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Overview of the Project

- Overarching goal is to improve Hector capabilities for probabilistic 
climate assessment

- Improve Hector model physics, including updating Hector’s energy 
balance module to a diffusive ocean and incorporation of a sea-level 
rise module (accounting for thermal expansion, Antarctic/Greenland Ice 
sheets, and glaciers)

- Develop/Adapt new MCMC approaches for model calibration, 
parameter estimation, and uncertainty quantification

- Construct probabilistic projections of key climate change variables (e.g. 
global temperature, sea-level rise, etc.)

Project represents cross-disciplinary collaboration between JGCRI, University of 
Illinois, and Penn State University

- emphasizing graduate student (B. Vega-Westhoff) and postdoctoral (T. Wong) 
research



source: AP/Seth Perlman

National Climate Assessment, 2014

source: NOAA

Climate impacts/damages closely 
linked to extreme (low 
probability) events

Understanding how tails may be changing is a major challenge

Shifts in mean climate and changes in the tails can potentially 
lead to large increases in damages 
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High	reliabili+es	require	informa+on	about	the	
upper	tail	of	the	probability	density	func+on.	

Pr
ob

ab
ilit

y 
D

en
si

ty

●

Mean

1 in 10

1 in 1,000 10−4

10−3

10−2

10−1

100

(1
 −

 C
um

ul
at

ive
 F

re
qu

en
cy

)
Su

rv
iva

l F
un

ct
io

n

●

Mean

1 in 10

1 in 1,000

outcome outcome 

How	robust	are	these	tails?	
Figure courtesy of Klaus Keller, Penn State University
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Uncertainty Quantification provides an important link between Earth-system 
modeling and Integrated Assessment, Risk Analysis and Impacts Analysis

Questions: 
1. What uncertainties are important (decision-relevant)?
2. What drives the uncertainties?
3. How do the uncertainties affect climate metrics related to impacts?



Sources of climate uncertainty
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Figure 11.8: Sources of uncertainty in climate projections as a function of lead time based on an analysis of CMIP5 
results. a) Projections of global mean decadal mean surface air temperature to 2100 together with a quantification of the 
uncertainty arising from internal variability (orange), model spread (blue), and RCP scenario spread (green). b) shows 
the signal-to-uncertainty ratio for various global and regional averages. The signal is defined as the simulated multi-
model mean change in surface air temperature relative to the simulated mean surface air temperature in the period 
1986–2005, and the uncertainty is defined as the total uncertainty. c), d), e), f) show the fraction of variance explained 
by each source of uncertainty for: global mean decadal and annual mean temperature (c), European (30°N–
75°N, 10°W–40°E) decadal mean boreal winter (December to February) temperature (d) and precipitation (f), and East 
Asian (5°N–45°N, 67.5°E–130°E) decadal mean boreal summer (June to August) precipitation (e). See text and 
Hawkins and Sutton (2009) and Hawkins and Sutton (2011) for further details. 
  

Internal Variability
- natural (unforced) variability of the system

Model (structural) uncertainty
- different physics and numerical formulations lead 

to different responses to a given forcing

Forcing uncertainty
- incomplete knowledge about future emissions

Partitioning of uncertainties
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Global Regional

- Internal variability dominates on short 
timescales
- Magnitude increases with decreasing 

spatial scale

- Forcing uncertainty increases with 
projection timescale (divergence in future 
scenarios)

Kirtman et al., 2013 (IPCC AR5, Ch 11) 6



Tradeoff between model realism and computational tractability
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Increasing Model Complexity (Realism)

Constant Computational Cost

Simple
(EBMs)

Complex
(ESMs)

Simple models:  tractable but lack realism
Complex models: mechanistically sound but 
computationally inefficient

under-confident?

over-confident?

Intermediate
complexity

models

- Integrated Assessment requires probabilistic predictions with full treatment of uncertainty

- How do we achieve this given the tradeoffs between realism and tractability?



Hector Model
944 C. A. Hartin et al.: A model for scientific and policy analyses of the global climate system

Figure 2. Representation of Hector’s carbon cycle, land, atmo-
sphere, and ocean. The atmosphere consists of one well-mixed box.
The ocean consists of four boxes, with advection and water mass
exchange simulating thermohaline circulation (see Table 2 for de-
scription of parameters). At steady state, the high-latitude surface
ocean takes up carbon from the atmosphere, while the low-latitude
surface ocean off-gases carbon to the atmosphere. The land consists
of a user-defined number of biomes or regions for vegetation, detri-
tus and soil. At steady state the vegetation takes up carbon from the
atmosphere while the detritus and soil release carbon back into the
atmosphere. The earth pool is continually debited with each time
step to act as a mass balance check on the carbon system.

global temperatures:

NPPi (t) = NPP0⇥ f (Catm�i )), (3)

f (Catm,�i ) = 1+ �i

✓

log
✓

Catm
C0

◆◆

, (4)

RHs,d (t) = Cs,d⇥ frs,rd⇥ Q
Ti(t)/10
10i , (5)

Ti (t) = TG(t) ⇥ �i . (6)

These are commonly used formulations: NPP is modified by
a user-specified carbon fertilization parameter, � (Piao et al.,
2013), that is constant in time but not necessarily in space.
For example, users can define separate � values for differ-
ent biomes. RH changes are controlled by a biome-specific
Q10 value. Biomes can experience temperature changes at
rates that differ from the global mean TG, controlled by a
user-specified temperature factor �I. Note that in Eq. (5), soil
RH depends on a running mean of past temperatures, rep-
resenting the slower propagation of heat through soil strata.
Land carbon pools (vegetation, detritus, and soil) change as
a result of NPP, RH, and land-use change fluxes, whose ef-
fects are partitioned among these carbon pools. In addition,
carbon flows from vegetation to detritus and to soil (Fig. 2).
Partitioning fractions (f ) control the flux quantities between
pools (Table 2). For simplicity, Eqs. (7–9) omit the time t

and biome-specific i notations, but each pool is tracked sep-

arately for each biome at each time step:

dCV
dt

= NPPfnv�CV(fvd+ fvs) � FLCflv, (7)

dCD
dt

= NPPfnd+CVfvd�CDfds�RHdet� FLCfld, (8)

dCS
dt

= NPPfns+CVfvs+CDfds�RHsoil� FLCfls, (9)

The ocean–atmosphere carbon flux is the sum of the ocean’s
surface fluxes (Fi) (currently n = 2, high- and low-latitude
surface box):

FO (t) =
n

X

i=1
Fi (t) . (10)

The surface fluxes of each individual box are directly cal-
culated from an ocean chemistry submodel described in de-
tail by Hartin et al. (2015). We model the nonlinearity of
the inorganic carbon cycle, calculating pCO2, pH, and car-
bonate saturations based on equations from Zeebe and Wolf-
Gladrow (2001). The flux of CO2 for each box i is calculated
by

Fi(t) = k↵1pCO2, (11)

where k is the CO2 gas-transfer velocity, ↵ is the solubil-
ity of CO2 in water based on salinity, temperature, and pres-
sure, and1pCO2 is the atmosphere–ocean gradient of pCO2
(Takahashi et al., 2009). The calculation of pCO2 in each sur-
face box is based on the concentration of CO2 in the ocean
and its solubility (a function of temperature, salinity, and
pressure). At steady state, the cold high-latitude surface box
(> 55�, subpolar gyres) acts as a sink of carbon from the at-
mosphere, while the warm low-latitude surface box (< 55�)
off-gases carbon back to the atmosphere. Temperatures of the
surface boxes are linearly related to atmospheric global tem-
peratures (see Sect. 4.1), THL = 1T �13 and TLL = 1T +7
(Lenton, 2000). The ocean model, modeled after Lenton et
al. (2000) and Knox and McElroy (1984), circulates carbon
through four boxes (two surface, one intermediate depth, one
deep), via water mass advection and exchange, simulating a
simple thermohaline circulation (Fig. 2). At steady state, ap-
proximately 100 Pg of carbon are transferred from the high-
latitude surface box to the deep box based on the volume of
the box and transport (in Sv; 106 m3 s�1) between the boxes.
The change in carbon of any box i is given by the fluxes in
and out, with Fatm!i as the atmosphere–ocean carbon flux:

dCi

dt
=

in
X

j=1
Fj!i �

out
X

j=1
Fi!j + Fatm!i . (12)

As the model advances, the carbon in PgC is converted to
dissolved inorganic carbon (DIC) in each box. The new DIC
values are used within the chemistry submodel to calculate
pCO2 values at the next time step.

Geosci. Model Dev., 8, 939–955, 2015 www.geosci-model-dev.net/8/939/2015/

Hartin et al., 2015, Geoscientific Model Development

Open source, object- oriented, simple 
global climate carbon-cycle model

- Flexible and fast (runs in less than 1 
second)

- Modular design with sub-components 
connected by a central coupler

- Three part carbon cycle: land, ocean, 
atmosphere

- Ocean consists of 4 separate boxes with 
transports and exchanges similar to 
thermohaline circulation

Hector is well-suited for uncertainty quantification given its flexibility, 
efficiency (speed), coupled carbon cycle, and connections to integrated 
assessment (climate component of GCAM)



- Link Hector to a 1-D energy balance model (DOECLIM)
- represents ocean heat uptake as a diffusive process
- contains 3 tunable (uncertain) parameters: climate sensitivity, vertical ocean 

diffusivity, and aerosol scaling
- fits well with Hector’s modular design (can be easily exchanged with Hector’s current 

ocean model 
- well-documented and widely used in UQ 

Enhancements to Hector

Geophysical Research Letters 10.1002/2014GL059484

Figure 1. Historical observations and projected scenarios under
four assumed climate sensitivities (S) for (top) surface temperature
and (bottom) ocean heat. At early times when observations are not
available, synthetic hindcasts are generated using the same pro-
cedure used to generate the synthetic projections. Autoregressive
noise is added to the model projections to simulate natural vari-
ability, observation error, and model structural error, as described in
section 2.1.

2. Methods

We use temperature and ocean heat obser-
vations up to a given year to calibrate the
parameters of an energy balance climate
model (Figure 1). The Bayesian calibration
gives a probability distribution for climate
sensitivity and other model parameters,
conditional on the observations that exist
up to the given year. To estimate the rate
of learning, the calibration procedure is
repeated by including additional observa-
tions into the analysis, 5 years at a time.
The resulting sequence of parameter esti-
mates gives the rate of learning about the
model parameters over time as more data
are included in the inference. The rate of
learning for our purposes is defined to be
reduction in width of the parameters’ 95%
credible intervals over time.

2.1. Model and Data Sources
The underlying energy balance model
(EBM), called Diffusion Ocean Energy Bal-
ance Climate Model (DOECLIM), has a
zero-dimensional atmosphere coupled to a

one-dimensional diffusive ocean [Kriegler, 2005; Tanaka et al., 2007]. Its three uncertain parameters are cli-
mate sensitivity (S); ocean vertical diffusivity (!), controlling the rate of heat ocean uptake and the climate
response time; and the aerosol radiative forcing strength ("), expressed as a factor multiplying the historical
or projected forcing time series. These three parameters are generally assumed in climate sensitivity stud-
ies to be the most dominant physical uncertainties in the global temperature response [Forest et al., 2002;
Knutti et al., 2002; Urban and Keller, 2010; Ring and Schlesinger, 2007]. In addition, the initial temperature (T0)
and ocean heat anomalies (H0) at the beginning of the model integration (the year 1850), and the standard
deviation (#) and annual autocorrelation ($) of the data model residuals, are also treated as uncertain param-
eters to be estimated. Including both temperature and ocean heat observations, a total of nine model and
statistical parameters are jointly estimated: % = [S, !, ", T0,H0, $T , $H, #T , #H].

The joint uncertainty in model and statistical parameters is estimated every 5 years from 1850 to 2010 by
assimilating whatever temperature and ocean heat observations exist up to a given year. The posterior
parameter probability distribution using data up to year t is denoted [%|yt], where % is the vector of esti-
mated parameters and y is the observational time series data for temperature and ocean heat. The surface
temperature data are HadCRUT4 global means (1850–2012) [Morice et al., 2012], and the ocean heat data are
0–3000 m ocean heat uptake (1953–1996) [Gouretski and Koltermann, 2007]. Although longer ocean heat
time series are available [Levitus, 2012], they are for a depth range (0–2000 m) that is not compatible with
the output of the DOECLIM model, which has a 4000 m ocean. In this analysis, we treat the observed 3000 m
and modeled 4000 m heat uptake as comparable, assuming that little heat is transported to depths below
3000 m over the time scales considered. The DOECLIM model is forced with Representative Concentration
Pathway (RCP) 8.5 historical radiative forcings, with the total (direct + indirect) aerosol forcing multiplied by
an uncertain factor estimated from the data, as mentioned above.

2.2. Parameter Inference
The joint uncertainty in parameters is determined by Bayesian inference [Urban and Keller, 2010] so that the
posterior distribution of the parameters conditional on the data is proportional to the likelihood function
times the prior distribution, [%|yt] ∝ [yt|%][%]. The Bayesian parameter posterior distribution is sampled by
Markov chain Monte Carlo (MCMC) over 1 million iterations. The likelihood function [yt|%] assumes that the
temperature and ocean heat observations are given by a deterministic mean trend simulated by the climate

URBAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2545

Urban et al., 2014, Geophysical Research Letters

Parametric uncertainties can lead to divergence in climate projections, even when 
the model is fitted to historical observations

- Probabilistic assessments of climate change require careful consideration 
of parametric uncertainties, which are not adequately captured in CMIP



Uncertainty Quantification and model calibration

Pre-Calibration:
- Vary model parameters based on mechanistically-motivated prior 

parameter ranges 
- Constrain projections using windowing approach based on observations 
- Useful to identify parametric sensitivities/correlations and provides first-

order bounds on climate projections

parameter. We vary CS by adjusting the local outgoing longwave radiation at the top of the
atmosphere using a global parameter (f*) as in Olson et al. (2012):

OLR*ðtÞ ¼ OLRðtÞ þ f * TðtÞ % Toð Þ

where OLR*(t) is the time-varying local perturbed outgoing longwave radiation, OLR(t) is
the time-varying local unperturbed outgoing longwave radiation, f * is the global input
parameter, T(t) is the time-varying local surface temperature, and To is local equilibrium
surface temperature (prior to onset of time-varying forcings). This technique relates the input
parameter (f *) to the local temperature anomalies at each grid point, thus preserving
influences of regional variability on the global temperature response. As noted previously,
CS is a diagnosed quantity in UVic which is sensitive only to f * on sufficiently long
(millennial) time scales, when the full ocean can be considered in a state of approximate
dynamic equilibrium. In order to map f * to CS, we analyze double CO2 simulations starting
from the equilibrated pre-industrial spin-up run with Kv set to the model’s standard value
(Kv00.1 cm/s2). Ten double CO2 simulations were integrated for 3000 years for the
following f * values: (2582.9, 1484.7, 851.4, 480.1, 203.2, -40.7, -359.8, -526.4, -681.3, -
844.2). The corresponding diagnosed CS values are: (1.1, 1.6, 2.2, 2.6, 3.1, 4.0, 5.4, 6.5, 8.2,
11.2) °C, representing the ensemble grid design points shown in Fig. 1.

2.3 Thermosteric SLR calculation

Thermosteric SLR is calculated from the three-dimensional density field, following from
previous methods (Yin et al. 2009):

SLR ¼ 1
A

Z

A

Z

z

ρ
ρ
dzdA

where ρ is seawater density, A is ocean surface area, and z is depth. Density is derived from
the equation of state for seawater (McDougall et al. 2003). We show global average SLR

Fig. 1 Prior range and sampling for the climate sensitivity model parameter. The black curve represents an
estimate based on surface air temperature and ocean heat uptake observations and information from the last
glacial maximum (Olson et al. 2012). The 99 % credible interval for this estimate is shown by the horizontal
black line. The horizontal red line illustrates the range of climate sensitivities in the high resolution climate
models of the most recent Intergovernmental Panel on Climate Change report (Randall et al. 2007, table 8.2).
The closed circles along the x axis represent the climate sensitivity values used in our ensemble used to derive
the plausible range of thermosteric sea-level rise (Fig. 2). The calibration technique excludes samples with
climate sensitivities outside the prior’s 99 % range (open circles)

896 Climatic Change (2012) 115:893–902

range based only on the CS sampling. This result provides an important cross-check on the
CS prior probability density function used in our sampling, in that instrument-based records
of ocean heat content and thermosteric SLR generally yield similar ranges of CS for the
UVic model. This consistency reflects the close relationship between ocean heat content and
thermosteric SLR and supports the robustness of the observational constraints used in our
data-model comparisons.

The upper bound of our projected thermosteric SLR in 2100 is around 0.55 m, nearly
twice the projected thermosteric contribution of 0.3 m used in Pfeffer et al. (2008) that
neglects uncertainty about thermosteric SLR. The range is roughly comparable with the
likely range of projected thermosteric SLR published in the IPCC’s Fourth Assessment
Report (Meehl et al. 2007), though our upper bound is around 10 cm larger (Fig. 2). Direct
comparison of SLR ranges is challenging due to the mixture of parametric uncertainties,
shown here using the UVic model, and structural uncertainties arising from the inter-model
comparison of the IPCC’s Fourth Assessment.

As a useful starting point of how thermosteric uncertainties affects the upper bound of
SLR projections, we use he high SLR scenario of 2 m by Pfeffer et al. (2008) as the
foundation of our analysis. Our result shows that this upper bound would need to be
increased from 2 to 2.25 m when considering thermosteric uncertainties. While this change
in the upper bound is relatively modest (~12.5 % increase), the underestimation of uncer-
tainty (or overconfidence) has considerable implications for flooding risk projections and the
design of risk-management strategies.

Projected SLR has become an important factor in assessments of future flooding-risk as
well as risk-management strategies (Yohe et al. 1996; Purvis et al. 2008; Lempert et al.
2012). The plausible upper limit of SLR plays an important role in these assessments in at

Fig. 2 Hindcasts and projections of global thermosteric sea level rise (SLR) derived from the climate model
ensemble. a Comparison between estimated thermosteric SLR (in centimeters) from observations (Domingues
et al. 2008) (black line) referenced over the data period, and the modeled range for the uppermost 700 m. Gray
shading represents the full ensemble range. Blue shading indicates the calibrated range, which excludes
ensemble members with climate sensitivities outside the 99 % range of our prior distribution (Fig. 1). We
apply an additional constraint that restricts the ensemble to members that are, on average, positioned within
two standard deviations error for the observed time series (dashed black lines). b Time series of the modeled
global average thermosteric SLR integrated over the full ocean. Gray and blue shading is consistent with Fig.
2a. The black vertical bar represents the IPCC range of thermosteric SLR projections for the A1FI scenario
(Meehl et al. 2007, Table 10.7), and the red horizontal line denotes the thermosteric component in Pfeffer et al.
(2008). c Mapping between 2100 thermosteric SLR for the upper and full ocean for all ensemble members.
Shading is consistent with Fig. 2a and b. The black solid line marks a linear regression for the windowed
ensemble members (blue circles), and the black dotted line denotes the one-to-one ratio

898 Climatic Change (2012) 115:893–902

Sriver et al., 2012, Toward a physically plausible upper bound on sea-level rise projections, Climatic Change

Sampling from a prior climate sensitivity pdf Projections of thermometric sea-level rise using 
windowing (emphasizing upper bounds)



Uncertainty Quantification using Bayesian Inference

- We can characterize the joint uncertainty in model parameters using 
Bayesian inference

- Assigns probabilities to different combinations of model parameters based 
on how well those settings cause the model to reproduce the observed 
data

Probability of the 
parameter given 
the data 
(posterior)

Probability of the 
data given the 
parameter 
(likelihood)

Probability of the 
parameter based 
on prior info 
(prior)

- We can sample the parameter posterior distribution using Markov Chain 
Monte Carlo (MCMC)

- using a likelihood function based on the data and a prior distribution 
based on our prior knowledge about the parameter

f (θ | x) ~ f (x |θ ) f (θ )



Markov Chain Monte Carlo (MCMC)

General Method to MCMC:
- Choose initial set of model parameter settings
- Randomly perturb the parameters and calculate the posterior
- If the new combination of parameters yields a better fit to the data, 

keep those settings
- If the new combination of parameters yields a worse fit to the data, then 

either keep the settings or perturb the parameters and try again
- likelihood of keeping the settings depends on how much worse 

the model fits the data from previous combination
- Repeat steps 2 through 4

Markov Chain:
- Mathematical system that undergoes random state changes
- Each state depends only on the previous state

- random walk (example of brownian motion)  

Monte Carlo:
- Computational algorithm using random resampling 

MCMC chains will “converge” to yield a random sampling of the 
posterior distributions of model parameters



MCMC Advantages and Disadvantages
Advantages:
- multi-dimensional
- applicable to joint pdf or 

marginals
- simple to implement

Challenges:
- computationally intensive
- can be difficult to assess convergence
- constructing the likelihood function
- how to choose the prior?
- multi-modal pdfs?

Geophysical Research Letters 10.1002/2014GL059484

Figure 3. Posterior distributions of the three estimated climate
parameters given data to 2012. The solid black curves are the pos-
teriors, the green dashed curves are the priors, the solid circles are
the corresponding means, and the thick/thin line segments are the
90/95% intervals.

The priors chosen here are not intended
to reflect historical scientific knowl-
edge about the climate system (i.e., in
the mid-19th century). The “learning”
estimated over the period spanned
by the instrumental record should not
be interpreted to summarize the evo-
lution of scientific understanding of
climate sensitivity. Rather, it is intended
to demonstrate how the accumulation
of temperature and ocean heat data
over time can constrain climate param-
eters, relative to some independent
state of knowledge represented by one
particular informed choice of prior.

2.3. Future Learning
To analyze rates of future learning, the
MCMC-based sequential inference is
repeated into the future with synthetic
(model generated) observational data.
Four future scenarios are considered,
with low (1.5◦C), medium (3◦C), high
(4.5◦C), and very high (6◦C) climate
sensitivities (Figure 1).

The synthetic observations for each scenario are generated by integrating the energy balance model for-
ward with RCP 8.5 extended forcings to 2150 and adding simulated AR(1) noise to the model projections. A
high emissions scenario is chosen to represent the case that society does not choose to immediately imple-
ment strict carbon controls, which more strongly brings out the importance of learning to the wait-and-see
versus precautionary policy contrast.

Each of the four scenarios assumes a particular climate sensitivity. Because the observational constraints
imply correlations between climate sensitivity and other parameters, it is necessary to set the other
parameters in each scenario to values that are consistent with the assumed sensitivity. For example, a
high-sensitivity scenario will generally require a high rate of ocean heat uptake or a strong aerosol cooling
in order to produce the observed historical warming [Urban and Keller, 2009, 2010].

To generate consistent parameter sets, the parameters other than climate sensitivity are fixed at their pos-
terior means given observations to the year 2012 (the year before the projections begin), conditional on
the assumed climate sensitivity (Figure 2). That is, denoting climate sensitivity by S and the remaining eight
parameters by ! so that " = (S,!), an estimate for ! conditional on S given data up to year t = 2012 is
!̄2012|S = E[!|yt, S]. Geometrically, the conditional distribution [!|yt, S] can be thought of as the slice of
the joint posterior distribution [!|yt] generated by fixing S to a constant. The conditional mean is approxi-
mated numerically by taking a thin slice of the Monte Carlo samples from the joint posterior, ["|y2012], that
are within ±0.1◦C of the assumed climate sensitivity S and calculating the average of ! over this subset.
This procedure gives values of the vertical diffusivity and aerosol forcing, as well as the statistical parameters,
that are consistent with both the assumed climate sensitivity and observational data.

3. Results

Inferred marginal posterior probability distributions for the three climate parameters given data to 2012
are shown in Figure 3. The historical temperature and ocean heat data constrain the climate sensitivity
and ocean diffusivity parameters only minimally relative to their assumed prior distributions. The prior
and posterior distributions for climate sensitivity are similar to the 2–4.5◦C range given in the IPCC Fourth
Assessment Report [IPCC, 2007], although it should be noted that Figure 3 depicts 90/95% ranges while the
IPCC report implicitly uses a 66% range; our 66% range for 2012 is 2.5–3.9◦C. The posterior aerosol forcing

URBAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2547

Bayesian parameter estimation enables probabilistic constraints on climate 
projections  

METHODS SUMMARY

To relate emissions of GHGs, tropospheric ozone precursors and aerosols to gas-
cycle and climate system responses, we employ MAGICC 6.016, a reduced com-
plexity coupled climate–carbon cycle model used in past IPCC assessment
reports for emulating AOGCMs. Out of more than 400 parameters, we vary 9
climate response parameters (one of which is climate sensitivity), 33 gas-cycle

and global radiative forcing parameters (not including 18 carbon-cycle para-
meters, which are calibrated separately16 to C4MIP carbon-cycle models8), and
40 scaling factors determining the regional 4 box pattern of key forcings
(Supplementary Table 1). Other parameters are set to default values16.

To constrain the parameters, we use observational data of surface air temper-
ature9 in 4 spatial grid boxes from 1850 to 2006, the linear trend in ocean heat
content changes10 from 1961 to 2003 and year 2005 radiative forcing estimates

Table 1 | Probabilities of exceeding 2 6C

Indicator Emissions Probability of exceeding 2 uC*

Range Illustrative default case{

Cumulative total CO2 emission 2000–49 886 Gt CO2 8–37% 20%
1,000 Gt CO2 10–42% 25%
1,158 Gt CO2 16–51% 33%
1,437 Gt CO2 29–70% 50%

Cumulative Kyoto-gas emissions 2000–49 1,356 Gt CO2 equiv. 8–37% 20%
1,500 Gt CO2 equiv. 10–43% 26%
1,678 Gt CO2 equiv. 15–51% 33%
2,000 Gt CO2 equiv. 29–70% 50%

2050 Kyoto-gas emissions 10 Gt CO2 equiv. yr21 6–32% 16%
(Halved 1990) 18 Gt CO2 equiv. yr21 12–45% 29%
(Halved 2000) 20 Gt CO2 equiv. yr21 15–49% 32%
36 Gt CO2 equiv. yr21 39–82% 64%

2020 Kyoto-gas emissions 30 Gt CO2 equiv. yr21 (8–38%){ (21%){
35 Gt CO2 equiv. yr21 (13–46%){ (29%){
40 Gt CO2 equiv. yr21 (19–56%){ (37%){
50 Gt CO2 equiv. yr21 (53–87%){ (74%){

*Range across all priors reflecting the various climate sensitivity distributions with the exception of line 12 in Fig. 3a.
{Note that 2020 Kyoto-gas emissions are, from a physical perspective, a less robust indicator for maximal twenty-first century warming with a wide scenario-to-scenario spread (Supplementary Fig. 1c).
{ Prior chosen to match posterior of ref. 19 with uniform priors on the TCR.

0 500 1,000 1,500 2,000 2,500

P
ro

ba
bi

lit
y 

of
 e

xc
ee

di
ng

 2
 °

C
 

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

P
ro

ba
bi

lit
y 

of
 s

ta
yi

ng
 b

el
ow

 2
 °

C

Very 
likely

Li
ke

ly
U

nl
ik

el
y

Le
ss

 li
ke

ly
 

th
an

 n
ot

M
or

e 
lik

el
y 

th
an

 n
ot

Very 
unlikely

Cumulative total CO2 emissions 2000–49 (Gt CO2)

Emitted, available carbon (Gt CO2)
0 500 1,000 1,500 2,000 2,500

a

b

6 Illustrative SRES
SRES A1FI

35 SRES
7 EMF reference
14 EMF reference
3 Stern / EQW
948 EQW
HALVED-BY-2050

Diff. CS priors
Illustrative default
CMIP3 and C4MIP
emulation

816
2

Scenarios:

Climate uncertainties:

C
O

2 
em

is
si

on
s

20
00

 t
o 

20
06

d useLanL

Gas

Oil

Coal

Total proven fossil fueel reserves

1

3

15

14

13

12

11

10

17
16

19

18

9

8
7

6

5

4

2

A1B

A1FI

A1T
A2

B1

B2

Figure 3 | The probability of exceeding 2 6C warming versus CO2 emitted in
the first half of the twenty-first century. a, Individual scenarios’
probabilities of exceeding 2 uC for our illustrative default (dots; for example,
for SRES B1, A2, Stern and other scenarios shown in Fig. 2) and smoothed
(local linear regression smoother) probabilities for all climate sensitivity
distributions (numbered lines, see Supplementary Information for data
sources). The proportion of CMIP3 AOGCMs26 and C4MIP carbon-cycle8

model emulations exceeding 2 uC is shown as black dashed line. Coloured
areas denote the range of probabilities (right) of staying below 2 uC in AR4
terminology, with the extreme upper distribution (12) being omitted.
b, Total CO2 emissions already emitted3 between 2000 and 2006 (grey area)
and those that could arise from burning available fossil fuel reserves, and
from land use activities between 2006 and 2049 (median and 80% ranges,
Methods).
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Final Thoughts

This project centers on Hector model development, uncertainty quantification, and 
probabilistic climate projections, at the interface of climate science and integrated 
assessment

Some projected outcomes:

- New enhancements to Hector featuring incorporation of a diffusive ocean module 
and sea-level rise module that accounts for thermometric and land ice 
contributions

- Expanded modeling framework utilizable for perturbed physics ensemble studies
- building from recent work by Corinne Hartin et al.

- Incorporation of new MCMC tools for model calibration, parameter estimation, 
and probabilistic projections (characterizing the tails)

Some potential applications:

- Intercomparisons with other intermediate complexity climate models (Magicc, MIT 
IGSM, etc.) including carbon cycle uncertainties and feedbacks

- Broader-scale connections within GCAM 


