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Overview of the Project

- Overarching goal is to improve Hector capabilities for probabilistic
climate assessment

- Improve Hector model physics, including updating Hector’s energy
balance module to a diffusive ocean and incorporation of a sea-level
rise module (accounting for thermal expansion, Antarctic/Greenland Ice
sheets, and glaciers)

- Develop/Adapt new MCMC approaches for model calibration,
parameter estimation, and uncertainty quantification

- Construct probabilistic projections of key climate change variables (e.g.
global temperature, sea-level rise, etc.)

Project represents cross-disciplinary collaboration between JGCRI, University of
lllinois, and Penn State University
- emphasizing graduate student (B. Vega-Westhoff) and postdoctoral (T. Wong)
research



Climate impacts/damages closely
linked to extreme (low
probability) events
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Shifts in mean climate and changes in the tails can potentially
lead to large increases in damages

Understanding how tails may be changing is a major challenge



High reliabilities require information about the
upper tail of the probability density function.
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How robust are these tails?

Figure courtesy of Klaus Keller, Penn State University



Uncertainty Quantification provides an important link between Earth-system
modeling and Integrated Assessment, Risk Analysis and Impacts Analysis

Climate Focus

IAM Focus

Risk Analysis

Stressors: AT, AP, ASLR Impacts Analysis

iInverse decision analysis

Questions:

|.What uncertainties are important (decision-relevant)?

2.What drives the uncertainties!?

3. How do the uncertainties affect climate metrics related to impacts!?
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Sources of climate uncertainty

Sources of uncertainty in projected global mean temperature
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Model (structural) uncertainty

- different physics and numerical formulations lead
to different responses to a given forcing

Forcing uncertainty
- incomplete knowledge about future emissions

Temperature change relative to 1986-2005 [K]
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- Internal variability dominates on short
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- Forcing uncertainty increases with
projection timescale (divergence in future
scenarios)
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Tradeoff between model realism and computational tractability

Simple Simple models: tractable but lack realism
(EBMs) Complex models: mechanistically sound but
computationally inefficient

under-confident?

Intermediate
complexity
models

# of Simulations

over-confident!?

Complex
(ESMs)

Increasing Model Complexity (Realism)

- Integrated Assessment requires probabilistic predictions with full treatment of uncertainty

- How do we achieve this given the tradeoffs between realism and tractability?



{ Atmosphere ]

LAND

[ Vegetation ]]‘—J—)

\
Q

[ Detritus Hi\
\ )

Q

Soil ]\Ti

4{ Earth

Hector Model

Low
Latitude
Surface

|

( High

Latitude

A
!By

>\ Surface

Y
[ Intermediate ]
N A

T+Ty

1 Eip

Y

T+Ty

Deep

Open source, object- oriented, simple
global climate carbon-cycle model

- Flexible and fast (runs in less than 1
second)

- Modular design with sub-components
connected by a central coupler

- Three part carbon cycle: land, ocean,
atmosphere

- Ocean consists of 4 separate boxes with
transports and exchanges similar to
thermohaline circulation

Hector is well-suited for uncertainty quantification given its flexibility,
efficiency (speed), coupled carbon cycle, and connections to integrated
assessment (climate component of GCAM)

Hartin et al., 2015, Geoscientific Model Development



Enhancements to Hector

- Link Hector to a 1-D energy balance model (DOECLIM)
- represents ocean heat uptake as a diffusive process
- contains 3 tunable (uncertain) parameters: climate sensitivity, vertical ocean
diffusivity, and aerosol scaling
- fits well with Hector’s modular design (can be easily exchanged with Hector’s current
ocean model
- well-documented and widely used in UQ
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Parametric uncertainties can lead to divergence in climate projections, even when
the model is fitted to historical observations
- Probabilistic assessments of climate change require careful consideration
of parametric uncertainties, which are not adequately captured in CMIP

Urban et al., 2014, Geophysical Research Letters



Probability Density

Uncertainty Quantification and model calibration

Pre-Calibration:

- Vary model parameters based on mechanistically-motivated prior
parameter ranges

- Constrain projections using windowing approach based on observations

- Useful to identify parametric sensitivities/correlations and provides first-
order bounds on climate projections
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Projections of thermometric sea-level rise using
windowing (emphasizing upper bounds)

Ceo000 O o O O O
I

I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 11

Climate Sensitivity [Degrees Celsius]

Thermosteric Sea Level Rise (SLR) [cm]

Sampling from a prior climate sensitivity pdf

Sriver et al., 2012, Toward a physically plausible upper bound on sea-level rise projections, Climatic Change



Uncertainty Quantification using Bayesian Inference

- We can characterize the joint uncertainty in model parameters using
Bayesian inference

- Assigns probabilities to different combinations of model parameters based
on how well those settings cause the model to reproduce the observed

data
fO1x)~ f(x160)1(0)
Probability of the Probability of the Probability of the
parameter given data given the parameter based
the datz.l parameter on .prior info
(posterior) (likelihood) (prior)

- We can sample the parameter posterior distribution using Markov Chain
Monte Carlo (MCMCQC)
- using a likelihood function based on the data and a prior distribution
based on our prior knowledge about the parameter



Markov Chain Monte Carlo (MCMC)

Markov Chain:
- Mathematical system that undergoes random state changes
- Each state depends only on the previous state
- random walk (example of brownian motion)

Monte Carlo:
- Computational algorithm using random resampling

General Method to MCMC:
Choose initial set of model parameter settings
Randomly perturb the parameters and calculate the posterior
f the new combination of parameters yields a better fit to the data,
ceep those settings
f the new combination of parameters yields a worse fit to the data, then
either keep the settings or perturb the parameters and try again
likelihood of keeping the settings depends on how much worse
the model fits the data from previous combination
Repeat steps 2 through 4

MCMC chains will “converge” to yield a random sampling of the
posterior distributions of model parameters



MCMC Advantages and Disadvantages

Advantages: Challenges:
- multi-dimensional - computationally intensive

- applicable to joint pdf or - can be difficult to assess convergence
marginals - constructing the likelihood function
- simple to implement - how to choose the prior?
- multi-modal pdfs?

Bayesian parameter estimation enables probabilistic constraints on climate
projections
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Final Thoughts

This project centers on Hector model development, uncertainty quantification, and
probabilistic climate projections, at the interface of climate science and integrated

assessment
Some projected outcomes:

- New enhancements to Hector featuring incorporation of a diffusive ocean module
and sea-level rise module that accounts for thermometric and land ice

contributions

- Expanded modeling framework utilizable for perturbed physics ensemble studies
- building from recent work by Corinne Hartin et al.

- Incorporation of new MCMC tools for model calibration, parameter estimation,
and probabilistic projections (characterizing the tails)

Some potential applications:

- Intercomparisons with other intermediate complexity climate models (Magicc, MIT
IGSM, etc.) including carbon cycle uncertainties and feedbacks

- Broader-scale connections within GCAM



