Deciding on Distributed Wind

Mapping Opportunity

September 19, 2024

Dr. Caleb Phillips

Senior Scientist, Data Analysis & Visualization, NREL

The Distributed Wind Energy Futures Study

What is the US opportunity for distributed wind now through 2035?

Key Innovation: An every-single-parcel assessment of land use, wind resource, and siting. We assess each parcel's technical and economic viability, policy financing and incentives, and performance improvement pathways to 2035.

This is a long running NREL-led project with prior studies in 2012, 2016 and 2022.

Example: Parcel Sampling & System Sizing

- For every parcel in the continental US (~155 million parcels):
 - Find largest possible wind turbine system (see below)

1. Example of a parcel in Southwestern Utah.

2. Remove building geometries from parcel.

3. Remove exclusions: Slope > 20%, federal lands, water, forests, etc.

4. Biggest circle in remaining polygon determines maximum turbine size.

Example: Wind Resource & Model Turbine

- For every parcel in the continental US (~155 million parcels):
 - Find largest possible wind turbine system
 - Estimate potential power and energy generation

1. Example of a parcel in Southwestern Utah.

2. Use NREL's WIND Toolkit Dataset

3. Extract hourly average windspeed and direction

4. Using turbine power curve, estimate generation

Example: Valuation Framework and Costs

- For every parcel in the continental US (~155 million parcels):
 - Find largest possible wind turbine system
 - Estimate potential power and energy generation
 - Apply valuation framework, calculate cost

1. Example of a parcel in Southwestern Utah.

- 3. Cost of energy, building loads, and regulatory constraints
- 4. Determine breakeven cost and system cost viability

While computationally costly, this workflow is performed in parallel on NREL's supercomputer Kestrel

Front of the Meter (FTM)

Utility-scale Generation

Transmission & Distribution

Residential Solar

Storage

Microgrid

We run scenarios for BTM, FOM (FTM), and combined for now through 2035

Distributed Wind Explorer

September 17, 2024

Danielle Preziuso

Socio-Technical Systems Engineer

PNNL-SA-203614

Front-of-Meter Breakeven Costs

Ottawa Montreal

rovidence

Toronto

Quillatu.

Cleveland

Detroit

Pittsburgh New York Columbus Philadalphia

Washington

Richmond

Norfolk

Charlotte

(Truning)(ITE

Atlanta

Jacksonville

Orlando Tampa

Miami

WindWatts

September 19, 2024

Dr. Caleb Phillips

Senior Scientist, Data Analysis & Visualization, NREL

WINDVALT demonstration

September 17, 2024

Sarah Barrows and Avinash Joshi

Pacific Northwest National Laboratory

PNNL-SA-203697

The Distributed Wind Investment and Valuation Analysis Tool

GET STARTED →

Want to be a WINDVALT test user?

Follow the link to sign up!

To contact the research team: Sarah Barrows <u>sarah.barrows@pnnl.gov</u>

