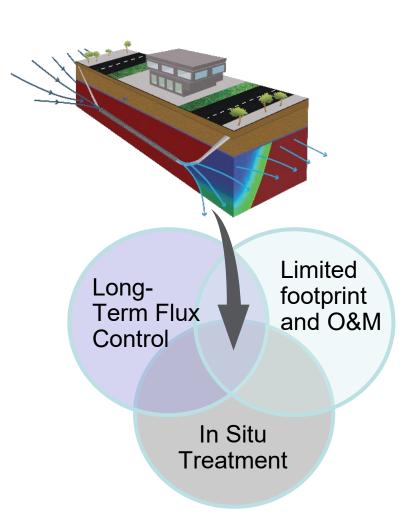
Summary of HRX Wells Installed (and Planned) at Field Sites

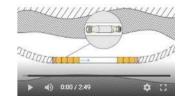
Location	VSFB, CA	FAAFS, WI	PSFB, CO	Confidential, Sweden	Confidential, MI
Installation Date	August 2018	November 2021	April 2021	TBD	Summer 2027
Target Contaminant, (ug/L)	CVOCs, 40,000	CVOCs, 120	PFAS, 35	PFAS, 13	PFAS, >100
Length, depth (ft)	550	1,140	650	345	700
Maximum Depth (ft)	20	125	35	40	30
Well Diameter (in)	12	8	10	10	12
Average Aquifer Hydraulic Conductivity (K _A ; ft/day)	0.35	0.55	2.0	10	200
Hydraulic Configuration	Passive	Active	Passive, Active	Active	Active
Approximate Treatment Zone Width (ft)	50	120	20-40	80	1,600 (5 HRX Wells)
Treatment Media	ZVI	ZVI + GAC	GAC	GAC	GAC
Treatment Media Residence Time (day)	9	0.5	6, 2	<3	<1

Notes:

VSFB - Vandenberg Space Force Base FAAFS - former Antigo Air Force Station

PSFB - Peterson Space Force Base


ZVI - Zero Valent Iron


GAC - Granular Activated Carbon

Design and Implementation

- 1. Complete simple screening analysis
- 2. Perform treatability study to optimize treatment media
- 3. Collect **focused field data** along HRX Well alignment
- 4. Construct local numerical **design model** to optimize design
- 5. Install HRX Well and initiate performance monitoring

ARCADIS

Explainer Video: https://youtu.be/118CwiYIjS4

Divine, et al., 2025. Multi-Year Passive In Situ Treatment of Per- and Polyfluoroalkyl Substances (PFAS) with an HRX Well®. *Remediation*, 35(3), e70021; https://doi.org/10.1002/rem.70021

Divine, et al., 2025. In Situ Treatment of Chlorinated Volatile Organic Compounds (CVOCs) with a Deep Active Configuration Horizontal Reactive Treatment Well (HRX Well®). *Remediation*, in press

Divine, et al., 2020. Field Demonstration of the Horizontal Reactive Media Treatment Well (HRX Well®) for Passive In-Situ Remediation. GWMR, 40(3): 42-554, https://doi.org/10.1111/gwmr.12407

Nzeribe, et al., 2020. Hydraulic Performance of the Horizontal Reactive Media Treatment Well: Pilot and Numerical Study. GWMR, 40(3): 30-41. https://doi.org/10.1111/gwmr.12406

Divine et al., 2018. The Horizontal Reactive Media Treatment Well (HRX Well®) for Passive In-Situ Remediation. *GWMR*, DOI: <u>10.1111/gwmr.12252</u>

Divine et al., 2018. The Horizontal Reactive Media Treatment Well (HRX Well®) for Passive In-Situ Remediation. *GWMR*, DOI: 10.1111/gwmr.12252

Divine et al., 2018. The Horizontal reactive media treatment well (HRX Well®) for passive in-situ remediation: Design, implementation, and sustainability considerations. *Remediation*, DOI: <u>10.1002/rem.21571</u>

ER-2016 Final Report and Design Tool anticipated 2Q2020. https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201631/ER-201631

2019 National Groundwater Association Technology Award

2020 ESTCP Project of the Year Award

2021 Environment
Business Journal Project
Merit Award

Contact Information

Jesse Wright, P.E., P.G.
Principal Engineer, Indianapolis, IN

jesse.wright@arcadis.com

