

Axisymmetric Flow and Transport Modeling: Incorporating Well Construction Components and HighResolution Discretization

05-NOV 2025

Miguel E. Valencia [1], Frederick D. Day-Lewis [1], Rebecka Iveson [1], Rob D. Mackley [1], Christian Langevin [2]

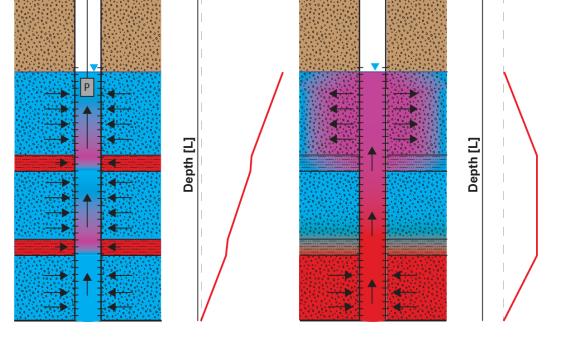
[1] Pacific Northwest National Laboratory

[2] S.S. Papadopulos & Associates, Inc.

Outline

- Introduction
- Background: MODFLOW 6 Axisymmetric Flow Example
- Methodology
 - Modification to axisymmetric model example
 - ➤ Model enhancement 1
 - ➤ Preliminary results
 - ➤ Model enhancement 2
 - ➤ Preliminary results
- Next steps
- Summary

Introduction


Problem Statement

- Traditional groundwater models oversimplify well representation
 - Neglects key features: filter pack, well diameter, head losses, vertical flow, and solute transport within wells

Why It Matters

Inaccurate modeling leads to poor predictions of:

- Vertical flow within filter packs
- Ambient solute movement
- Multi-layer mixing in long-screened wells

Day-Lewis, F. D., R. D. Mackley, and R. Bence. 2024. Sampling in Long-Screened Wells: Issues, Misconceptions, and Solutions. Groundwater 62, no. 5: 669–80, https://doi.org/10.1111/gwat.13427.

Vertical Borehole

Flow [L3/T]

These modeling deficiencies result in

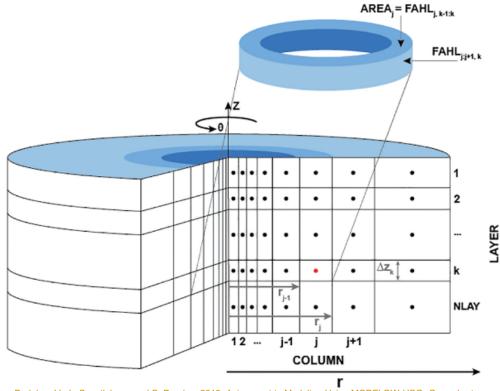
- Ineffective remediation system design
- Wrong technology selection
- Cost overruns and schedule delays
- Regulatory compliance failures

Vertical Borehole

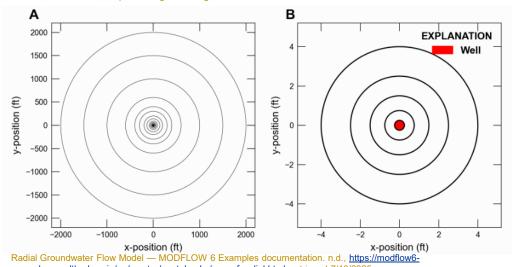
Flow [L³/T]

Background: Axisymmetric Flow Model

Axisymmetric Groundwater Flow Model


- Benchmark transient radial groundwater flow to a single pumping well using MODFLOW 6 (MF 6)
 - Built upon MF 6's established axisymmetric flow capabilities (Example 59)
 - We use this example as our starting foundation

Key Features & Setup


- Grid: DISU (Unstructured Radial Mesh)
- Resolution: Logarithmic spacing for fine detail near the wellbore (steepest gradients)
- Central Pumping Well (WEL)

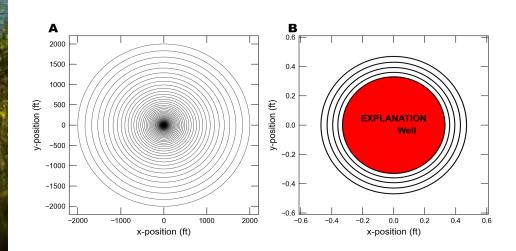
MODFLOW 6 Packages Used

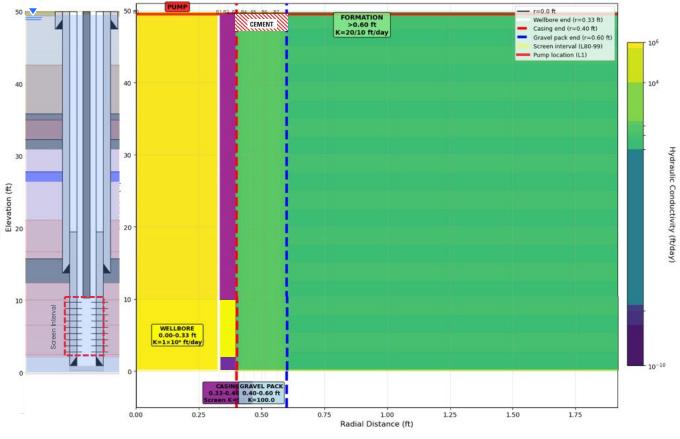
Core Packages: DISU, groundwater flow (GWF), WEL

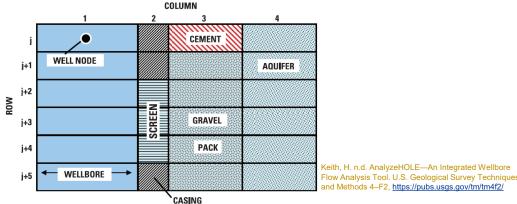
L. Scantlebury, and S. Panday. 2019. Axisymmetric Modeling Using MODFLOW-USG. Groundwate 57, no. 5: 772-77, https://doi.org/10.1111/gwat.12861.

examples.readthedocs.io/en/master/ notebooks/ex-gwf-radial.html. retrieved 7/10/2025

Methodology

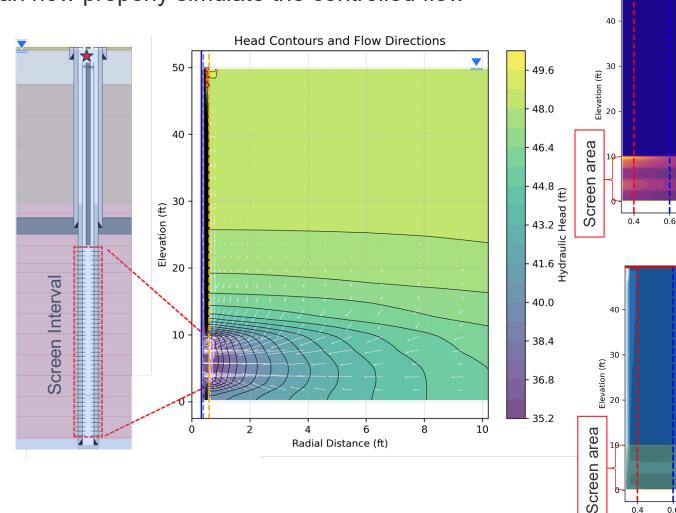

Enhanced (1) MF 6 Axisymmetric Flow Model


Unstructured Grid enhancement


- Multi-Zone Discretization: 25×22 → 100×100 cells
 - Wellbore → Casing → Gravel Pack → Formation ^{a 20}
 (logarithmic spacing)
 - Logarithmic radial grid: 100 bands

Well construction zones (similar to Halford (2009))

- Wellbore: K = 10⁹ (enhanced vertical flow)
- Casing/Screen: $K = 10^{-6}/50$
- Gravel Pack: K = 100
- Formation: K = 10-20 (heterogeneus)


Similar well construction zones as reported by Halford (2009)

Preliminary Results: Enhancement 1

 Enhanced model can now properly simulate the controlled flow entry at the screen

- Realistic flow patterns achieved
- Well construction zones working as designed
- Flow concentration at screen depth

Radial Flow Component (gr)

Radial Distance (ft)

Vertical Flow Component (qz)

Radial Distance (ft)

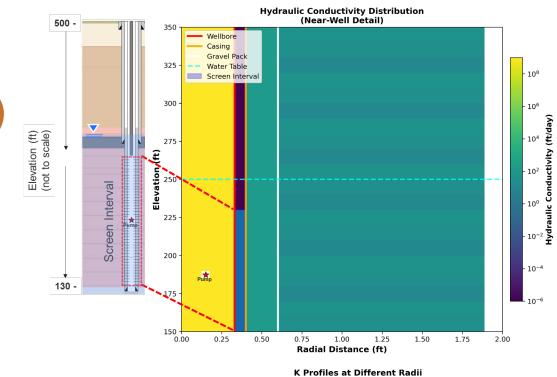
- 120 - 100 (kp/±)

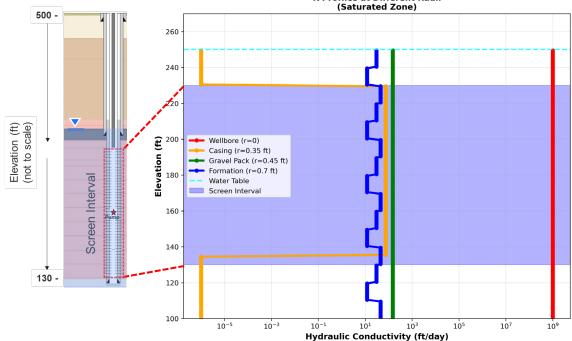
7500

(f/day)

3000

1500

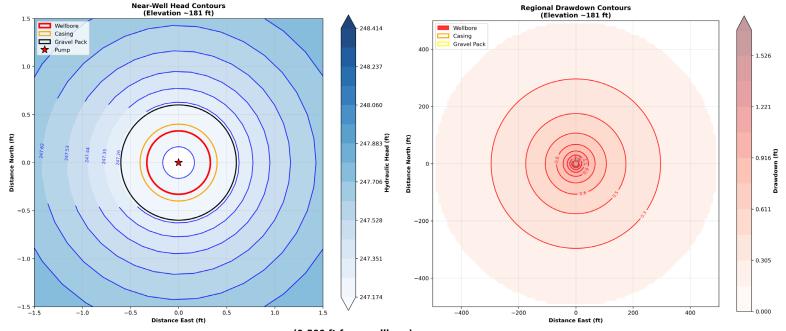


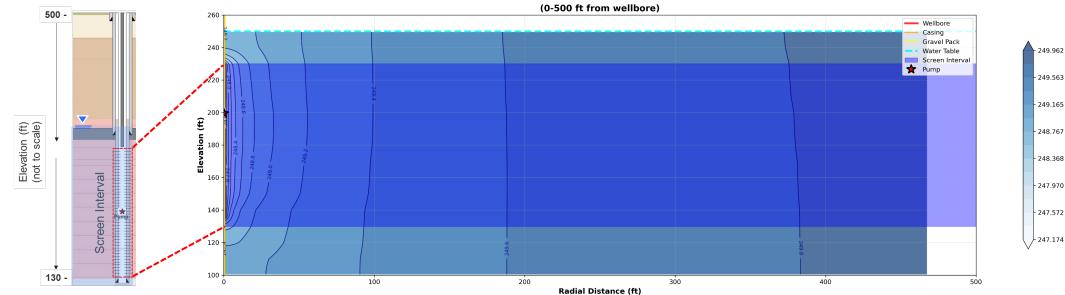


Methodology: Model Enhancement (2)

Implementing Similar Hanford Site, WA, Hydrogeological Conditions

Discretization Parameter	Enhancement #1	Enhancement # 2	Improvements
Total Layers	100	400	4× increase
Layer Thickness	0.5 ft	1.0 ft	2× thicker
Model Depth	50 ft	400 ft	8× deeper
Total Nodes	10,000	40,000	4× larger
Active Nodes	10,000	15,000	Optimized
Water Table	Surface	250 ft deep	Deep aquifer
Vadose Zone Handling	N/A	IDOMAIN (inactive layers)	
Screen Length	7.5ft	100 ft	~13× longer
Water table depth	50	250	5× deeper
Pump depth	0.5	300 ft	
Pumping rate	4,000 ft ³ /day	8,000 ft ³ /day	
Time discretization	1 stress period, 20 Tstps		
Heterogeneous formation (K-values)	10/20 ft/day	45/30/12 ft/day	

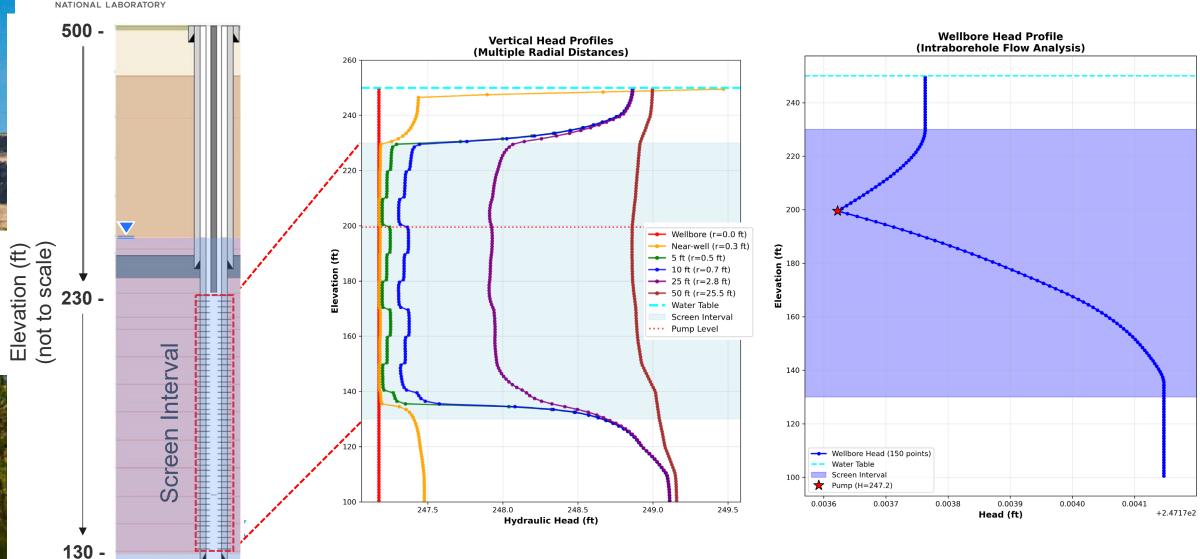




Model Results: Enhancement 2

Analysis

- Head contours
- Drawdown contours
- Head distribution cross-section



Model Results: Enhancement 2

Next Steps

Transport Modeling Integration

- GWT package implementation: Contaminant fate and transport analysis
- Hanford contaminants: Contamination scenarios
- Capture zone analysis: Pump effectiveness and plume interception
- Breakthrough curve analysis: Wellbore concentration monitoring

Enhanced Hanford Site Conditions

- Extended screen designs: 200+ ft screens for deep contamination
- Complex stratigraphy: Hanford formation layering
- Implement multi-screen wells
- Multi-aquifer systems: Confined/unconfined layer interactions
- Realistic boundary conditions: Regional flow and recharge natterns

Advanced Operational Scenarios

- Multi-stress period analysis: Pump on/off cycling optimization
- Implement PEST
- Variable pumping rates: Seasonal and operational adjustments
- Long-term simulations: Multi-year remediation timeframes
- Response scenarios: Rapid response pumping strategies
- Professional Visualization & Tools

Summary

Original Repository Model (MF 6 Example)→ Enhanced Hanford Model

Scale Transformations:

- Grid Size: 550 nodes → 40,000 nodes (73× increase)
- Water Table: 50 ft (surface) → 250 ft deep (realistic Hanford)
- Model Depth: 50 ft → 400 ft total depth (8× deeper)
- Screen Design: 10 ft basic → 100 ft professional long-screen

How This Work Addresses the Problem

- Developing enhanced modeling capabilities that capture realistic well construction effects previously ignored in standard models
- Building tools to predict where contamination will migrate during remediation
- Creating foundation for transport modeling that will simulate contaminant mixing and capture more accurately

Mission Impact - Why This Development Matters

- Hanford remediation planning When completed, this tool will help design pumpand-treat systems that capture contamination as predicted
- Cost avoidance potential Better flow predictions mean avoiding expensive system redesigns when wells underperform
- Risk reduction More accurate capture zone predictions help ensure contamination doesn't migrate beyond treatment areas

HANFORD SITE MODEL PERFORMANCE

Model Configuration:

- Total Depth: 400 ft below surface
- Water Table Depth: 250 ft below surface
- Screen Length: 100 ft
- Screen Depth: 270-370 ft
- Pumping Rate: 8,000 ft³/day

Well Performance Results:

- Water Table: 250.0 ft
- Head at Pump: 247.17 ft
- Total Drawdown: 2.83 ft
- Wellbore Head Range: 0.001 ft

Data Quality & Diagnostics:

- Total Model Nodes: 40,000
- Valid Head Points: 15,000
- Wellbore Points: 150
- Invalid/Dry Cells: 25,000
- Head Data Shape: (20, 1, 1, 40000)
- Time Steps: 20

Model Health:

- Saturated Layers: 150
- Vadose (Inactive) Layers: 250
- Valid Head Range: 247.2 to 250.0 ft

Cement Seal Configuration:

- Radial Extent: 0.40-0.60 ft
- Vertical Extent: 0-20 ft depth (top 20 layers)
- K-value: 1e-06 ft/day (impermeable)

Model Efficiency:

- Active Cells: 15,000
- Inactive Cells: 25,000
- Total Model Cells: 40,000

Thank you

