

Upscaling Nonlinear Reactions in Tissues: Closure via Machine Learning

Brian Wood¹ Helen Byrne ²

¹School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA

²Mathematical Institute, University of Oxford, UK

November 16, 2023

COE

Table of Contents

1 Overview of ML

- 2 Upscaling
- 3 Feature Engineering
- 4 Example Ensemble
- 5 ML via MLP Network
- 6 Conclusions

Paper in JCP:

Taghizadeh, Ehsan, Helen M. Byrne, and Brian D. Wood. "Explicit physics-informed neural networks for nonlinear closure: The case of transport in tissues." Journal of Computational Physics 449 (2022): 110781.

Table of Contents

COE

- 1 Overview of ML
- 2 Upscaling
- 3 Feature Engineering
- 4 Example Ensemble
- 5 ML via MLP Network
- 6 Conclusions

Background on MLPs

Textbook Chapter

- Many options!
- Here is one by me: Google "brian d wood researchgate"
- On Researchgate:

Textbook: Introduction to Advanced Engineering Mathematics and Analysis

"Chapter 10: Primer on feedforward neural networks: An analytical approach"

COE

Overview of ANNs

- Multilayer perceptrons (MLPs) are a kind of ANN for high-dimensional representation of a regression functional
- The functional itself consists of an nested network of weighted nonlinear compositions

$$f(x_1, x_2, \dots, x_N) = \underbrace{\sigma_M \circ \sigma_{M-1} \circ \sigma_{M-1} \circ}_{nonlinear} \dots \underbrace{\ell_1(x_1, x_2, \dots, x_N)}_{linear}$$

- The depth of the compositional structure is frequently termed the number of *layers* in the network
- A sum of such compositions are interpreted as a neural network.

Overview of ANNs

- Multilayer perceptrons (MLPs) are a kind of ANN for high-dimensional representation of a regression functional
- The functional itself consists of an nested network of weighted nonlinear compositions

$$f(x_1, x_2, \dots, x_N) = \underbrace{\sigma_M \circ \sigma_{M-1} \circ \sigma_{M-1} \circ}_{nonlinear} \dots \underbrace{\ell_1(x_1, x_2, \dots, x_N)}_{linear}$$

- The depth of the compositional structure is frequently termed the number of *layers* in the network
- A *sum* of such compositions are interpreted as a *neural network*.

Overview of ANNs

COE

- Multilayer perceptrons (MLPs) are a kind of ANN for high-dimensional representation of a regression functional
- The functional itself consists of an nested network of weighted nonlinear compositions

$$f(x_1, x_2, \dots, x_N) = \underbrace{\sigma_M \circ \sigma_{M-1} \circ \sigma_{M-1} \circ}_{nonlinear} \dots \underbrace{\ell_1(x_1, x_2, \dots, x_N)}_{linear}$$

- The depth of the compositional structure is frequently termed the number of *layers* in the network
- A *sum* of such compositions are interpreted as a *neural network*.

Overview of ANNs

- Multilayer perceptrons (MLPs) are a kind of ANN for high-dimensional representation of a regression functional
- The functional itself consists of an nested network of weighted nonlinear compositions

$$f(x_1, x_2, \dots, x_N) = \underbrace{\sigma_M \circ \sigma_{M-1} \circ \sigma_{M-1} \circ}_{nonlinear} \dots \underbrace{\ell_1(x_1, x_2, \dots, x_N)}_{linear}$$

- The depth of the compositional structure is frequently termed the number of *layers* in the network
- A sum of such compositions are interpreted as a neural network.

Table of Contents

- 1 Overview of ML
- 2 Upscaling
- 3 Feature Engineering
- 4 Example Ensemble
- 5 ML via MLP Network
- 6 Conclusions

Upscaling Tissue Transport

COE

Macro (liver, lobes and segments), meso (lobule) and microstructure (microcirculation in sinusoids) of the liver

Representative Volume (RV) and Averaging

COE

 $\mathcal{V}(\mathbf{x}) = \mathcal{V}_{\beta}(\mathbf{x}) \cup \mathcal{A}_{\beta\sigma}(\mathbf{x}) \cup \mathcal{V}_{\sigma}(\mathbf{x})$

Figure: Cell-scale images of (left) brain cortex and (right) liver lobule tissues. Note that \boldsymbol{x} points to the center of the averaging volume \mathcal{V} ; \boldsymbol{r} points to any location within the volume.

COE

- The time scale for mass transfer across cell wall is small compared to the macroscale characteristic time for mass transport
- The intercellular phase can be treated as being quasi-steady compared to the extracelluar transport
- Diffusion is independent of reaction
- Both **D**^{*} and $\langle R \rangle$ depend on the structure of the deviation field, \tilde{c}_{β} (details not shown) and the volume fraction ε_{β}

$$\frac{\partial \langle c_{\beta} \rangle^{\beta}}{\partial t} = - \langle \mathbf{v}_{\beta} \rangle^{\beta} \cdot \nabla \langle c_{\beta} \rangle^{\beta} + \nabla \cdot (\mathbf{D}^{*} \cdot \nabla \langle c_{\beta} \rangle^{\beta}) + \varepsilon_{\beta}^{-1} \langle \mathbf{R} \rangle$$

COE

- The time scale for mass transfer across cell wall is small compared to the macroscale characteristic time for mass transport
- The intercellular phase can be treated as being quasi-steady compared to the extracelluar transport
- Diffusion is independent of reaction
- Both **D**^{*} and $\langle R \rangle$ depend on the structure of the deviation field, \tilde{c}_{β} (details not shown) and the volume fraction ε_{β}

$$\frac{\partial \langle c_{\beta} \rangle^{\beta}}{\partial t} = - \langle \mathbf{v}_{\beta} \rangle^{\beta} \cdot \nabla \langle c_{\beta} \rangle^{\beta} + \nabla \cdot (\mathbf{D}^{*} \cdot \nabla \langle c_{\beta} \rangle^{\beta}) + \varepsilon_{\beta}^{-1} \langle \mathbf{R} \rangle$$

COE

- The time scale for mass transfer across cell wall is small compared to the macroscale characteristic time for mass transport
- The intercellular phase can be treated as being quasi-steady compared to the extracelluar transport
- Diffusion is independent of reaction
- Both **D**^{*} and $\langle R \rangle$ depend on the structure of the deviation field, \tilde{c}_{β} (details not shown) and the volume fraction ε_{β}

$$\frac{\partial \langle c_{\beta} \rangle^{\beta}}{\partial t} = - \langle \mathbf{v}_{\beta} \rangle^{\beta} \cdot \nabla \langle c_{\beta} \rangle^{\beta} + \nabla \cdot (\mathbf{D}^{*} \cdot \nabla \langle c_{\beta} \rangle^{\beta}) + \varepsilon_{\beta}^{-1} \langle \mathbf{R} \rangle$$

COE

- The time scale for mass transfer across cell wall is small compared to the macroscale characteristic time for mass transport
- The intercellular phase can be treated as being quasi-steady compared to the extracelluar transport
- Diffusion is independent of reaction
- Both **D**^{*} and $\langle R \rangle$ depend on the structure of the deviation field, \tilde{c}_{β} (details not shown) and the volume fraction ε_{β}

$$\frac{\partial \langle c_{\beta} \rangle^{\beta}}{\partial t} = - \langle \mathbf{v}_{\beta} \rangle^{\beta} \cdot \nabla \langle c_{\beta} \rangle^{\beta} + \nabla \cdot (\mathbf{D}^{*} \cdot \nabla \langle c_{\beta} \rangle^{\beta}) + \varepsilon_{\beta}^{-1} \langle \mathbf{R} \rangle$$

Dispersion Tensor

The Dispersion Tensor and Effectiveness Factors

For nearly isotropic particles, the dispersion tensor can be estimated *numerically* by solving

$$\mathbf{D}^* = D_{ extsf{eff}} \, \mathbf{I} - \langle ilde{oldsymbol{
u}}_eta \otimes oldsymbol{b}_eta
angle^eta$$

 \Rightarrow Only 1 parameter (*Pe*). *ML not needed*.

Correction or Effectiveness Factor

$$\langle R \rangle = - \eta \left(\varepsilon_{\sigma} k_m \frac{\langle c_{\beta} \rangle^{\beta}}{\langle c_{\beta} \rangle^{\beta} + K} \right), \quad \text{where,} \quad \eta = \frac{\langle R \rangle}{R_0}$$

 $\Rightarrow \eta$ depends on many parameters (defined in coming slides)– ML needed.

COE

Table of Contents

- 2 Upscaling
- 3 Feature Engineering
- 4 Example Ensemble
- 5 ML via MLP Network
- 6 Conclusions

Physics-driven Feature Engineering

COE

- MLPs are a *supervised* method of ML
- The term *supervised* indicates only that the set of independent variables on which the target (η) depends are treated as being *known*
- Feature engineering is the process by which we search for / identify the appropriate set of independent variables
- In our case, these come exclusively from the
 - physical
 - mathematical
 - structure of the problem

Physics-driven Feature Engineering

COE

- MLPs are a *supervised* method of ML
- The term supervised indicates only that the set of independent variables on which the target (η) depends are treated as being known
- Feature engineering is the process by which we search for / identify the appropriate set of independent variables
- In our case, these come exclusively from the
 - physical
 - mathematical
 - structure of the problem

Physics-driven Feature Engineering

COE

- MLPs are a *supervised* method of ML
- The term supervised indicates only that the set of independent variables on which the target (η) depends are treated as being known
- Feature engineering is the process by which we search for / identify the appropriate set of independent variables
- In our case, these come exclusively from the
 - physical
 - mathematical
 - structure of the problem

Physics-driven Feature Engineering

COE

- MLPs are a *supervised* method of ML
- The term supervised indicates only that the set of independent variables on which the target (η) depends are treated as being known
- Feature engineering is the process by which we search for / identify the appropriate set of independent variables
- In our case, these come exclusively from the
 - physical
 - mathematical
 - structure of the problem

Physics-driven Feature Engineering

COE

Nondimensionalized Balance Equations

 $\begin{aligned} \frac{\partial C_{\beta}}{\partial \tau} &= -Pe \frac{\mathbf{v}_{\beta}}{U} \nabla \cdot C_{\beta} + \nabla^2 C_{\beta} \\ I.C.1 & C_{\beta}(\mathbf{Z}, 0) &= I_{\beta}(\mathbf{Z}) \\ B.C.1 & -\mathbf{n}_{\beta\sigma} \cdot \nabla C_{\beta} &= -\mathbf{n}_{\beta\sigma} \cdot (\mathbf{D}_r \nabla C_{\sigma}), \text{ at cell surface} \\ B.C.2 & C_{\beta} &= C_{\sigma}, \text{ at cell surface} \\ & \frac{\partial C_{\sigma}}{\partial \tau} &= \mathbf{D}_r \nabla^2 C_{\sigma} - \varphi^2 \frac{C_{\sigma}}{C_{\sigma} + 1} \\ I.C.2 & C_{\sigma}(\mathbf{Z}, 0) &= I_{\sigma}(\mathbf{Z}) \end{aligned}$

Features based on underlying physics

$$D_r = \frac{\mathscr{D}_{\sigma}}{\mathscr{D}_{\beta}} \qquad \qquad Pe = \frac{Ur_0}{\mathscr{D}_{\beta}} \qquad \qquad \varphi^2 = \frac{k_m r_0^2}{K \mathscr{D}_{\beta}}$$

BD Wood — Upscalilng via MLP Networks

Identified Features

Full Feature Set- Six in Total Parametric Features Pe D_r ϕ^2 ϵ_{β} Macroscale Source Term Features $\langle c_{eta}
angle^{eta}
abla
abla \langle c_{eta}
angle^{eta}
abla \langle c_{eta}
angle^{eta}$

Table of Contents

COE

- 1 Overview of ML
- 2 Upscaling
- 3 Feature Engineering
- 4 Example Ensemble
- 5 ML via MLP Network
- 6 Conclusions

Generation of the Example Ensemble

Table: Data amalgamated from literature sources

Parameter	Brain	Liver (hepatocyte spheroids)
$\mathscr{D}_{\beta}\left(\frac{m^{2}}{s}\right)$	$6\times 10^{-10} - 20\times 10^{-10}$	$6 imes 10^{-10} - 20 imes 10^{-10}$
$\mathcal{D}_{\sigma}/\mathcal{D}_{\beta}$	0.1 - 1.0	0.1 - 1.0
$C_{max}\left(\frac{mol}{m^3}\right)$	0 - 1.8	$1 \times 10^{-3} - 1.0$
εβ	0.23 - 0.49	0.02 - 0.41
$k_m \left(\frac{mol}{m^3 \cdot s^{-1}}\right)$	0.01 - 1667	$5 imes 10^{-6} - 0.45$
$K \frac{mol}{m^3}$	0.003 - 528	$5 imes 10^{-4} - 0.14$
Pe	0.01 - 8.0	0.01 - 117
$r_0(m)$	$0.46 imes 10^{-6}$	11.7×10^{-6}
φ^2 (-)	0 - 100	0 - 77
κ (m ²)	$2 \times 10^{-14} - 2 \times 10^{-8}$	$1 imes 10^{-10} - 7.5 imes 10^{-8}$

COE

- Abstract but representative geometry
- Used for training MLP

- Two examples of complex geometry from literature
- Used for testing trained MLP fidelity

Training Data Examples

- COE
- Several examples from the ensemble of possible *feature* vectors X = (Pe, D_r, φ², ε_β, ⟨c_β⟩^β, ∇⟨c_β⟩^β)
 For each value of X, a corresponding value of η can be computed

Table of Contents

- 1 Overview of ML
- 2 Upscaling
- 3 Feature Engineering
- 4 Example Ensemble
- 5 ML via MLP Network
- 6 Conclusions

The Multilayer Perceptron NetworkE

MLP

- Rectified linear unit (ReLU) basis function
- L₁ loss function
- 4 hidden layers- 512, 256, 64 and 16 neurons
- Adam gradient-based optimization scheme (modified gradient decent)
- 74% as training, 6% as validation, and 20% as test data
- Tensorflow 2.3.0 running on Geforce GTX 1080 Ti GPU array

Training and Prediction Results COE

With Macroscale Source Features (left) and Without (right)

Validating the Learned Model **COE**

Table of Contents

COE

- 1 Overview of ML
- 2 Upscaling
- 3 Feature Engineering
- 4 Example Ensemble
- 5 ML via MLP Network
- 6 Conclusions

Summary and Conclusions

COE

Summary of Workflow

COE

Summary and Conclusions

