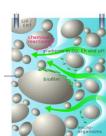

Creating python tools to process spectral induced polarization data for contaminant monitoring and subsurface characterization

Aaron Jimenez, acjimenez@mines.edu, 3rd year geophysical engineering undergraduate, SULI Intern, Colorado School of Mines Judy Robinson, Pacific Northwest National Laboratory


Project Background

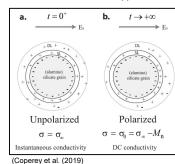
SIP is being used for contaminant monitoring and subsurface characterization. It is the only geophysical method sensitive to biogeochemical parameters. The project that I worked on was linked to studying soil organic matter (SOM) complexation, and the potential applications of SIP in monitoring these processes.

SOM plays a vital role in maintaining soil health and ecosystem sustainability:

- · Acts as a reservoir for essential nutrients
- · Increases the diversity of microorganisms used to degrade organic pollutants
- · Aids in pesticide absorption
- · Helps organo-mineral complexation, which acts as a carbon sink for atmospheric CO₂

© ENIGMA: European training network for in-situ imagine of dynamic processes in heterogeneous subsurface

PNNL is operated by Battelle for the U.S. Department of Energy


Spectral induced polarization (SIP)

SIP is a geophysical technique that measures the polarization response of subsurface material over a frequency range when an external electric field is applied.

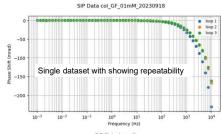
Polarization of the Electric

surrounding mineral grains

Double Layer (EDL)

SIP Data Examiner

PNNL staff required an interactive way to efficiently examine data produced in laboratory experiments.



Jupyter notebook widgets allow the user to load one or more datasets a single time, then manipulate plots according to multiple defined criteria

Relationship to physical properties

Spectral Induced	d Polarization
1	
Electrical Conductivity: σ	- Amplitude, φ - Phase
$\downarrow \qquad \sigma' = \sigma \cos(\varphi)$	$\downarrow \sigma'' = \sigma \sin(\varphi)$
Real Part σ'	Imaginary Part σ''
1	↓
Connected to electrolytic and surface conductive pathways	A direct measurement of the polarization response strength

The SIP measurement consists of a spectra across frequencies of complex electrical conductivity $|\sigma|$ and phase angle φ , which is the phase lag between the transmitted and received current

SIP Data Loop 1 gages divined a commence of the commence of th Multiple datasets filtered according to entered criteria

Coperey, A., A. Revil, F. Abdulsamad, B. Stutz, P. A. Duvillard and L. Ravanel (2019). "Low-Frequency Induced Polarization of Porous Media Undergoing Freezing: Preliminary Observations and Modeling." Journal of Geophysical Research: Solid Earth 124(5): 4523-4544.

Li, Q., W. Hu, L. Li and Y. Li (2023). "Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors." Sci Total Environ 855: 158710

This research was supported by the Open Call Initiative, under the Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RLO 1830

