

Savannah River Ecology Laboratory UNIVERSITY OF GEORGIA



## Technical support for Monitored Natural Attenuation of a uranium and mercury contaminated wetland along the Savannah River, USA

Daniel I. Kaplan

Argonne National Laboratory – Kenneth Kemner, Edward O'Loughlin, Maxim I. Boyanov SREL/UGA – Peng Lin

Funding: DOE-Office Science, Environmental Earth Systems

### TNX Area, Savannah River Site, SC





#### **TNX** Area

- Former pilot scale nuclear facility (1958 1980).
- ➢ Released contaminants into unlined seepage basins:
- Cl, Cr, Hg,  $NO_3^-$ , Pu, Th, U, and Cl-hydrocarbons.
- Contaminants migrated to nearby wetland.
- Hg in surface sediments ranged 0.02 (background) to 12 mg/kg
- U ranged from 1 (background) to 1200 mg/kg
- Remediation source term removal, phosphate soil amendments, Monitored Natural Attenuation.





Savannah River Ecology Laboratory UNIVERSITY OF GEORGIA

## **Objective**

#### **Objective:**

Characterize Hg and U sorption to TNX wetland sediments.



#### Intention:

- To providing a conceptual geochemical model for use in risk assessment calculations and
- To provide guidance for the selection of an appropriate in situ remediation strategy.

#### Approach:

- Using contaminated sediment, measure the proportion of Hg and U that might desorb from the sediment under natural wetland conditions.
- Conduct thermodynamic calculations
- X-ray Absorption Spectroscopy: U L<sub>III</sub> edge XANES & EXAFS

## In-situ desorption K<sub>d</sub> values

Adsorption distribution coefficient, K<sub>d</sub>, and Retardation Factor, R<sub>f</sub>

$$K_{d} = \frac{C_{sediment}}{C_{aqueous}} = \left(\frac{C_{initial} - C_{eq}}{C_{eq}}\right) \times \left(\frac{Mass_{soil}}{Vol_{aq}}\right)$$

Retardation Factor =  $\frac{FlowRate_{water}}{FlowRate_{contaminant}} \propto (1 + K_d)$ 

*In-situ* desorption distribution coefficient – measured with contaminated sediment from the study site

in situ  $K_d = \frac{C_{Acid} + C_{OM} + C_{AmFeOxide}}{C_{Saturated Paste}}$ 

**Kinetics**: Adsorption occurs more quickly than desorption because the latter must break surface bonds (surface activation energies).

Fewer assumptions about: soil/contaminant aging, contaminant speciation

**Desorption is the rate limiting step.** As such, it's the parameter that best reflects contaminant migration through porous media.

## **Mercury Sequential Extraction**



#### Sequential Extraction Procedure

| Sequence | Extractant: Chemical composition                                                     | Targeted contaminant fraction        | Contact time<br>(days) | Solid:liquid<br>(g/g) |
|----------|--------------------------------------------------------------------------------------|--------------------------------------|------------------------|-----------------------|
| 1        | Saturated paste extract:<br>Uncontaminated TNX surface water                         | Pore water                           | 7                      | ~1:0.19               |
| 2        | Dilute acid extract: Dilute acetic acid<br>[0.44 M CH3COOH+0.1 M Ca(NO3)2]           | Exchangeable                         | 1                      | 1:30                  |
| 3        | Oxidizing agent: sodium pyrophosphate<br>[0.1 M (Na4P <sub>2</sub> O <sub>7</sub> )] | Bound to organic fraction            | 1                      | 1:30                  |
| 4        | Total digestion: Aqua regia +48% HF                                                  | Structural/precipitated/<br>Fe oxide | 0.125                  | 1:30                  |

#### Sequential Extraction Results

|            |                               | Solid phase Hg (%) |         |                                          |
|------------|-------------------------------|--------------------|---------|------------------------------------------|
| Sediment   | Aqueous phase<br>Hg<br>(µg/L) | Exchangeable       | Organic | Structural/<br>Precipitated/<br>Fe Oxide |
| Background | <10                           | 0                  | 0       | 100                                      |
| A-5        | <10                           | 0                  | 8       | 92                                       |
| B-3        | <10                           | 0                  | 0       | 100                                      |
| C-5        | <10                           | 0                  | 4       | 96                                       |
| D-28       | <10                           | 0                  | 0       | 100                                      |



Intro | Study Site | Objective | Hg | U | Conclusions

# Mercury (Ad)sorption & Desorption K<sub>d</sub>

#### Adsorption

| Mercury $K_d$ Values and Filtration Ratios |                                                        |                                             |                                                                      | -200 -               |
|--------------------------------------------|--------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|----------------------|
| K <sub>d</sub><br>(mL/g)                   | $K_d$ average $\pm$<br>standard<br>deviation<br>(mL/g) | Filtration ratio <sup>a</sup><br>(unitless) | Filtration ratio<br>average ±<br>standard<br>deviation<br>(unitless) | $-400 - \frac{1}{2}$ |
| 5,582<br>4,704<br>5,725                    | 5,337 ±553                                             | 1.03<br>0.94<br>0.98                        | $0.98 \pm 0.05$                                                      | Filtration ratio=    |



in situ desorption 
$$K_d = \left(\frac{\text{Hg}_{\text{exch}} + \text{Hg}_{\text{ox}} + \text{Hg}_{\text{total digest}}}{\text{Hg}_{\text{saturated paste}}}\right)$$

In-situ K<sub>d</sub> (mL/g) A-5 Sediment >6820 B-3 Sediment >630 C-5 Sediment >9450 D-28 Sediment >9200

6 pH



1000

800

600

400

200

0

Eh (mV)

Savannah River Ecology Laboratory UNIVERSITY OF GEORGIA

0<sub>2</sub> H<sub>2</sub>O

H<sub>2</sub>O H<sub>2</sub> 8

 $Hg_{< 0.45 \ \mu m}$ 

Hgunfiltered

10

Intro | Study Site | Objective | Hg | U | Conclusions

## Mercury vs. soil size fractions

| Sediment   | Hg concentration (µg/g) |       |         |  |
|------------|-------------------------|-------|---------|--|
|            | Whole                   | <2 µm | <0.5 µm |  |
| Background | 0.02                    | 0.17  | 0.30    |  |
| A-5        | 6.82                    | 1.69  | 0.98    |  |
| B-3        | 0.64                    | 0.85  | 0.75    |  |
| C-5        | 9.45                    | 6.76  | 5.75    |  |
| D-28       | 9.20                    | 0.40  | 0.44    |  |



Hg (and Th and U, data not shown) was not consistently enriched in fine grains.

Intro | Study Site | Objective | Hg | U | Conclusions



Savannah River Ecology Laboratory UNIVERSITY OF GEORGIA

### Sequential Extraction & *in situ* desorption K<sub>d</sub> values (L/kg)

#### In-situ desorption K<sub>d</sub> values (L/kg)

|                   | 102  | 103  | Sediment<br>104 | 105  | 106  |
|-------------------|------|------|-----------------|------|------|
| <sup>232</sup> Th | _c   | 1803 | 115             | 2255 | _    |
| <sup>235</sup> U  | _    | -    | 193             | _    | _    |
| <sup>238</sup> U  | 1237 | 1297 | 170             | 6493 | 2110 |

- Th and U associated with exchangeable OM & amorphous Feoxide fraction.
- Bound strongly to sediments.

Intro | Study Site | Objective | Hg | U | Conclusions

Sequential Extraction (% of Th or U)

| Sediment       | Fraction         | <sup>232</sup> Th | <sup>238</sup> U |
|----------------|------------------|-------------------|------------------|
| Incontaminated | Acid extractable | 0                 | 0                |
|                | Organic Fraction | 61                | 9                |
|                | Amorph. Fe-oxide | 39                | 0                |
|                | Cryst. Fe-oxide  | 0                 | 0                |
|                | Structural       | 0                 | 91               |
| 102            | Acid extractable | 1                 | 26               |
|                | Organic fraction | 84                | 57               |
|                | Amorph. Fe-oxide | 10                | 4                |
|                | Cryst. Fe-oxide  | 5                 | 2                |
|                | Structural       | 0                 | 11               |
| 103            | Acid extractable | 1                 | 36               |
|                | Organic fraction | 65                | 37               |
|                | Amorph. Fe-oxide | 15                | 6                |
|                | Cryst. Fe-oxide  | 7                 | 3                |
|                | Structural       | 12                | 17               |
| 104            | Acid extractable | 0                 | 25               |
|                | Organic fraction | 78                | 57               |
|                | Amorph. Fe-oxide | 6                 | 3                |
|                | Cryst. Fe-oxide  | 7                 | 2                |
|                | Structural       | 9                 | 14               |
| 105            | Acid extractable | 1                 | 26               |
|                | Organic fraction | 88                | 56               |
|                | Amorph. Fe-oxide | 7                 | 5                |
|                | Cryst. Fe-oxide  | 4                 | 2                |
|                | Structural       | 0                 | 12               |
| 106            | Acid extractable | 0                 | 44               |
|                | Organic fraction | 91                | 41               |
|                | Amorph. Fe-oxide | 7                 | 3                |
|                | Cryst. Fe-oxide  | 2                 | 1                |
|                | Structural       | 0                 | 11               |

## Oxidized-to-reduced sediments with depth (from nearby wetland – Tims Branch)



Intro | Study Site | Objective | Hg | U | Conclusions



Savannah River Ecology Laboratory UNIVERSITY OF GEORGIA

## **Sediment U - Conclusions from cores**



- Accumulation of U in the top 5-10 cm
- In drier or near-surface environments the predominant valence state is U<sup>VI</sup>.
- Conversely, in saturated sediments that are not directly exposed to air the predominant valence state is stabilized as U<sup>IV</sup>
- Important implications on modeling
  U transport & risk in the environment

Blue line = Total U Red histogram= U(IV) Grey histogram = U(VI)



## Conclusions



- > Hg is very strongly bound to sediment, likely (co)precipitated in Fe, not S.
- U is very strongly bound to sediments as U(VI) near surface where most U resides and as U(IV) in deep saturated depths. U(VI) bound as dispersed hydrated ions to Fe-oxides (~40%) and OM (~60%).
- Given the ecologically sensitive nature of the wetland and the fact that the Hg is strongly bound to the sediment, it was concluded that a monitored natural attenuation approach for site remediation may be appropriate.

