

Turbulent Transport Across the Sediment-Water Interface: Pore-**Resolved Direct Simulations and Upscaled Modeling**

Apte Research Group

Sourabh V. Apte, Shashank Karra **Oregon State University**

REMPLEX 2023 SUMMIT PACIFIC NORTHWEST NATIONAL LABORATORY **NOV 13-17**

Funding: DoE BES, PNNL (student internship), NSF

Background

- <u>Hyporheic exchange</u> a bidirectional exchange of water, oxygen, pollutants, nutrients and energy between stream flow and sediments
- Penetration of mean and turbulent flow within the porous bed and near bed pressure fluctuations primarily influence hyporheic exchange (Hester et al' 2017)
- Permeability Reynolds number (representing the ratio between permeability scale to viscous scale)

 $Re_K = \frac{u_\tau \sqrt{K}}{\nu}$

Figure taken from Hester et al' 2017

modified based on Voermans et al (JFM, 2017)

Objectives

- Investigate the interactions between stream turbulence and groundwater flow through a randomly packed, porous sediment bed over a range of Re_k~ 2-10 representative of stream flows
- Pore-resolved DNS to investigate turbulence characteristics in open channel flow over permeable beds
 - Fictitious domain method (Apte et al. 2008, Apte & Finn, 2012)
- Develop a diffuse interface based volume-averaged Navier-Stokes (VaNS) model and investigate its predictive capability compared to the pore-resolved DNS data
 - Volume-Averaged Navier-Stokes (VANS) Model (Whitaker 1996)
 - Closure for extra terms from volume averaging

Pore-Resolved Simulations: Fictitious Domain Method

$$\nabla \cdot \mathbf{u}_{\gamma} = \mathbf{0} \qquad \text{Non-}\\ \rho_{\gamma} \left(\frac{\partial \mathbf{u}_{\gamma}}{\partial t} + (\mathbf{u}_{\gamma} \cdot \nabla) \mathbf{u}_{\gamma} \right) = -\nabla p + \mu_{\gamma} \nabla^{2} \mathbf{u}_{\gamma} + \rho_{\gamma} \mathbf{g} + \mathbf{f}$$

Rigidity constraint force Non-zero within the solid

- Navier-Stokes equations are solved over the entire domain (including the solid region)
- Rigidity constraint force f is used to impose rigid body motion within the solid region (no-slip on the boundaries and no deformation within the solid)
- Fractional time-stepping, collocated grid algorithm for overall second-order accuracy

Volume-averaged Navier Stokes (VANS)

- Volume averaging of any quantity ψ over a representative elementary volume (REV) can be written as

$$\langle \psi_{\gamma} \rangle = \frac{1}{V} \int_{\mathbf{r} \in \mathscr{V}(\mathbf{X})} I_{\gamma}(\mathbf{r}) \psi(\mathbf{r}) dV(\mathbf{r})$$

1

Intrinsic volume average

 $\langle \psi_{\gamma} \rangle^{\gamma} = \frac{1}{V_{\gamma}} \int_{\mathbf{r} \in \mathscr{V}(\mathbf{X})} I_{\gamma}(\mathbf{r}) \psi(\mathbf{r}) dV(\mathbf{r})$

$$\langle \psi_{\gamma} \rangle = \varepsilon_{\gamma} \langle \psi_{\gamma} \rangle^{\gamma}$$

Whitaker, 1996 Wood, He, Apte 2020

VaNS For Variable Porosity

eriodic

COLLEGE OF ENGINEERING

Volume-averaged Navier Stokes (VANS)

Spatially variable porosity

$$\nabla \cdot (\varepsilon_{\gamma} \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma}) = 0$$
Intrinsic velocity field is
not divergence free
$$\rho_{\gamma} \frac{\partial \varepsilon_{\gamma} \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma}}{\partial t} + \rho_{\gamma} \nabla \cdot [\varepsilon_{\gamma} \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma}] + \rho_{\gamma} \nabla \cdot [\varepsilon_{\gamma} \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma}] + \rho_{\gamma} \nabla \cdot [\varepsilon_{\gamma} \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma}] = -\nabla [\varepsilon_{\gamma} \langle p_{\gamma} \rangle^{\gamma}] + \rho_{\gamma} \nabla \cdot [\varepsilon_{\gamma} \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma}] + \rho_{\gamma} \nabla \cdot [\varepsilon_{\gamma} \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma}] = -\nabla [\varepsilon_{\gamma} \langle p_{\gamma} \rangle^{\gamma}] + \rho_{\gamma} \nabla \cdot [\varepsilon_{\gamma} \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma}] + \rho_{\gamma} \nabla \cdot [\varepsilon_{\gamma} \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma}] - \rho_{\gamma} \nabla \varepsilon_{\gamma} \cdot \nabla \otimes \langle \boldsymbol{u}_{\gamma} \rangle^{\gamma} + \frac{1}{\sqrt{\int_{\mathcal{A}_{\gamma\kappa}} \mathbf{n}_{\gamma\kappa} \cdot (-\mathbf{I}\tilde{p}_{\gamma} + \mu_{\gamma} \nabla \otimes \tilde{\boldsymbol{u}}_{\gamma}) dA} + \rho_{\gamma} \varepsilon_{\gamma} \mathbf{f_b}}{\mathbf{surface filter closure}}$$

$$\frac{1}{V_{\gamma}} \int_{\mathcal{A}_{\gamma\kappa}} \mathbf{n}_{\gamma\kappa} \cdot (-\mathbf{I}\tilde{p}_{\gamma} + \mu_{\gamma} \nabla \otimes \tilde{\boldsymbol{u}}_{\gamma}) dA = -\mu_{\gamma} \mathbf{K}^{-1} (\mathbf{I} + \mathbf{F}) \quad \text{permeability (K) and} \text{Forchheimer (F) tensors}$$

$$\mathbf{K} = \frac{d_{p}^{2} \varepsilon_{\gamma}^{3}}{\mathcal{A}(1 - \varepsilon_{\gamma})^{2}} \mathbf{I}, \quad \mathbf{F} = \tilde{F} |\langle \boldsymbol{u}_{\gamma} \rangle^{\gamma} |\mathbf{I}, \quad \tilde{F} = \frac{\varepsilon_{\gamma}}{\mathcal{B}(1 - \varepsilon_{\gamma})} \frac{d_{p}}{\nu_{\gamma}} \quad \text{Ergun model for} \text{packed beds}$$

Cases studied and Parameters

Case	Method	Re _K	Reτ	θ	$H_{s/\delta}$	D _{p/s}	$(L_x, L_z)/\delta$
VV	PR-DNS	2.56	180	0.41	1.71	0.43	(4π,2π)
PBL	PR-DNS	2.56	270	0.41	1.14	0.29	(4π,2π)
PBM	PR-DNS	5.17	545	0.41	1.14	0.29	(2π,π)
PBH	PR-DNS	8.94	943	0.41	1.14	0.29	(2π,π)
PBL	VANS	2.5	263	0.41	1.14	-	(4π,2π)

Cases

- VV: Verification and validation
- **PBL,PBM,PBH:** Four layers of monodispersed spherical sediment particles for low, medium and high Reynolds number
- VANS model: Diffuse interface based continuum approach

Х

Sediment bed

Grid distribution

Case	$N_x \times N_y \times N_z$	Bed-Norm	$(\Delta x^+, \Delta y^+, \Delta z^+)$		
		Channel region	Top layer	Bottom layers	
VV	$768\times288\times384$	96	86	106	(2.94, 0.95, 2.94)
PBL	$1152\times 350\times 576$	150	90	110	(2.94, 0.95, 2.94)
PBM	$846 \times 530 \times 448$	184	180	166	(4.01, 0.95, 3.8)
PBH	$882\times1082\times448$	342	548	192	(6.74, 0.55, 6.63)

8

8

250M-500M cells. Computations done on Frontera on about 2000 processors

Pore-resolved DNS: Validation

- Pore-resolved DNS simulations (—) of turbulent flow over a sediment bed are validated with experimental data (O) from *Voermans et al.,* 2017 JFM and DNS results (>) from Shen et al., 2019 JFM
- Permeable bed $\theta = 0.41$, $Re_{K} \sim 2.56$, $Re_{\tau} = 180$

Turbulence structure (bed-normal vorticity)

Net Bed Stress

PBL (-) PBM (--) PBH (--) model fit (\bigcirc) .

- PDFs of the local distribution of the net bed stress (pressure + viscous) normalized by the total bed stress in streamwise direction collapse for Re_K
- PDFs of the local distribution of fluctuations in net bed stress are symmetric, but non-Gaussian with heavy tails representative of extreme events
- Root mean square fluctuations of net bed stress follow a logarithmic correlation with Re_{K}

VaNS Model Setup

Porosity profile

VANS model

0.4

0.2

 $\frac{9}{h}$ -0.4

-0.6

-0.8 -1

6

0

·	5116	
bild bild	$\varepsilon_{\gamma} = 1$	periodic
interface	$\varepsilon_{\gamma}(y)$	
Homogeneous porous	$\varepsilon_{\gamma} = \varepsilon_c F_d$	$rag(\varepsilon_{\gamma})$

Turbulent flow comparison

- Streamwise and bed-normal velocity at the z-symmetry plane
- A greater range of flow structures is observed in pore-resolved DNS

COLLEGE OF ENGINEERING

Mean Velocity and Reynolds stresses

- Small differences near the crest and regions of rapid variations in porosity
- Attributed to effect of roughness protrusions on flow, which is absent in the continuum-based approach

Total stress and pressure fluctuations

- Total fluid stress (viscous+turbulent+form-induced) is well captured
- Enhancement in pressure fluctuations in the top of the layer of the bed is observed in both cases compared to a smooth wall (red line)
- In pore-resolved DNS, the presence or roughness protrusions of the top layer clearly results in higher magnitude of pressure fluctuations. This behavior is not completely captured by continuum-based VaNS model
 - Future work: model variations in axial and spanwise porosity in the top layer

Conclusions

- Particle-resolved DNS and continuum VANS-based model were used to simulate free-stream turbulence over porous sediment bed and investigate turbulence penetration in the hyporheic zone
- Mean velocity, Reynolds stress, total fluid stress, and pressure fluctuations match well between the two approaches
- Enhancement in pressure fluctuations in the top of the layer of the bed is observed in both cases
- Lack of roughness protrusions in the VANS-model, result in underprediction of pressure fluctuations at the sediment-water interface
 - Better representation of the small-scale variations in porosity
 - Improved force closure in the varying porosity region
 - Scalar transport

• Thank you!