

Physics-Informed Surrogate Modeling for Supporting Climate Resilience at Groundwater Contamination Sites

Lijing Wang, Lawrence Berkeley National Laboratory (LBNL)

Rem Plex 2023 Summit, November 14, 2023

Changing climate on groundwater contamination sites

Extreme precipitation and increased recharge

with wastewater

Bridging the gap between science and decision with machine learning (ML)

Where and when to make remediations? Put monitoring wells?

Slow and uncertain: Flow and transport simulations with climate models

An SRNS subcontractor technician takes radiological readings of soil near Lower Three Runs, part of a major project to complete the cleanup of a contaminated 25-mile-long stream corridor at SRS. (Photo: DOE)

Fast and high risk: Design attenuation strategies under climate disturbances

Physics-informed surrogate modeling

Wang et al. 2022, Machine Learning and the Physical Sciences workshop, NeurIPS Meray*, **Wang*** et al. 2023, Computers and Geosciences, under review

Surrogate modeling: Input and Output

Input parameters m(x,t): permeability, porosity, recharge, location, time, etc. $n_x \times n_z \times n_t \times n_{input}$

<u>Output parameters y(x,t)</u>: tritium concentration, hydraulic head $n_x \times n_z \times n_t \times n_{output}$

Surrogate modeling: Fourier Neural Operator

Step 1: Fourier transform \mathcal{F}

Step 2: Linear transform on the lower Fourier modes R

Step 3: Inverse Fourier transform \mathcal{F}^{-1}

Li et al. 2021, Wen et al. 2022

Surrogate modeling: Fourier Neural Operator + U-Net

Step 2: Linear transform on the lower Fourier modes R

Step 3: Inverse Fourier transform \mathcal{F}^{-1}

Li et al. 2021, Wen et al. 2022

Surrogate modeling: two different architectures

a)

Surrogate modeling: Physics-informed loss function

$$\mathcal{L}(y, \hat{y}) = \mathcal{L}_{MRE}(y, \hat{y}) + eta_1 \mathcal{L}_{der}(y, \hat{y}) + eta_2 \mathcal{L}_{plume}(c', \hat{c'}) + eta_3 \mathcal{L}_{BC}(\hat{y})$$

Simulated data-driven: Mean relative error on output and corresponding derivatives

$${\mathcal L}_{MRE}(y,\hat{y}) = rac{\|y-\hat{y}\|_2}{\|y\|_2} \ \ {\mathcal L}_{der}(y,\hat{y}) = rac{\|\partial y/\partial x-\partial \hat{y}/\partial x\|_2}{\|\partial y/\partial x\|_2} + rac{\|\partial y/\partial z-\partial \hat{y}/\partial z\|_2}{\|\partial y/\partial z\|_2}$$

Simulated data-driven: Derivatives on the plume boundary

$$\mathcal{L}_{plume}(c',\hat{c'}) = rac{\|\partial c'/\partial x - \partial \hat{c'}/\partial x\|_2}{\|\partial c'/\partial x\|_2} + rac{\|\partial c'/\partial z - \partial \hat{c'}/\partial z\|_2}{\|\partial c'/\partial z\|_2}$$

Physics-informed: No flow boundary condition for hydraulic head

$$\mathcal{L}_{BC}(\hat{y}) = \|\hat{q}_x|_{\partial D}\|_2 + \|\hat{q}_z|_{\partial D}\|_2 + \|\partial\hat{h}|_{\partial D}\|_2$$

Tritium concentration on test set

Physics-informed surrogate model runs 600x faster than Amanzi-ATS

Tritium concentration on test set

Physics-informed surrogate model runs 600x faster than Amanzi-ATS

Performance: multiple loss functions

$$\mathcal{L}(y, \hat{y}) = \mathcal{L}_{MRE}(y, \hat{y}) + eta_1 \mathcal{L}_{der}(y, \hat{y}) + eta_2 \mathcal{L}_{plume}(c', \hat{c'}) + eta_3 \mathcal{L}_{BC}(\hat{y})$$

Performance: multiple different architectures

With 30 epochs

Performance: multiple different architectures

With 150 epochs

Architecture for future projections

Architecture for future projections

Conclusion

- We propose two different architectures U-FNO-2D (recurrent) and U-FNO-3D.
- We design the custom loss functions including:
 - Simulated data-driven loss
 - Physics-informed loss
- U-FNO-3D has more parameters for better training and predictions
- U-FNO-2D is well-suited for predicting the future climate perturbation impacts

Future surrogate modeling with full 3D model

What is next?

Integrate in-situ long-term monitoring data and support remediation decisions

