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Atmospheric downscaling to >= 1km is critical toa
variety of land surface studies

Need E—) Challenge

* High-reso simulation (e.g., « Dynamical downscalingusing
1km) at meso-scale model such as WRF is

e facilitate the heat wave computationally expensive.

studies. * Question: how to efficiently

. _ . : N
« drive watershed modeling generate high-reso simulation-

nnnnnnnnnnnn — www.weather.gov/melbaurne

Source: NWS High Resolution ‘Low Resolution
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Gap: traditional statistical downscaling only performs
the mapping on fixed resolutions.

:-:V\:J{(ij ‘/ Statistical model / High-res output(s)
o p25_km) / (e.g., CNN, SVM, DNN) / (e.g., 1-km)

* Retraining is needed for a different high-res task
* High-reso data is needed for training

low-res high-res Dmodel

Jiang et al., JAMES, 2023
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The objective is to develop efficient super-
resolution of near-surface climate modeling.

(b) HGT - 4km

e Study area: Great Lake Region

(a) WRF simulation domain

Great Lakes Region

* Available WRF simulation
e spatial resolution: 4km
* temporal resolution: 3hr
e 2018.6~2018.8
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* Running WRF at 1km scale is
extremely computationally
expensive!
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We proposed zero-shot super-resolution that allows

—

downscaling at any resolution.

Downscaler trained on a glven res (e. g 4- km) WRF at time period T,

WRF output(s) at 4-km

Emulation/downscaling at time period T,

Low-res /
input(s) (ERA5

25-km) | \ /P

low-res

high-res

COMPASS
Train
downscaler
downscaler
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*» output(s)at | 4.km
7 downscaler /
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downscaler
Trained
» output(s)at | 1.km
downscaler
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|processed mode
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We employed Fourier Neural Operator (FNO) to
both downscale and emulate WRF simulation.

Inputs

———————————————————

'« 1000hPa ! Atmospheric N
'« 925hpg || vertical profile
'+ 850hPa || ¥ U v RH

L e e "'V W v PRES
v TT v GHT

Land surface
states

v' GLST-SKINTEMP
v SM-0

Topography

v HGT_M
v' LU_INDEX

Fourier Neural Operator
(FNO)

Fourier Fourier
layer layer

. Max.
Fourier
frequency
transform
cutoff

* FNOisresolution-invariant(Li et al., 2020)

Matrix
product with
weights

Inverse
Fourier
transform

* FNO can be used as both an emulatorand downscalingtool

Outputs

Surface heat\\
dynamics

T2
RH2
SH
PSFC

AN NN
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We employed Fourier Neural Operator (FNO) to o
both downscale and emulate WRF simulation.
Step 1: FNO emulator development using WRF simulation at 4km Great lakes Region

HGT M

Step 2: FNO emulation at 1km

Step 3: Compare FNO emulation with WRF simulation at 1km o

Start

T

—
4km WRF

Lo 1. FNO | 2. FNO emulation 1km surface heat
N development at 1km dynamics(FNO)
N~

4km WRF Y - 3. Compare FNO End

ith WRF 4’.
simulation V.Vlt .
L p simulation
FNO WPS 1km WRF _ 1km surface heat
input dynamics (WRF)
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We trained the FNO using a physics-constrained loss
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based on the Clausius—Clapeyron equation.

Loss function: L = LysE +@CC

Mean squared error:

LysE = 1 Z, Zx [Or(x) - O:VRF(X)]Z

NxNI

Physics-based loss
|
N N;
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mMKGE: the modified Kling—Gupta Efficiency

NSE: the Nash—Sutcliffe model Efficiency
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FNO emulation performance at 4km

resolution

Performance on the
pressure field (PSFC) is
the best.

Followed by T,, RH,,
and SH.

FNO performs worse in
lake/water regions.

mKGE: the modified Kling—Gupta Efficiency
NSE: the Nash—Sutcliffe model Efficiency
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The impact of land use on FNO performance

FNO performs well in most
land use, particularly the
dominant vegetated regions.

FNO performs worse on
lakes/water region.

FNO performs a lightly worse
on the urban region.

In short, FNO struggles to
learn dynamics from less
represented clusters of data.
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FNO downscaling performance at 1km
resolution.

With slight variation, the 0.5
performance are almost
. 0.0
consistent between 1km and
reso
4km. —0.5 1 B 1km
m 4km
1.0 ; ; . : |

FNO downscaling is able to 1.0
keep the performance!
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A zoom-in snapshot in Chicago area.

Temporally averaged WRF/FNO at 3pm of R3
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Static features

LU_INDEX (4-km)

-87-89

—-88
Longitude

[

-87

100 0.010 0.015 0.020

- i

l;_ s qj
E:;J.. X 20
T et 17
: 14
LU_INDEX (1-km) n

PR Y ‘L‘
_‘. 8

HGT (4-km)

HGT (1-km)

-89 —-88 -87

Longitude

Jiang et al., JAMES, 2023



A zoom-in snapshot in Chicago area.

FNO 1km emulation of T2 and
PSFC is quite consistent with WRF.
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A zoom-in snapshot in Chicago area.

Temporally averaged WRF/FNO at 3pm of R3
RH> SH

FNO 1km emulation of T2 and
PSFC is quite consistent with WRF.

However, FNO is unable to capture
the urban impact on the humidity
at both resolutions.

The performance of FNO-1km is
generally similar to that of FNO-
4km.
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Static features
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Conclusions Tl e

_A_ We used the Fourier neural operator (FNO) to perform zero-shot super-
resolution on near-surface heat-related estimates

.@ Incorporating a physics-constrained loss based on the Clausius—Clapeyron
Kia equation improves the emulation performance of the trained FNO.

® Trained on a 4-km WRF simulation, the FNO generates a 1-km emulation that
= captures fine-grained climate features induced by topography.

Despite its downside, zero-shot super-resolution can be an alternative for
atmospheric downscaling when computational budget is limited.

Jiang et al., JAMES, 2023
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