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Background on MLPs

Textbook Chapter

Many options!

Here is one by me: Google “brian d wood researchgate”

On Researchgate:
Textbook: Introduction to Advanced Engineering
Mathematics and Analysis
“Chapter 10: Primer on feedforward neural networks: An
analytical approach”
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Overview of ANNs

The Multilayer Perceptron Network for Regression

Multilayer perceptrons (MLPs) are a kind of ANN for
high-dimensional representation of a regression functional

The functional itself consists of an nested network of
weighted nonlinear compositions

f (x1, x2, . . . xN) = σM ◦ σM−1 ◦ σM−1◦︸ ︷︷ ︸
nonlinear

. . . ℓ1(x1, x2, . . . , xN)︸ ︷︷ ︸
linear

The depth of the compositional structure is frequently
termed the number of layers in the network

A sum of such compositions are interpreted as a neural
network.

BD Wood — Upscalilng via MLP Networks 1/15
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Upscaling Tissue Transport

Comput Method Biomec, 22:9, 901-915 (2019)
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Representative Volume (RV)
and Averaging

V(x) = Vβ(x) ∪ Aβσ(x) ∪ Vσ(x)

–phase

–phase
n

(intercellular)

A

= 5 µm = 170 µm

A B

L0 L0

x

r

Figure: Cell-scale images of (left) brain cortex and (right) liver
lobule tissues. Note that x points to the center of the averaging
volume V; r points to any location within the volume.
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Results from Averaging Step

One-Equation Macroscale Model and Simplifications

The time scale for mass transfer across cell wall is small
compared to the macroscale characteristic time for mass
transport

The intercellular phase can be treated as being
quasi-steady compared to the extracelluar transport

Diffusion is independent of reaction

Both D∗ and ⟨R⟩ depend on the structure of the deviation
field, c̃β (details not shown) and the volume fraction εβ

∂⟨cβ⟩β

∂t
= −⟨vβ⟩β · ∇⟨cβ⟩β +∇ · (D∗ · ∇⟨cβ⟩β) + ε−1

β ⟨R⟩

BD Wood — Upscalilng via MLP Networks 4/15



Overview of ML Upscaling Feature Engineering Example Ensemble ML via MLP Network Conclusions

Results from Averaging Step

One-Equation Macroscale Model and Simplifications

The time scale for mass transfer across cell wall is small
compared to the macroscale characteristic time for mass
transport

The intercellular phase can be treated as being
quasi-steady compared to the extracelluar transport

Diffusion is independent of reaction

Both D∗ and ⟨R⟩ depend on the structure of the deviation
field, c̃β (details not shown) and the volume fraction εβ

∂⟨cβ⟩β

∂t
= −⟨vβ⟩β · ∇⟨cβ⟩β +∇ · (D∗ · ∇⟨cβ⟩β) + ε−1

β ⟨R⟩

BD Wood — Upscalilng via MLP Networks 4/15



Overview of ML Upscaling Feature Engineering Example Ensemble ML via MLP Network Conclusions

Results from Averaging Step

One-Equation Macroscale Model and Simplifications

The time scale for mass transfer across cell wall is small
compared to the macroscale characteristic time for mass
transport

The intercellular phase can be treated as being
quasi-steady compared to the extracelluar transport

Diffusion is independent of reaction

Both D∗ and ⟨R⟩ depend on the structure of the deviation
field, c̃β (details not shown) and the volume fraction εβ

∂⟨cβ⟩β

∂t
= −⟨vβ⟩β · ∇⟨cβ⟩β +∇ · (D∗ · ∇⟨cβ⟩β) + ε−1

β ⟨R⟩

BD Wood — Upscalilng via MLP Networks 4/15



Overview of ML Upscaling Feature Engineering Example Ensemble ML via MLP Network Conclusions

Results from Averaging Step

One-Equation Macroscale Model and Simplifications

The time scale for mass transfer across cell wall is small
compared to the macroscale characteristic time for mass
transport

The intercellular phase can be treated as being
quasi-steady compared to the extracelluar transport

Diffusion is independent of reaction

Both D∗ and ⟨R⟩ depend on the structure of the deviation
field, c̃β (details not shown) and the volume fraction εβ

∂⟨cβ⟩β

∂t
= −⟨vβ⟩β · ∇⟨cβ⟩β +∇ · (D∗ · ∇⟨cβ⟩β) + ε−1

β ⟨R⟩

BD Wood — Upscalilng via MLP Networks 4/15



Overview of ML Upscaling Feature Engineering Example Ensemble ML via MLP Network Conclusions

Dispersion Tensor

The Dispersion Tensor and Effectiveness Factors

For nearly isotropic particles, the dispersion tensor can be
estimated numerically by solving

D∗ = Deff I− ⟨ṽβ ⊗ bβ⟩β
⇒ Only 1 parameter (Pe). ML not needed.

Correction or Effectiveness Factor

⟨R⟩ = −η

(
εσkm

⟨cβ⟩β

⟨cβ⟩β + K

)
, where, η =

⟨R⟩
R0

⇒η depends on many parameters (defined in coming slides)–
ML needed.
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Physics-driven Feature
Engineering

Feature Engineering

MLPs are a supervised method of ML

The term supervised indicates only that the set of
independent variables on which the target (η) depends
are treated as being known

Feature engineering is the process by which we search for
/ identify the appropriate set of independent variables

In our case, these come exclusively from the

physical
mathematical

structure of the problem

BD Wood — Upscalilng via MLP Networks 6/15



Overview of ML Upscaling Feature Engineering Example Ensemble ML via MLP Network Conclusions

Physics-driven Feature
Engineering

Feature Engineering

MLPs are a supervised method of ML

The term supervised indicates only that the set of
independent variables on which the target (η) depends
are treated as being known

Feature engineering is the process by which we search for
/ identify the appropriate set of independent variables

In our case, these come exclusively from the

physical
mathematical

structure of the problem

BD Wood — Upscalilng via MLP Networks 6/15



Overview of ML Upscaling Feature Engineering Example Ensemble ML via MLP Network Conclusions

Physics-driven Feature
Engineering

Feature Engineering

MLPs are a supervised method of ML

The term supervised indicates only that the set of
independent variables on which the target (η) depends
are treated as being known

Feature engineering is the process by which we search for
/ identify the appropriate set of independent variables

In our case, these come exclusively from the

physical
mathematical

structure of the problem

BD Wood — Upscalilng via MLP Networks 6/15



Overview of ML Upscaling Feature Engineering Example Ensemble ML via MLP Network Conclusions

Physics-driven Feature
Engineering

Feature Engineering

MLPs are a supervised method of ML

The term supervised indicates only that the set of
independent variables on which the target (η) depends
are treated as being known

Feature engineering is the process by which we search for
/ identify the appropriate set of independent variables

In our case, these come exclusively from the

physical
mathematical

structure of the problem

BD Wood — Upscalilng via MLP Networks 6/15



Overview of ML Upscaling Feature Engineering Example Ensemble ML via MLP Network Conclusions

Physics-driven Feature
Engineering

Nondimensionalized Balance Equations

∂Cβ

∂τ
= −Pe

vβ

U
∇ · Cβ +∇2Cβ

I .C .1 Cβ(Z, 0) = Iβ(Z)

B.C . 1 −nβσ · ∇Cβ = −nβσ · (Dr∇Cσ), at cell surface

B.C . 2 Cβ = Cσ , at cell surface

∂Cσ

∂τ
= Dr∇2Cσ − φ2 Cσ

Cσ + 1

I .C .2 Cσ(Z, 0) = Iσ(Z)

Features based on underlying physics

Dr =
Dσ

Dβ
Pe =

Ur0

Dβ
φ2 =

kmr20
KDβ
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Identified Features

Full Feature Set– Six in Total

Parametric Features

Pe

Dr

ϕ2

ϵβ

Macroscale Source Term Features

⟨cβ⟩β

∇⟨cβ⟩β
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Generation of the Example
Ensemble

Table: Data amalgamated from literature sources

Parameter Brain Liver (hepatocyte spheroids)

Dβ (m
2

s
) 6× 10−10 − 20× 10−10 6× 10−10 − 20× 10−10

Dσ/Dβ 0.1− 1.0 0.1− 1.0

cmax (mol
m3 ) 0− 1.8 1× 10−3 − 1.0

εβ 0.23− 0.49 0.02− 0.41

km ( mol
m3·s−1 ) 0.01− 1667 5× 10−6 − 0.45

K mol
m3 0.003− 528 5× 10−4 − 0.14

Pe 0.01− 8.0 0.01− 117
r0 (m) 0.46× 10−6 11.7× 10−6

φ2 (–) 0− 100 0− 77
κ (m2) 2× 10−14 − 2× 10−8 1× 10−10 − 7.5× 10−8
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Geometry

Abstract but representative geometry

Used for training MLP

L

Two examples of complex geometry from literature

Used for testing trained MLP fidelity

–phase

–phase
n

(intercellular)

A

= 5 µm = 170 µm

A B

L0 L0

x
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Training Data Examples

Several examples from the ensemble of possible feature
vectors X = (Pe,Dr , φ

2, εβ, ⟨cβ⟩β,∇⟨cβ⟩β)
For each value of X , a corresponding value of η can be
computed

BD Wood — Upscalilng via MLP Networks 11/15
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The Multilayer Perceptron Network

MLP

Rectified linear unit (ReLU) basis function

L1 loss function

4 hidden layers– 512, 256, 64 and 16 neurons

Adam gradient-based optimization scheme (modified gradient
decent)

74% as training, 6% as validation,and 20% as test data

Tensorflow 2.3.0 running on Geforce GTX 1080 Ti GPU array

-20 -10 10 20
x

5

10

15

20

σ(x)
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Training and Prediction Results

With Macroscale Source Features (left) and Without (right)
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Validating the Learned Model
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Summary and Conclusions

Summary of Workflow

Input Layer Hidden Layers Output Layer

• Transport in Tissue
• Complex Geometry
• Nonlinear Reactions

• Upscscaling
• Nonlinear Closure

• Feature Engineering
• Data Input for Training

• Feature Engineeering

• Simpli�ed Representation
• Microscale Computation 
  of E�ectiveness Factor, η 
• Generation of Training Data 

• Multi-Layer Perceptron 
• Learning with Back-
   propagation
• Generatrion of Trained Model 

• Direct Microscale Solution
• Averages Determined by
  Integration

= − η εσkm
cβ β

cβ β + K

φ2, Pe 
βσ/

cβ β cβ β∆
,

,

Microscale Average
Macroscale + ML

c

Position

OBJECTIVE- Closed Averaged
Nonlinear Model

Two-
dimensional 
Microscale
Simulation 
Followed by 
Averaging

Averaged One-
dimensional 
Simulation 
Using Trained 
MLP Network

η
η

Feature Set

Target

Non-
dimensional-
ization
and feature 
identification

εβ

R
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Summary and Conclusions

?

Questions?
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