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Changing climate on groundwater contamination sites
Extreme precipitation and increased recharge

2D cross section of SRS
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Savannah River Site (SRS) Dilution vs remobilization
with wastewater
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Bridging the gap between science and decision
with machine learning (ML)

Where and when to make remediations? Put monitoring wells?

. An SRNS subcontractor technician takes radiological readings of soil near
Amanzi-ATS model Lower Three Runs, part of a major project to complete the cleanup of a
contaminated 25-mile-long stream corridor at SRS. (Photo: DOE)

Slow and uncertain: Flow and transport Fast and high risk: Design attenuation
simulations with climate models strategies under climate disturbances
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Physics-informed surrogate modeling

| Physics-informed surrogate modeling
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Wang et al. 2022, Machine Learning and the Physical Sciences workshop, NeurlPS
Meray*, Wang* et al. 2023, Computers and Geosciences, under review



Surrogate modeling: Input and Output

|Input parameters m(x,t): permeability, porosity, recharge, location, time, etc.
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Output parameters y(x.t): tritium concentration, hydraulic head

Ny XNy XN X Noutput
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Surrogate modeling: Fourier Neural Operator

N\

Step 1. Fourier transform F
Step 2: Linear transform on the lower Fourier modes R
Step 3: Inverse Fourier transform F 1

Li et al. 2021, Wen et al. 2022

Physics-Informed Surrogate Modeling for Supporting Climate Resilience at Groundwater Contamination Sites | BERKELEY LAB



Surrogate modeling: Fourier Neural Operator + U-Net

Step 1. Fourier transform F
Step 2: Linear transform on the lower Fourier modes R
Step 3: Inverse Fourier transform F 1

Li et al. 2021, Wen et al. 2022
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Surrogate modeling: two different architectures

a)
Architecture 1: U-FNO 3D

m(x,t) — y(x,t)

b)

Architecture 2: U-FNO 2D recurrent
m(x,1) m(x,2)

m(x,0) y(x,0)

U-FNO-2D U-FNO-2D

Learn physics for At
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Surrogate modeling: Physics-informed loss function

ﬁ(y: ?}) — L:MRE(y:I ?}) + )Blffder (ya @) + ﬁZﬁplume(C’: Ef) + /83'680(3})

Simulated data-driven: Mean relative error on output and corresponding derivatives

Com(ng) = W= 8l2 p o 10y/0z — 89/0all  [18y/0z — 89/0z)>
| yll2 o |8y/ 0z || 10y/02[

Simulated data-driven: Derivatives on the plume boundary

, v l|0c' 8z — Oc'[dz||y  ||Bc’ [0z — Dc' /2]
Epfume(c y C ) = ) + '
|0c' /0|2 10c’/9z||2

Physics-informed: No flow boundary condition for hydraulic head

Lpc(9) = ||Gz|apll2 + 1|4:|ap|l2 + [|Oh|ap]|2

9
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Tritium concentration on test set

Physics-informed surrogate model runs 600x faster than Amanzi-ATS

1955

Contaminant Concentration

TRUTH PREDICTION DIFFERENCE
u ! '
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Contaminant concentration {mol/L) Contaminant concentration (mol/L)
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Tritium concentration on test set

Physics-informed surrogate model runs 600x faster than Amanzi-ATS
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Performance: multiple loss functions

‘C(ya g) — EMRE(ya Q) =+ ﬁlﬁder(ya ﬁ) + /BZEplumf:(Cfa Ef) + /83*630(:’})
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Performance: multiple different architectures

With 30 epochs
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Performance: multiple different architectures

With 150 epochs
MRE by Time Step
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Architecture for future projections

Change
1985 2025
U'FNO'SD Recharge, —— —— =
o 2e-6 : .
Zlfgs-cvat:: 2223— 1 - (i Difference ‘ Difference
_ 1e-5 ‘ - Hydraulic head (m)
s s T e WM
m % ‘ . - ;I'r::tcl)lijlan) concentration
S . :
k)
Recharge, """_,_--""""--"-"-------------_---f-_f_f ----------------------------
(zfgz_ev;t:g g?zsq) ‘ Difference ‘ Difference ]
¥ - . 100 20
‘ ‘ 50 0 Hydraulic head (m)
Changing the future A - o
recharge impacts the - _
historical prediction -.; ‘
‘; ‘ i H Tritium concentration
5 0 (mol/L)
M. < mm .-
. i

Physics-Informed Surrogate Modeling for Supporting Climate Resilience at Groundwater Contamination Sites | BERKELEY LAB



Architecture for future projections

U-FNO-2D

Changing the future
recharge only impacts
the future prediction
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Conclusion

W e propose two different architectures U-FNO-2D (recurrent) and U-FNO-3D.

We design the custom loss functions including:
— Simulated data-driven loss
— Physics-informed loss

U-FNO-3D has more parameters for better training and predictions

U-FNO-2D is well-suited for predicting the future climate perturbation impacts

Presentation Title | BERKELEY LAB



Future surrogate modeling with full 3D model




What is next?
Integrate In-situ long-term monitoring data and support remediation decisions

Model calibration

Model: Data:
« Simulation  |n-situ

* Surrogate monitoring

Guided environmental monitoring
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