

Sustainable resilience remediation of the Hajek HCH site using the Wetland+ system

P. Švermová, J. Burešová, M. Černík*

lifepopwat@tul.cz

Project title	Innovative technology based on constructed wetlands for treatment of pesticide contaminated waters		
Project acronym	LIFEPOPWAT		
Duration	48 months (01/2020 – 12/2023)		
Total budget	3.16 mil €		
Coordinating beneficiary	Technical university of Liberec (CZ)		
Associated beneficiaries	 Central Mining Institute GIG (PL) City of Jaworzno (PL) Aarhus university (DK) SERPOL (FR) DIAMO state enterprise (CZ) Photon Water Technology s.r.o (CZ) 		

LIFEPOPWAT – "LIFE OVER POPS IN WATER" https://cxi.tul.cz/lifepopwat

PHOTON WATER

s of the project partners and locations

Jaworzno

Hájek

Suitanable Resilience Remediation:

- ✓ optimized solution to cleaning up a hazardeous site
- ✓ maximize social and economic benefits
- ✓ create resilience against increasing threats

PHOTON WATER

Jaworzno

Ministerstvo životního prostředí

NEQŚIGW

Objective:

Treatment of HCH polluted waters by a passive system (Wetland+)

Demonstation sites:

- Hajek (CZ) full scale remediation (up to 3 L/s)
- Jaworzno experimental system (HCH +other pestcides, 0.1 L/s)

Jaworzno

PHOTON WATER

SERPOL

Hajek site

1965

1970

HCH =160 ug/l

Chl.B.=500 ug/l

Flow = 1-3 l/s

SRR:

- \rightarrow water protection
- \rightarrow long-term treatment
- \rightarrow sustainable remed.

SRR solution: impossible

- excavation
- containment
- active WWTP

TECHNICAL UNIVERSIT OF LIBERE

2021

2023

TECHNICAL

0 F

UNIVERSITY

LIBEREC

PHOTON WATER "Innovative technology based on constructed wetlands for treatment of pesticide contaminated waters" - LIFE18 ENV/CZ/000374

Wetland+ monitoring

Wetland+: Present efficiency of HCH and other contaminants removal

	Σ CLB [ug/l]	Σ CLF [ug/l]	Σ HCH [ug/l]
inlet	773,0	27,9	154,9
outlet	2,5	1,5	5,6
efficiency %	99,7	94,8	96,4

Sustainable remediation process – not only environment

- Benefit is greater than its impact
- Sustainable remediation is site and project specific
- ➢ Best solution is selected based on balanced decision-making process (e.g.
- CL:AIRE 2010 by SuRF-UK, ISO 18504:2017)
- Indicators: environmental, society, economic (balanced)
- >It is a multifactorial task \rightarrow 15 indicator categories, > 70 questions

PHOTON

Three scenarios – Wetland+ x WWTP x No intervention

Wetland+

- + Low emission
- + Biodiversity increase
- + Less expensive solution
- + Increase of land value
- + Education facility
- Not-proven technology

WWTP

- + Creation of jobs
- + Robust and standard treatment
- Waste production
- Operational costs
- Workers risks
- Risk of crime

Life Cycle Assessment: Wetland+[®] vs. WWTP

4 stages:

TECHNICAL

- defining the boudaries
 - amount of treated drainage water
 - 25-year lifetime of the systems
- inventory analysis (Life Cycle Inventory LCI),
 - construction stage x operation stage
- impact assessment (Life Cycle Impact Assessment),

AARHUS UNIVERSIT

- ReCiPe2016 method \rightarrow Sima Pro software

Jaworzno

• interpretation (LCA)

PHOTON WATER

ReCiPe 2016 method (Huijbregts et al. 2016)

GIG Research 95

SERPOL

LCA results

Wetland+[®] vs. WWTP

Comparison of ReCiPe Endpoint H/A results after the weighing stage for the <mark>construction</mark> stage of the Wetland+ and WWTP systems

Comparison of ReCiPe Endpoint H/A results after the weighing stage for the <mark>operational</mark> phase of the Wetland+ and WWTP systems.

PHOTON WATER

Conclusions

- ✓ Wetland+[®] at Hájek site (CZ) led to a decrease of HCH concentrations at the outlet <10 µg/l, and an efficiency at 95%;</p>
- ✓ Various removal efficiency for individual HCH isomers: $\alpha = \gamma = \delta > \beta = \epsilon$ δ-HCH dominates at the inlet, ε-HCH dominates at the outlet;
- ✓ HCH mass discharge to the Ostrovský Creek 25 g/day → 0.8 g/day;
- \checkmark In a year we removed approximately:
 - 8 kg HCH + 25 kg ClB + 0.5 kg ClPh

Jaworzno

✓ LCA analysis showed also economic and social advantages of the system

GIG Research 9

Thank you for your attention....

miroslav.cernik@tul.cz

Ministerstvo životního prostředí

