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Changing climate on groundwater contamination sites 
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Extreme precipitation and increased recharge

Dilution vs remobilizationSavannah River Site (SRS) 

with wastewater

2D cross section of SRS



Bridging the gap between science and decision 

with machine learning (ML)
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Slow and uncertain: Flow and transport 

simulations with climate models

Amanzi-ATS model

Fast and high risk: Design attenuation 

strategies under climate disturbances

An SRNS subcontractor technician takes radiological readings of soil near 

Lower Three Runs, part of a major project to complete the cleanup of a 

contaminated 25-mile-long stream corridor at SRS. (Photo: DOE)

Where and when to make remediations? Put monitoring wells? 



Physics-informed surrogate modeling
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Physics-informed surrogate modeling

Climate

Ground-
water

Uncertain climate, surface 

and subsurface properties

 

Physical simulations

with Amanzi-ATS

Fast predictions
• Spatiotemporal variations

• Realistic climate 

projections (CMIP5)

Wang et al. 2022, Machine Learning and the Physical Sciences workshop, NeurIPS

Meray*, Wang* et al. 2023, Computers and Geosciences, under review



Surrogate modeling: Input and Output
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Input parameters m(x,t): permeability, porosity, recharge, location, time, etc. 
𝑛𝑥 × 𝑛𝑧 × 𝑛𝑡 × 𝑛𝑖𝑛𝑝𝑢𝑡

Output parameters y(x,t): tritium concentration, hydraulic head
𝑛𝑥 × 𝑛𝑧 × 𝑛𝑡 × 𝑛𝑜𝑢𝑡𝑝𝑢𝑡



Surrogate modeling: Fourier Neural Operator
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Step 1: Fourier transform ℱ

Step 2: Linear transform on the lower Fourier modes 𝑅

Step 3: Inverse Fourier transform ℱ−1

Li et al. 2021, Wen et al. 2022



Surrogate modeling: Fourier Neural Operator + U-Net
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Step 1: Fourier transform ℱ

Step 2: Linear transform on the lower Fourier modes 𝑅

Step 3: Inverse Fourier transform ℱ−1

Li et al. 2021, Wen et al. 2022

𝑈



Surrogate modeling: two different architectures
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Surrogate modeling: Physics-informed loss function
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Physics-informed: No flow boundary condition for hydraulic head

Simulated data-driven: Mean relative error on output and corresponding derivatives 

Simulated data-driven: Derivatives on the plume boundary



Tritium concentration on test set
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Physics-informed surrogate model runs 600x faster than Amanzi-ATS 

Contaminant Concentration

TRUTH PREDICTION DIFFERENCE



Tritium concentration on test set
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Physics-informed surrogate model runs 600x faster than Amanzi-ATS 

TRUTH PREDICTION DIFFERENCE TRUTH PREDICTION DIFFERENCE
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Test 7
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Test 24

TRUTH PREDICTION DIFFERENCE



Performance: multiple loss functions 
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Performance: multiple different architectures
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With 30 epochs



Performance: multiple different architectures
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With 150 epochs

U-FNO-2D

U-FNO-3D



Architecture for future projections 

U-FNO-3D
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Changing the future 

recharge impacts the 

historical prediction

Change



Architecture for future projections 

U-FNO-2D
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Changing the future 

recharge only impacts 

the future prediction

Change



Conclusion

• We propose two different architectures U-FNO-2D (recurrent) and U-FNO-3D. 

• We design the custom loss functions including: 

– Simulated data-driven loss

– Physics-informed loss

• U-FNO-3D has more parameters for better training and predictions

• U-FNO-2D is well-suited for predicting the future climate perturbation impacts
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Future surrogate modeling with full 3D model

Physics-Informed Surrogate Modeling for Supporting Climate Resilience at Groundwater Contamination Sites | BERKELEY LAB 18



What is next? 
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Integrate in-situ long-term monitoring data and support remediation decisions

Model:

• Simulation

• Surrogate

Data:

• In-situ 

monitoring

Model calibration

Guided environmental monitoring
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