

BEDA Accelerator: Washington, D.C.

February 5, 2019

Agenda

- Introductions
- Overview of UBID generation methodology & data requirements
- Example of UBID Generation: UBID Demonstrator & Drawing Tool
- Analysis of DC UBIDs
- Identify viable datasets for integration of DC UBIDs
- Discussion of Implementation Strategy & IT Requirements

Problem Statement

The lack of a standardized way to identify buildings makes it difficult to accurately associate data with a specific facility, creating a barrier to effective asset management, research, and analysis.

Where the current address system breaks down:

- Different address abbreviation, e.g., st or street; ave or avenue; apt or #;
- Simple misspellings or incorrect addresses
- Large buildings with multiple entrances and possibly multiple addresses

Problem Statement

The lack of a standardized way to identify buildings makes it difficult to accurately associate data with a specific facility, creating a barrier to effective asset management, research, and analysis.

Problem Statement

The lack of a standardized way to identify buildings makes it difficult to accurately associate data with a specific facility, creating a barrier to effective asset management, research, and analysis.

How bad is this problem?

- An analysis of 800k buildings in Houston, TX yielded an 80% match rate based on address from precleansed datasets; an **additional 20-30 person hours** were required to reach a 95% match rate using fuzzy matching algorithms and hand matching.
- Even small towns like Department of Planning in South Burlington, VT estimates 2 hours/month go into developing data workarounds for bad matches
- According to Ecotope and SF Department of Environment, average match rates are 50-60%. UBIDs could save days to weeks of manual data matching efforts.

Acknowledgement: UC Berkeley Student Consulting & Research Group

Solution: A Natural Key for Buildings

Solution: A Natural Key for Buildings

UBID Demonstrator

UBID.PNNL.GOV

UBID Matching Washington, DC

PNNL is operated by Battelle for the U.S. Department of Energy

Datasets

- Open Data Footprints
 - http://opendata.dc.gov/datasets/a657b34942564a
 a8b06f293cb0934cbd 1
 - 163,467 entries
 - No local ID ("GIS_ID" field empty)
- Energy Benchmarking 2016
 - https://doee.dc.gov/publication/2016-buildingbenchmarking-dataset
 - 1,846 entries
 - pid, dc_real_pid, and pm_pid are local IDs, pid only with no duplicates and value for every entry
- Other datasets used for analysis:
 - Street Centerlines
 - http://opendata.dc.gov/datasets/street-centerlines
 - Address Points
 - http://opendata.dc.gov/datasets/address-points

UBID Matching Process

Benchmarking Point

PID: PM05823132 87C4VXJM+452-0-0-0

Footprint (Bounding Box) 87C4VXJM+456-29-5-29-6

- 0 invalid geometries from footprints and benchmarking
- 1,608 benchmarking points (UBID₀) matched to footprint UBIDs
 - 238 UBID₀ not matched
 - 191 duplicate UBID₀ created

UBID Matching Main Issue Overview

 Benchmarking points that represent multiple building footprints and multiple benchmarking points that represent the same building footprint

Unmatched Points: UBID₀ in Street

5ft buffer: 32 UBID₀
10 ft buffer: 66 UBID₀
15ft buffer: 71 UBID₀

- Some unmatched points are the "campus" issue on the previous slide
- Others are points that are in the street, and the first step is to differentiate these

- Matching to nearest footprint is a quick solution, but there will be false positives (like example in previous slide)
- Best solution is manual review of the ~70 points
 - a little time consuming, but only needs to be done once
- Other solution is matching addresses
 - Not perfect, usually 60-80% success rate, but 60-80% for 5% of database isn't bad
 - Matching addresses requires some data processing to match the formatting, could be almost as time consuming as manual review
- For future benchmarking, worth making reporter quickly confirm that the geocoded address doesn't lie in street

One (unmatched) UBID₀ that represents multiple buildings

About 140 instances

Example Below:

- Estimated area (with area map tool): 77k * 4 floors = ~308k sqft
- Reported area = 280k sqft
- Conclusion: Benchmarking data represents all buildings in this multi-family housing unit but didn't match because fell outside bounding box of all footprints

- Merge all footprints that correspond to the UBID₀ using the "Square" and "Lot" fields
 - Could use either Parcel Lot or Address Point dataset to facilitate the merge
 - Some data processing labor involved
- Worth doing for UBID₀ in street in case they have multiple buildings

FULLADDRES	2615 BOWEN ROAD SE
SQUARE	5869
SUFFIX	
LOT	0068

One (matched) UBID₀ for multiple buildings

Hypothetical example

- We assumed there are cases like the unmatched ones, that happened to land within a footprint bounding box – but no way to detect these
- Can be improved in future benchmarking by including critical data to identify these
- Quick estimate (not up to date):
 - 544 UBID₀ that are matched to footprints with multiple addresses in the same lot
 - Even if we can flag the UBID₀ with multiple addresses in same lot, could be difficult to determine if the UBID₀ is only for one in matched to or for all the buildings

Multiple UBID₀ for multiple buildings

- Example:
 - 901, 907, and 907 6th St SW
- Benchmark XY all on 907 address
- Area
 - 901 area: 20,450*9 = ~184k
 - 907 area: 17,400*9 = ~157k
 - 3 reported areas (381k, 100k, and 53k) and a tax record of 1M sqft
- The two are very similar architecturally and to the other buildings on the plot
- Conclusion: The taxable area (1Msqft)
 represents all buildings on the property and
 the three benchmarking are some
 combination of sub spaces

4	A	T I	L	0	P	Q	S	Т	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AL	AP
1	pid	address_of_record 🔻	reported_address	r posta ▼ y	/ear_▼	primary_p 🔻	tax_rec 🔻	reporte▼	energy	site_eu ▼	weath€▼	source_ 🔻	weath€▼	total_g 🔻	total_g ▼	water_ 🔻	water_	electric▼	natural 🔻	UBID ↓↑	
7	PM03531644	0901 - 0947 6TH ST SW	901 6th Street SW	20024	1971	Multifamily I	1037766	381600	17	90.6	97.4	164.4	169.2	2567.3	6.7	22938.8		3703830	219421	87C4VXHH	I+FG9-0-0-0
8	PM04007394	0901 - 0947 6TH ST SW	907 6th Street SW	20024	1965	Multifamily I	1037766	100326	18	83.2	89.3	148	151.2	611.5	6.1	4820.2		853432.8	54313.18	87C4VXHH	I+FG9-0-0-0-0
9	PM0400739	0901 - 0947 6TH ST SW	907 6th Street SW	20024	1971	Multifamily I	1037766	53000	50	75.8	83.6	120	128.2	272.6	5.1	3127.6		300367.4	29922	87C4VXHH	I+FG9-0-0-0-0

- Detection: Duplicate UBID₀ that also have multiple buildings on parcel
 - Some labor involved in this detection process
- Impossible to know, even with manual inspection, what benchmarking entries represent which spaces
- Question for DC: What would be the appropriate solution for this example?
 - Idea for future: mark as not compliant because impossible to know which spaces are being benchmarked
 - Idea 1: merge footprints and create one UBID for the parcel
 - match all benchmarking entries
 - Aggregate benchmark data and match only one entry

Multiple UBID₀ for single building

- Example: 203 N St SW
- Calculate Area in Google: 21,700*8 = ~173k sqft
- Reported Area:
 - 115,323
 - 23,876
 - 35,992
 - Total: 175k
- Conclusion: multiple spaces benchmarked separately

1	Α	1	L	0	P	Q	S	Т	U	V	W	X	Υ	Z	AA	AB	AC	AD	AE	AL	AP
1	pid	address_of_record 🔻	reported_address	▼ posta ▼	year_ 🔻	primary_p	▼ tax_rec ▼	reporte▼	energy	site_eu ▼	weath∈▼	source_ 🔻	weathe▼	total_g 🔻	total_g ▼	water_ 🔻	water_ 🔻	electric▼	natural 🔻	UBID	
2	PM0417873	3 203 N St. SW	203 N St. SW	20024	1959	Multifamily	Housing	115323	1	148.3	158.8	259.3	267.6	1239	10.7	23241.2		1674599	113929	87C4VXGP	+7JX-0-0-0-0
3	PM0417873	1 203 N St. SW	203 N St. SW	20024	1960	Multifamily	Housing	23876	46	120.4	133.6	154.2	167.6	171.1	7.2	4729.2		93000	25585.01	87C4VXGP	+7JX-0-0-0-0
4	PM0417873	2 203 N St. SW	203 N St. SW	20024	1965	Multifamily	Housing	35992		10.4	11.3	17.6	18.3	26.5	0.7	669.5		33485	2601	87C4VXGP-	+7JX-0-0-0-0

- Similar to previous case impossible to know which spaces in the building are being benchmarked
- Question for DC: What would be the appropriate solution for this example?
 - Idea 1: no action (i.e. match all benchmarking UBID₀ to one footprint UBID)
 - Idea 2: Aggregate data and match only one entry

False Matching: Incorrect Location

- Example:
 - 1230 S Capitol SE
 - 1263-1265A A 1st St SE
- UBID₀ location and use type match first address, second address is a few blocks away
- Conclusion: Incorrect coordinates entered for second address

4	1	Α	l I		L		0	Р	Q	S	Т	U	V	W	X	Υ	Z	AA	AB	AC	AD	AE	AL	AP	
1	pid	-	address_of_rec	rd 🔻	reported_address	▼ p	oosta ▼	year_ 🔻	primary_p	▼ tax_rec ▼	reporte▼	energy	site_eu ▼	weath∈▼	source_ 🔻	weathe	total_g ▼	total_g ▼	water_ 🔻	water_ 🔻	electric▼	natural 💌	UBID -	Ť	
5	PM05	932679	1263-1265 1ST S	SE	1263-1265Â Â 1ST ST S	Е	20003	2015	Hotel	118944	118944	85	54.2	54.2	131.9	131.9	589.2	5	3065.4		1249441	21889.93	87C4VXG	R+6HF-0-0-	0-0
6	PM03	518921	1230 SOUTH CAP	ITOL ST	1230 South Capitol Str	ee	20003	1991	Non-Refrig	ger 108000	89999	16	33.6	37.2	67	71.1	239.6	2.7	42		400980	16530	87C4VXG	R+6HF-0-0-	0-0

- Garbage in garbage out?
- Potentially flag (with address?) for revision
 - Just looking through this will not be clean because addresses can vary slightly in zipcode, address number, street format
- For future: when benchmarking ask reporters to confirm geolocation on map (5 seconds)

False Matching: Incorrectly Matched

• If benchmarking geolocation isn't well aligned with center of the bounding box of the footprint, there is a chance it could be falsely matched to neighboring footprints

- We can't definitively find or fix every false positive, but it's possible to look at a subset of data to extrapolate our success rate
- For every benchmarking UBID₀ that intersects with multiple bounding boxes, compare the closest and 2nd closest centroids. If the distances are close (say within ~20%) we can flag these for manual review
- Another possibility: Compare distance between UBID₀ and matched centroid to the area of the bounding box or the percent area increase between the footprint and the bounding box
- Another possibility: Look at edge cases with large percent area increase between footprint and bounding box

Other Possible Cases

- Other cases that may be worth investigating, but would require more time to detect these
 - 1. Multiple UBID₀ with different location but on same building
 - 2. Multiple UBID₀ with different exact location on same property with multiple buildings
 - 3. One UBID₀ represents subsection of building

Thank you

Engagement & Implementation

What do we need?

- Technical Leads who are the folks programming and supporting your database infrastructure?
- Two+ databases where do you want to see UBIDs incorporated and matched to each other?

Process:

- Mark will Skype/WebEx/etc. in with your technical team to understand your database architecture
- Using the tooling developed at PNNL, UBIDs can be added into your existing systems. In the process, Mark can develop a replicable process for use by additional stakeholders in your organization.

Next Steps

- Timeline
- Points of Contact
- Relevant Datasets for UBID Integration
- Desired Outcomes & Metrics for Success