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Overarching science questions pacic Northwest.
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» What are the dominant pathways for human-earth
system interactions that influence the water cycle?

» How will the water cycle change as a result of climate
change vs changes in socio-economic and engineering
systems to mitigate and adapt to climate change?

» What are the vulnerabilities of energy, water, and food
to changes in climate mean, variability, and extreme?
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Community Land Model (CLM): soil hydrolog

CLM hydrology
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Observed / simulated baseflow index
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Model for Scale Adaptive River Transport
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i Conceptualized River Network
Real River Network of MOSART
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» Sub-network routing: scale adaptive
across different resolutions to reduce

scale dependence
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WM: flow regulation by reservoir operations.c Ti/
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» Generic operating rules (Voisin et al. HESS, 2013)

B Each reservoir has multiple purposes:
i) Flood control and other, ii) Irrigation, or iii) Joint irrigation and flood control

B Generic Release targets and storage targets for each purpose

B Configured independently for each reservoir based on hydro-climatological
conditions and demand associated with the reservoir
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Improvements through use of multi-

objective rules

Columbia River Basin
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reservoirs represented in the U.S.
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Model evaluation: case study of climate
anomalies in contemporary record -

Millimeters

Degrees Celsius

Great Plains

Pacific Northwest

» Central Great Plains

a) May-—/
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precipitation deficits
during May-August
2012 were the most
severe since at least
1895, eclipsing the
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Causes and predictability of the 2012
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Widespread and severe surface moisture >~z
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_deficits in summer 2012 v

a) Precipitation c) Runoff

Standardized Anomalies Percentiles
b) Temperature d) Soil Moisture
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Record heat and drought led to low
flows and power plant outages W

UCS Report: Power and Water at Risk
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Experiments: 2009 vs 2012 ensemble
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RESM captures the summer temperature and - N‘jff

precipitation anomaly of 2012 compared to 2009
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Seasonal changes in HDD/CDD before, 7

Pacific Northwest

during, and after the summer drought e T

» Prior to the 2012 drought, winter and spring are warmer than 2009

» The 2012 drought is accompanied by large warming in the summer, but
subsequent temperature anomalies in the fall is minor
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Changes in HDD/CDD drive changes in >~z
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energy use and water demand

» Seasonal changes in HDD/CDD drive changes in different energy sectors,
with water demand mostly tied to electricity generation, which is influenced
mainly by the summer warm anomaly — a common signature?
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Changes in regulated flow simulated by 7
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» Missouri and Upper Mississippi: Overall less precipitation and lower snowmelt
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» Lower Mississippi, Ohio, and Tennessee: Much earlier snowmelt and lower summer flow
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Models simulate flow reduction and water ~7
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» Flow decrease is due to dry conditions in western Mississippi and warm but not dry
winter in eastern Mississippi

2009 flow
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Experiments: 1975-2004 (historical) vs
2005-2100 (RCP4.5 and RCP8.5)

CESM: CAM-CLM-
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RESM projected changes in seasonal water availability ~7
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P — E changes comparing 2070 — 2099 with 1975 — 2004 for RCP8.5
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Water deficit is projected to increase more with 7
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Annual county scale water deficit as a fraction of demand
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The irrigation sector will experience most of

. the water deficit, particularly in the west
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Water deficit hotspots are more severe in 7
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RCP4.5 than RCP8.5
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» A deficit hotspot is defined to be a group of adjacent cells each exceeding
a deficit threshold, and is used to characterize the severity of water deficit
in terms of magnitude, spatial extent, and temporal changes

» A minimum of four adjacent cells exceeding the deficit threshold defined as
the 95" percentile from the distribution of deficit values, by basin

August deficit hotspots

Souris-Red-Rainy Upper Mississippi
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Both supply and demand in the hotspots ~7
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are higher in RCP4.5 than RCP8.5

» Climate mitigation reduces climate change impacts on water supply,
but water demand is increased in order to achieve emission targets

Upper Mississippi

Pacific Northwest i ri Souris-Red-Rainy
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Water deficit hotspot extent and number increase ~7
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more significantly in RCP4.5 than RCP8.5
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» Long term trends are driven primarily by population changes
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Higher resolution models simulate more robust
differences in water deficit between RCP4.5 and RCP8.5
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» By systematically aggregating the high resolution model outputs to coarser spatial and
temporal resolutions, our analysis shows a systematic reduction in the water deficit
difference between RCP4.5 and RCP8.5 compared to interannual variability (i.e.,
signal-to-noise ratio), demonstrating that high resolution modeling is key to projecting
more robust impacts of carbon policy on regional water deficit

US Annual Deficit Differences (10° m®)

Difference in annual water deficits between RCP4.5 and
RCP8.5 at multiple resolutions
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» A coupled modeling framework capable of simulating
regional scale features has been developed to enable
iInvestigations of energy-water-land nexus, in the context
of climate change mitigation, adaptation, and impacts

» The models reasonably capture the anomalous
meteorological and hydrological conditions and energy
use of 2012 (drought) compared to 2009 (normal),
highlighting reduced flow, increased water demand for
electricity and irrigation, and increased water deficits

» The models projected more severe water deficits in the
future under RCP4.5 than RCP8.5, suggesting that
emission mitigation (using bioenergy) may lead to more
water deficits, despite climate change impacts on water
supply are subdued

25



Next steps: Modeling stream temperature 7
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and inundation dynamics

Seasonally inundated river basins in
» A stream temperature model has been central Amazon

developed based on MOSART coupled to CLM
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Next steps: Modeling river biogeochemistry >~
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linking land and ocean C, N, and P cycles ...l

Table 1| Drainage network CO; efflux estimates from other

» Inthe US, CO, degassed from streams and  tarseriver systems.

rivers is up to 10% of the net ecosystem Region N
exchange (Butman and Raymond 2011) — —

. . Amazon basin* 0.5 830 (ref. 21)

» Nutrients and sediments transported by Mississippibasin! 001 1182 (1. 8)

. . . . . Xijiang river¥ 222x104 830-1,560 (ref. 20)
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Global modeling of reservoir regulations

Reservoirs use for irrigation and flood control

Gao et al. 2012 WRR
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» Satellite retrievals of reservoir altimetry (ENVISAT) and surface area (MODIS) provide
information about reservoir storage that can be used to constrain the operating rules in
the WM model for more realistic simulation of regulated flow and reservoir storage

¥ S America Vaidaton
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Modeling the resilience of the water system to >
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climate and socio-economic changes

» Large east — west contrast in water consumption
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5,001 - 7,500 groundwater use and return flow enables
ooy il investigations of resilience of the water systems
= 15,001 -25,000 to climate change and socio-economic changes

Pacific

Ocean ® 25,001 - 100,000

Withdrawals as b,c.d: B =] o

fraction of
consumptive use 0-09 099-1021.11-125151-2 251-3

1.06-1.1 = 5] |

1.11-1.25 091-0981.03-11 1.26-15 2.01-25>3
126-15

1.51-1.75 d

1.76-2 )

y  Atlantic 201-2.25

Ocean 226-25
251-3

m 301-5

m >5

b)

L B BN B

Pacific
Ocean

Fraction of demand
assigned to
surface water system

m 0

= 001-0.05
0.06 - 0.1
0.11-025
0.26-05
0.51-0.75
0.76-0.9
0.91-095 Pacific

1 Ocean

Atlantic
Ocean

. . i} .
vV Atlantic
Ocean

Pacific
Ocean

Gulf of Mexico N
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