Skip to Main Content U.S. Department of Energy
Science Directorate
Page 55 of 1002

Physcial Sciences Division
Research Highlights

June 2018

Wet Aluminum Hydroxide and Oxyhydroxide Particles Release Hydrogen When Irradiated

Insights into metal's radiolytic behavior could ease final processing of nuclear waste

Diagram showing water interact with surface and microscopy image
Radiation absorbed by aluminum hydroxide and oxyhydroxide nanoparticles surrounded by a water layer causes the release of hydrogen along with aluminum reduction. Radiation-induced changes are critical for nuclear waste processing. Image courtesy of Patricia Huestis, University of Notre Dame (drawing), and Xin Zhang, Pacific Northwest National Laboratory (gibbsite, microscopy) Enlarge Image.

Cold War plutonium production activities created complex wastes. Vitrifying the waste for final storage is complicated by aluminum from nuclear fuel reprocessing. Knowing how aluminum particles behave in highly radioactive liquids is vital. Here, research focused on humid particles suggest that the particles' bulk properties do not change substantially upon radiolysis. Gamma radiolysis led to the formation of hydrogen from the adsorbed water with the oxygen atoms remaining on the surface or intercalating into the bulk.

Why It Matters: At the Hanford Site in Washington State, high-level radioactive wastes contain vast amounts of aluminum-based particles. For decades, these particles have been exposed to large doses of ionizing radiation. Engineers need to understand the radiation-induced modifications to aid particle dissolution and removal from the waste. For those attempting to remove the waste, the study's results confirm the need to consider both the unexpected chemistry and physics at the solid-water interface as well as the bulk solubility of the aluminum phases.

Summary: At the Hanford Site, the highly alkaline waste contains aluminum hydroxides and oxyhydroxides, such as gibbsite (Al(OH)3) and boehmite (AlO(OH)). These solids must be removed before vitrification. The aluminum compounds decrease the stability of the vitrified waste through the precipitation of nepheline. The aluminum is often in fine particulates that are entrained in process streams as slurries. These tiny particles can interfere with the flow of waste.

At the Interfacial Dynamics in Radioactive Environments and Materials (IDREAM) Energy Frontier Research Center, researchers are investigating the radiolytic stability of aluminum hydroxides and oxyhydroxides, where the radiolysis effects at the solid-water interface can be distinguished from radiation damage to the bulk material.

In this study, gibbsite and boehmite were irradiated to 2 MGy using gamma rays and to 175 MGy with alpha particles (separately) and then analyzed with a cadre of bulk and surface sensitive characterization techniques.

Slide summarizing research
Cleared slide summarizing research conducted at Pacific Northwest National Laboratory. Download PowerPoint slide.

In each case, comparison of X-ray defraction and Raman spectroscopy (which are sensitive to the bulk structure) for pristine and irradiated samples showed little change due to radiolysis. To further study these samples, the team used X-ray photoelectron spectroscopy (XPS) and total electron yield (TEY) X-ray absorption near edge structure spectroscopy (XANES). In these cases, evidence for surface-specific changes were revealed for samples irradiated with alpha particles and with gamma rays. Further characterization with XPS of gibbsite and boehmite indicated reduction of the surface aluminum(III) to aluminum metal as well as the formation of non-stoichiometric oxygen when irradiated with alpha particles. Aluminum K-edge XPS and TEY XANES revealed the formation of oxygen-centered defects. These results are probably due to loss of hydrogen from the hydroxyl (OH) groups and rearrangement of the remaining atoms.

The surface appears to be sensitive to radiolysis with little effect on the bulk material.


Sponsors: Interfacial Dynamics in Radioactive Environments and Materials (IDREAM), an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences

Facilities: Materials Characterization Facility of the Center for Sustainable Energy at Notre Dame; Advanced Light Source supported by the Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES); EMSL (materials synthesis), a national scientific user facility sponsored by the DOE, Office of Science, Office of Biological and Environmental Research; Notre Dame Nuclear Science Laboratory, which is supported by the National Science Foundation; Notre Dame Radiation Laboratory, which is supported by DOE, Office of Science, BES

Research Team: Patricia Huestis and Jay A. LaVerne, University of Notre Dame; Carolyn I. Pearce, X. Zhang, and Kevin M. Rosso, Pacific Northwest National Laboratory; Alpha T. N'Diaye, Advanced Light Source

Reference: P. Huestis, C.I. Pearce, X. Zhang, A.T. N'Diaye, K.M. Rosso, and J.A. LaVerne, "Radiolytic stability of gibbsite and boehmite with adsorbed water." Journal of Nuclear Materials 501, 224 (2018). [DOI: 10.1016/j.jnucmat.2018.01.043]

Page 55 of 1002

Science at PNNL

Core Research Areas

User Facilities

Centers & Institutes

Additional Information

Research Highlights Home


Print this page (?)

YouTube Facebook Flickr TwitThis LinkedIn