Self-Flammability of Gases Generated by Hanford Tank Waste and the Potential of Nitrogen Inerting to Eliminate Flammability Safety Concerns

June 2015

LA Mahoney
Self-Flammability of Gases Generated by Hanford Tank Waste and the Potential of Nitrogen Inerting to Eliminate Flammability Safety Concerns

LA Mahoney

June 2015

Test Specification: None
Work Authorization: WA-50
Test Plan: TP-WTPSP-140, Rev 0
Test Exceptions: None

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352
Completeness of Work

This report describes the results of work specified in TP-WTPSP-140 Rev 0 “Test Plan for Hydrogen Gas Release from Vessels Technical Issue Support.” All work was performed and reviewed in accordance with the quality assurance procedures applicable to the Waste Treatment Plant Support Program.

Approved:

Reid A. Peterson, Manager
WTP R&T Support Project

6/19/15 Date
Summary

Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid.

The flammability of the generated gas that is continuously released, and of any retained gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H₂), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N₂O). As a result of high concentrations of N₂O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N₂O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N₂) purge in the headspace as a flammability control, if its effects are not accounted for.

Gases produced from laboratory-tested samples of Hanford wastes from several tanks have contained enough fuel (primarily H₂) and N₂O oxidizer to be self-flammable. There is not enough evidence to determine how the N₂O:H₂ ratio and amount of self-inerting by waste-generated N₂ will vary with modest amounts of water-dilution of the tank waste or with other aspects of WTP waste processing that change the waste liquid composition.

Example calculations of flammability at 25°C indicated that a release gas fraction of about 0.3 in a well-mixed, initially N₂-inerted headspace could produce marginal self-flammability for a release gas composition of 15% N₂, 25% H₂, and 60% N₂O, a composition that is not outside the realm of possibility. Higher release gas fractions in the range of 0.5 to 0.6 would be needed to reach self-flammability at a broader range of H₂ fractions for this N₂ fraction, or to reach marginal self-flammability for a higher-N₂ release gas (i.e., 30% N₂, 21% H₂, and 49% N₂O). Given high enough in-situ pressures on the retained gas, small enough headspace volumes, and outflow of gas from the headspace during the gas release, a retained gas volume fraction of 0.3 could produce release gas fractions that would make an initially N₂-inerted well-mixed headspace self-flammable. A retained gas fraction of 0.3 has been observed in laboratory tests of retention in gas-generating simulant layers of 16 to 33 Pa.

S.1 Objective

The objective of this report is to summarize literature reports relating to the flammability of H₂ in N₂O/N₂ mixtures and the generation of H₂ and N₂O by Hanford waste, and to define conditions under which the generated gases are self-flammable. Table S-1 summarizes the work objective that applies to this task.
Table S.1. Summary of Work Objective and Results

<table>
<thead>
<tr>
<th>Work Objective</th>
<th>Objective Met?</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Analysis Objective 17: Provide technical evaluations and analyses to support Bechtel National, Inc. (BNI) Engineering Studies.</td>
<td>Yes</td>
<td>The report provides supporting information for evaluating the effectiveness of a N₂ purge for inerting WTP process headspaces in situations where the generation rate of N₂O is of the same order of magnitude as the generation rate of H₂.</td>
</tr>
</tbody>
</table>

S.2 Work Exceptions

No work exceptions are applicable to this report.

S.3 Results and Performance against Success Criteria

Table S.2 presents the success criterion for achieving the work objective.

Table S.2. The Success Criterion for the Plutonium Disposition Review Task

<table>
<thead>
<tr>
<th>Success Criterion</th>
<th>How Work Did or Did Not Meet the Success Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 17 – Support to BNI Engineering Studies: Complete requested technical evaluations and analyses, and required Pacific Northwest National Laboratory (PNNL) Quality Assurance (QA) reviews, consistent with BNI/WTP expectations, without significant QA problems, compliantly, on time, and within budget</td>
<td>This success criterion was met. The report summarizes literature and reports, providing data on (a) the flammability of H₂ in an N₂O atmosphere, (b) conditions under which N₂ inerting suppresses H₂/N₂O flammability, and (c) H₂ and N₂O generation in tests carried out on waste samples and simulants.</td>
</tr>
</tbody>
</table>

S.4 Quality Requirements

The PNNL QA Program is based upon the requirements as defined in the U.S. Department of Energy (DOE) Order 414.1 D, Quality Assurance and Part 10 of the Code of Federal Regulations (CFR) Part 830, Energy/Nuclear Safety Management, Subpart A -- Quality Assurance Requirements (a.k.a. the Quality Rule). PNNL has chosen to implement the following consensus standards in a graded approach:

- ASME NQA-1-2000, Quality Assurance Requirements for Nuclear Facility Applications, Part 1, Requirements for Quality Assurance Programs for Nuclear Facilities
- ASME NQA-1-2000, Part II, Subpart 2.7, Quality Assurance Requirements for Computer Software for Nuclear Facility Applications
The procedures necessary to implement the requirements are documented through PNNL’s “How Do I…?” (HDI), which is a system for managing the delivery of laboratory-level policies, requirements, and procedures.

The work described in this report was conducted under the current QA program document revision previously submitted to BNI: QA Manual QA-WTPSP-0002 Rev 1.1; QA Plan QA-WTPSP-0001 Rev 2.0; QA Requirements Matrix (QARM) QA-WTPSP-0003 Rev 2.0. The QA plan for the Waste Treatment Plant Support Program (WTPSP) implements the requirements of ASME NQA-1-2000, Part 1: Requirements for Quality Assurance Programs for Nuclear Facilities, presented in two parts. Part 1 describes the graded approach developed by applying NQA-1-2000, Subpart 4.2, Guidance on Graded Application of Quality Assurance (QA) for Nuclear-Related Research and Development to the requirements based on the type of work scope the WTPSP is facing. Part 2 lists all NQA-1-2000 requirements the project is implementing for the different technology levels of research and development work. Requirements are clearly listed by applicable technology level.

The WTPSP uses a graded approach for the application of QA controls, such that the level of analysis, extent of documentation, and degree of rigor of process control are applied commensurate with their significance, importance to safety, life cycle state of work, or programmatic mission. The work described in this report has been completed under the QA technology level of Developmental Work, which is the highest QA technology level. WTPSP addresses internal verification and validation activities by conducting an independent technical review of the final data report in accordance with WTPSP procedure QA-WTPSP-601, Document Preparation and Change. This review verifies that the reported results are traceable, that inferences and conclusions are soundly based, and that the reported work satisfies the test plan objectives.

S.5 R&T Test Conditions

This report summarizes literature and government-sponsored reports that describe H$_2$/N$_2$O/N$_2$ flammability and H$_2$ and N$_2$O generation from Hanford waste samples. No experimental testing was required to complete this review. Accordingly, the fields for summary of R&T Test Conditions, Table S.3, are N/A for “not applicable.”

<table>
<thead>
<tr>
<th>R&T Test Condition</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

S.6 Simulant Use

No simulants were used in this literature review.
S.7 Discrepancies and Follow-On Tests

This report only summarizes historical literature and government-sponsored reports that describe H$_2$/N$_2$O/N$_2$ flammability and H$_2$ and N$_2$O generation from Hanford waste samples. No laboratory testing was performed in pursuit of this review. Accordingly, no discrepancies were found and no follow-on tests are required.
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>BNI</td>
<td>Bechtel National, Inc.</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>HDI</td>
<td>“How Do I...?”</td>
</tr>
<tr>
<td>HEDTA</td>
<td>hydroxyethyl ethylenediamine triacetic acid</td>
</tr>
<tr>
<td>HGR</td>
<td>hydrogen generation rate</td>
</tr>
<tr>
<td>LFL</td>
<td>lower flammability limit</td>
</tr>
<tr>
<td>NQA</td>
<td>National Quality Assurance</td>
</tr>
<tr>
<td>PNNL</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>R&T</td>
<td>Research and Technology</td>
</tr>
<tr>
<td>TOC</td>
<td>total organic carbon</td>
</tr>
<tr>
<td>UFL</td>
<td>upper flammability limit</td>
</tr>
<tr>
<td>WTP</td>
<td>Hanford Tank Waste Treatment and Immobilization Plant</td>
</tr>
<tr>
<td>WTPSP</td>
<td>Waste Treatment Plant Support Program</td>
</tr>
</tbody>
</table>
Nomenclature

\(f \)
volume fraction of release gas in the headspace

\(f_{\text{open}} \)
volume fraction of release gas in the headspace if the headspace is open to outflow (no pressurization)

\(f_{\text{closed}} \)
volume fraction of release gas in the headspace if the headspace is closed to outflow (pressurization)

\([N_2]\)
volume fraction of \(\mathrm{N}_2 \) in the headspace after release

\([N_2]_R\)
volume fraction of \(\mathrm{N}_2 \) in the release gas

\(R_p \)
ratio of in-situ retained gas pressure to the headspace pressure before release

\(R_v \)
ratio of headspace volume after release to the non-gas volume of the gas-retaining layer

\(\alpha \)
retained gas volume fraction in the gas-retaining layer

\(\phi \)
\(\alpha / (1 - \alpha) \), ratio of retained gas volume to the non-gas volume of the gas-retaining layer
Contents

Summary ... v
Acronyms and Abbreviations .. ix
Nomenclature ... xi
1.0 Introduction ... 1
2.0 Flammability Characteristics ... 1
3.0 Self-Flammability of Tank Waste Gases ... 3
4.0 Effect of Processing Tank Waste ... 4
5.0 Flammability of Releases .. 6
6.0 Conclusions ... 8
7.0 References .. 8

Figures

2.1. Flammability Limits for H₂/N₂O/N₂, H₂/O₂/N₂, and H₂/Air/Non-Air-N₂ at 100 kPa
 Total Pressure and 25°C.. 2
1.0 Introduction

Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen (H\textsubscript{2}), nitrous oxide (N\textsubscript{2}O), methane (CH\textsubscript{4}) and other hydrocarbons, ammonia (NH\textsubscript{3}), and nitrogen (N\textsubscript{2}). This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid.

The combination of high N\textsubscript{2}O and H\textsubscript{2} generation rates from Hanford tank wastes is the result of the types of organics (e.g., chelating agents and breakdown products) that were used in Hanford processing. Most N\textsubscript{2}O generation derives from the reduction of nitrite ions, but requires a low threshold concentration of certain organic compounds (e.g., hydroxyethyl ethylenediamine triacetic acid [HEDTA]) to provide a reducing agent (Bryan and Pederson 1994).

The flammability of the generated gas that is continuously released, and of any retained gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily H\textsubscript{2}, CH\textsubscript{4}, and NH\textsubscript{3}—but of the oxidizer N\textsubscript{2}O. As a result of high concentrations of N\textsubscript{2}O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N\textsubscript{2}O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N\textsubscript{2}) purge in the headspace as a flammability control, if its effects are not accounted for.

The possibility of concentrations of self-flammable gas in vessel headspaces, whether well-mixed throughout the headspace or localized in plumes, potentially produces a different inerting design criterion than the one typical in commercial facilities (i.e., where fuel gases are the only release and air is the only oxidant). This report summarizes information on the potential for self-flammability in gases generated by Hanford waste. Two examples are provided to suggest the effect of N\textsubscript{2} inerting on self-flammability in WTP process headspaces. A more exhaustive determination could be carried out, but that was not the intention of this report.

2.0 Flammability Characteristics

Ross (1997) reported that, for an ignition energy of 8 J, N\textsubscript{2}O does not participate in combustion of lean mixtures of H\textsubscript{2}-air-N\textsubscript{2}O, at an H\textsubscript{2} concentration of 8%. However, this study does not exclude the possibility of H\textsubscript{2}-N\textsubscript{2}O flammability because it did not include tests under conditions where the only oxidant present was N\textsubscript{2}O. A subsequent study by Pfahl and Shepherd (1997) reviewed literature data for H\textsubscript{2} flammability in H\textsubscript{2}-N\textsubscript{2}O-N\textsubscript{2} mixtures and tested the flammability of more complex mixtures representing gases retained in Hanford tanks.

Figure 26 of Pfahl and Shepherd (1997) provides a plot based in part on H\textsubscript{2}/N\textsubscript{2}O/N\textsubscript{2} combustion tests performed by others (Posthumus [1930]; Smith and Linnett [1953]; van der Wal [1934]; Scott et al. [1957]), of the flammability limits in various H\textsubscript{2}-oxidizer-N\textsubscript{2} systems at 25°C and 1 atm pressure. That plot is reproduced here as Figure 2.1, where the axes, being expressed in kPa in a system at 101.3 kPa.
(1 atm), can also be read as mole percentages of the initial mixture, because 1 atm is equal to 100 kPa within the accuracy to which the plot can be read. The y-axis is mole percent H₂, and the x-axis mole percent N₂. Flammable conditions exist only in the roughly triangular region between the upper sloping part of the curve (the upper flammability limit [UFL]) and the lower, nearly horizontal part (the LFL). The flammability limits depend not only on composition, but on ignition energy and the turbulence (mixing) already existing at the time of ignition; these factors can lead to different limits being obtained by different experimenters.

Figure 2.1. Flammability Limits for H₂/N₂O/N₂, H₂/O₂/N₂, and H₂/Air/Non-Air-N₂ at 100 kPa Total Pressure and 25°C. Reproduced from Pfahl and Shepherd (1997).

Figure 2.1 shows that the low-ignition-energy behavior of flammability in H₂-N₂O-N₂ (Posthumus 1930) is similar to that in H₂-air-N₂ (Jones and Perrott [1927]), except that for H₂-N₂O-N₂ the LFL is slightly higher and the minimum inerting N₂ is lower. Under the conditions of the Posthumus (1930) test, the H₂ LFL in N₂O was 4.5 to 5% in the absence of N₂. The LFL increased from there to about 7% with 50% N₂ inerting (data labeled as Posthumus in Figure 2.1). As N₂ inerting was further increased, the LFL rose to reach about 12% H₂ at the minimum inerting N₂ fraction of 60%, and the LFL and UFL were equal. The UFL of H₂ in N₂O, without N₂ inerting, was between 75% (at a low ignition energy, Posthumus [1930]) and 84% (at 20 J for ignition, Smith and Linnett [1953]). The UFL measurements indicate that the minimum N₂O required for flammability was 16 to 25% with zero N₂ and 28% (for a low ignition energy) at 60% N₂.

For comparison, Pfahl et al. (2000) carried out tests on H₂-N₂O-N₂, using an ignition energy of 8 J and running a fan to provide turbulence near the ignition point. Pfahl et al. (2000) obtained a higher minimum inerting concentration than that of Posthumus (1930): the inerting concentration was 76% N₂, at which point the LFL and UFL were equal at about 7% H₂, giving a wider range of flammability than for
the Posthumus (1930) tests, similar to that of H₂-air-N₂. In the absence of N₂, the LFL was 5% and the UFL 76%, similar to the values obtained by Posthumus (1930).

A specific ratio of N₂O to H₂ in the release gas can be defined that maximizes the potential for self-flammability by maximizing the range of release gas fractions over which the headspace could be flammable. On a plot of flammability limits (e.g., Figure 2.1), any dilution of release gas with inertant N₂ falls on a line between the composition of the release gas and the composition at infinite dilution (i.e., 100% N₂). The portion of such a line that is within the flammability limits is longest when the line passes through the H₂ concentration that is flammable when N₂ is at the minimum inerting point. If this point is defined as having coordinates ([N₂], [H₂]), then the N₂O/H₂ ratio of maximum potential for self-flammability can be expressed as ((100 - [N₂]) / [H₂]) – 1, where all concentrations are in mole percent. The ratio is (40/12 – 1) = 2.3 for the Posthumus (1930) flammability data and (24/7 – 1) = 2.4 for the Pfahl et al. (2000) flammability data. The ratio is significant as a sign of release gases where the effectiveness of N₂ inerting is most affected by release gas self-flammability.

Water vapor, as well as N₂, is an inertant of H₂ combustion reaction. No information was found for the inerting effect of water vapor on H₂-N₂O flammability. In the case of H₂-air, water vapor has more effect on the UFL than on the LFL between 20 and 71°C; according to Shapiro and Moffette (1957) the LFL increases from 4.6 to 5.4%, but the UFL decreases from 70 to 40%. At a temperature of 71°C, inerting of H₂-air mixtures is complete. Because H₂-N₂O-N₂ shows flammability characteristics similar to those of H₂-air-N₂, as already discussed, and because H₂O is a combustion product, and therefore an inertant for combustion reactions, in both H₂-N₂O combustion and H₂-air combustion, water vapor may have similar inerting effects in both systems. However, data are needed to confirm this hypothesis.

Besides H₂, the other main fuel gases in Hanford waste are CH₄ and NH₃, though they are typically present in much smaller concentrations than H₂. These two gases have also had their flammability in N₂O characterized. Pfahl et al. (2000) provide measurements of the flammability of these gases in N₂O-N₂ mixtures. CH₄ had an LFL of 2.5 to 3.0% and a UFL of 43 to 50% in the absence of N₂, and a minimum inerting concentration of 70.5% N₂ (at which the LFL and UFL were both 7%). NH₃ had an LFL of 5% and UFL of 68% in the absence of N₂, and a minimum inerting concentration of 61% N₂ (at which the LFL was 11% and the UFL was 16%).

3.0 Self-Flammability of Tank Waste Gases

Section 3.6 of Mahoney et al. (2000) provided equations that approximate the behavior of the LFL and UFL of H₂, NH₃, and CH₄ in N₂O-N₂ as linear functions of the N₂ fraction, using the minimum inerting fraction of 60% N₂ for H₂-N₂O-N₂. The equations were used to produce Table 3.4 in Mahoney et al. (2000), which assessed whether there could be self-flammable gases retained in the non-convective layers of the 14 Hanford waste tanks that had been sampled for retained gas. Self-flammability was considered possible for retained gases in 4 of the 14 wastes (i.e., 241-SY-101 crust, S-102 nonconvective layer, U-103 nonconvective layer, and SX-106 nonconvective layer). Two additional wastes (i.e., AN-104 nonconvective layer and AX-101 nonconvective layer) retained gases that were near the minimum required N₂O limit and, thus, borderline self-flammable. In the fully self-flammable gases, the H₂:N₂ concentrations were 23%:36%, 33%:32%, 34%:27%, and 51%:20%; in these cases N₂O concentrations were in the range of 27 to 41%. Describing the gas compositions in another way, the
N\textsubscript{2}O:H\textsubscript{2} ratios were between 0.5 and 2, lower (more fuel-rich) than the ratios of 2.3 and 2.4 given by Posthumus (1930) and Pfahl et al. (2000), respectively, for maximum potential self-flammability.

In addition to retained gases, freshly generated gases may be self-flammable. Table 2-5 in Sherwood and Stock (2004) evaluated gases produced by five different tank wastes reacting at 90\textdegree{}C, both with and without an oxygen (O\textsubscript{2}) atmosphere in the test vessel. In three of ten cases, H\textsubscript{2}:N\textsubscript{2} concentrations were in a fuel-lean range between 11\%:30\% and 16\%:33\%, producing N\textsubscript{2}O:H\textsubscript{2} ratios higher than the ratios of 2.3 and 2.4 for maximum potential self-flammability. Conversely, the estimated generated gases for A-101, S-106, and U-103 wastes (Tables 2.8 and 2.9 of Mahoney et al. [2000]) fell into a fuel-rich self-flammable range of H\textsubscript{2} and N\textsubscript{2} concentrations. These generated-gas compositions were estimated using in-tank temperatures and dose rates, as well as correlations based on data from laboratory tests of waste samples. Because release gases can be either fuel-rich or fuel-lean compared to the condition of maximum potential self-flammability, the maximum potential composition cannot be ruled out in gases generated by tank waste.

4.0 Effect of Processing Tank Waste

The generation rates of the gases of interest will change from those in the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid.

For a limited set of wastes, the effect of temperature on generated-gas composition has been tested between (typically) 60 and 120\textdegree{}C. The fraction of N\textsubscript{2}O in generated gas may decrease or increase between 60 and 90\textdegree{}C; N\textsubscript{2} and CH\textsubscript{4} fractions usually increase along with temperature; and the H\textsubscript{2} fraction holds steady or decreases as temperature increases, as discussed by Bryan et al. (1996), King et al. (1997), King and Bryan (1997), King and Bryan (1999), and other sources.1,2,3 These data come from tests conducted at dose rates in the range of 80 to 286 R/hr, depending which waste was being tested. No obvious, definite overall trend in self-flammability is apparent. Determining the combined effect of characteristic WTP dose rates and temperatures on self-flammability for this limited set of wastes would require a more complete analysis of the detailed gas-generation information given in those references.

The tank wastes will typically be diluted before reaching the WTP vessels. Washing of the leached waste solids during processing causes further dilution. Dilution affects the self-flammability by affecting H\textsubscript{2} generation and nitrogenous gas generation.

The effect that water-dilution has upon H\textsubscript{2} generation, at a given temperature, has been thoroughly studied. The effect depends on the balance between water radiolysis, organic radiolysis, and organic thermolysis mechanisms, as discussed and modeled by Sherwood and Stock (2004). As water is added to a waste liquid, the decrease in dissolved NO\textsubscript{2} and NO\textsubscript{3} ions may lead to an increase in the H\textsubscript{2} generation rate (HGR) from water radiolysis. The direction in which the HGR is changed by water addition depends

on whether the increase in the generation per unit dose (G-value) with increased dilution is offset by the decrease in the volumetric concentrations of the radionuclides that contribute dose. The same water dilution monotonically decreases the organics-related HGR because all the relevant concentrations decrease: organic radiolysis depends linearly on dose and on total organic carbon (TOC) concentration and organic thermolysis depends linearly on dose and TOC concentration and on the 0.4 power of dissolved aluminum concentration. Hence, the cumulative effect of dilution on organics-related HGR is to multiply the undiluted organic radiolysis HGR by the square of the concentration ratio (i.e., dilute/initial), and to multiply the undiluted organic thermolysis HGR by the concentration ratio to the 2.4 power. The total effect of dilution on HGR over all three mechanisms might be a decrease or increase depending on the extent of dilution and on the dissolved reactant concentrations, dose, and temperature.

Fewer studies have analyzed the effect of water-dilution on the generation rates of N$_2$O and N$_2$. Bryan and Pederson (1994) cited studies that determined that most N$_2$O generation derives from the reduction of nitrite ions once a low threshold concentration of certain organic compounds (e.g., HEDTA) is present to provide a reducing agent. In their own tests, Bryan and Pederson (1994) found that under combined radiolytic and thermal conditions the rate of N$_2$O generation from a solids-containing SY-101 simulant (with HEDTA organic) increased as dilution with 2 M sodium hydroxide (NaOH) increased (up to 30% dilution from an initial total sodium [Na] concentration of 13.5 M). The N$_2$O:H$_2$ ratio increased from 4 to almost 7 over this range of dilution. In the same tests, the ratio of N$_2$:H$_2$ generation rates remained nearly constant. The authors attributed this result to the dissolution of NaNO$_2$ solid during dilution, such that the dissolved nitrite concentration remained constant while the organic concentration decreased with dilution. Because the HGRs were low for this particular simulant and the H$_2$ concentration in product gas was <5%, no strong statement can be made about the effect of the tested modest amount of dilution on self-flammability. However, if enough dilution (or other processing) occurred to remove the TOC, and if the processed waste liquid were exposed to dose, the result would be the generation of H$_2$ (through water radiolysis) without N$_2$O and N$_2$. In that case, self-flammability would not be an issue.

Ions other than TOC, nitrate, and nitrite also affected the relative generation rates of H$_2$, N$_2$O, and N$_2$. Thus, their dilution could also affect self-flammability. Bryan and Pederson (1994, Section 4.6) found that after about 100 hours of reaction, the thermal production of N$_2$O from SY-101 simulant (i.e., 0.3 M HEDTA, 90°C) peaked strongly at 0.5 M chloride compared to lower and higher Cl concentrations. If this pattern holds for other wastes, diluting chloride concentration from the value where N$_2$O generation is at its peak would decrease N$_2$O concentration in the release gas, which would make self-flammability less likely in a fuel-rich release gas and more likely in a fuel-lean release gas. However, diluting chloride from a starting Cl concentration that was higher than that at which N$_2$O production peaked would increase N$_2$O concentration and have opposite effects on self-flammability. Transition metal concentration in the simulant had relatively little effect on thermal H$_2$ generation; however, decreasing the transition metal concentration increased the thermal N$_2$O generation and decreased the thermal N$_2$ generation (Bryan and Pederson 1994, Section 4.7). A dilution of the transition metals could decrease N$_2$ generation, and increase the chance of self-flammability. Considering the limited data and the variability of gas generation response to dilution, the available information does not allow a conclusion as to whether a moderate dilution increases or decreases the potential for self-flammability.

The caustic leach process in the WTP raises the hydroxide concentration in the waste liquid, which is another potential cause of a change in self-flammability. The results in Bryan and Pederson (1994, Section 4.4) indicate a dependence of the N$_2$:H$_2$ and N$_2$O:H$_2$ ratios on the concentrations of hydroxide.
ions. For thermal reaction tests at 90°C with an SY-101 simulant that included 0.3 M HEDTA as the organic, the ratio of N₂:H₂ increased consistently as the hydroxide concentration increased from 1 to 6.5 M, while the ratio of N₂O:H₂ peaked at 4 M OH (see Table 4.4 of Bryan and Pederson 1994). A similar pattern of behavior was followed by SY-101 simulant containing 0.3 M ethylenediamine triacetic acid (EDTA); however, when 0.5 M citrate was used as the organic, the peak N₂O:H₂ ratio occurred at 5.3 M NaOH. The non-monotonic dependence of N₂O:H₂ on hydroxide, and the different hydroxide concentrations at which the N₂O:H₂ peaks occurred for different organic species, suggest that the relation of self-flammability to hydroxide concentration cannot be simply defined.

5.0 Flammability of Releases

Consider two examples of the effect of the release of self-flammable gases into a headspace that initially contains pure N₂. In one case, the release gas has a composition similar to that of the generated gas estimated for S-106 under in-tank conditions (Mahoney et al. 2000): 15% N₂, 40% H₂, and 45% N₂O. In the other case, the gas has a composition similar to that in several gas mixtures listed in Section 3: 30% N₂, 35% H₂, and 35% N₂O. The first case is likelier to lead to a flammable headspace because it contains less N₂ to add to the existing inertant in the headspace.

For the first gas (15% N₂), assume the flammability behavior found by Pfahl et al. (2000), where the minimum inerting concentration of N₂ was 76%. The N₂ concentration in a mixture of N₂ and release gas is

\[[N₂] = (1 - f) + f [N₂]_R \]

where \(f \) is the volume (or mole) fraction of release gas in the mixture and \([N₂]_R\) is the fraction of N₂ in the release gas. For the first gas, if the minimum inerting concentration is 76% N₂, and if the inerting effect of water vapor is not included, the fraction of release gas must equal at least \((1 – 0.76) / (1 – 0.15) = 0.28 \) for the inerting constraint to be removed. At this release gas fraction, the H₂ concentration in the mixture is \(0.28 \times 0.4 \), or 11%, which is higher than the 7% UFL of H₂ at 76% N₂. This particular gas contains enough H₂ to be too rich (if near the borderline) for self-flammability near the minimum inerting concentration. If the N₂ concentration in the mixture is to be 60%, where the potentially flammable H₂ concentration ranges from about 6% to 18% (Pfahl et al. 2000) then the fraction of release gas (calculated in the same way) must be 0.47. At this release gas fraction the H₂ concentration in the mixture is 19%, on the borderline of being too rich to be flammable. At a higher release gas fraction – such as 0.6 – this particular release gas would produce flammable mixtures.

If the release gas composition had been 25% H₂ and the same N₂ concentration of 15%, it could have produced flammable mixtures for any release gas fraction greater than 0.28. Because the compositions of retained and measured gases from tank waste have fallen on both the fuel-rich and fuel-lean sides of the line of maximum potential for self-flammability, a composition of 25% H₂ and 15% N₂ may be possible. However, a more comprehensive examination of existing gas-generation test data, and the existing correlations based on those data, would be needed to test this.

For the second gas (30% N₂), assume the flammability behavior found by Posthumus (1930), where the minimum inerting concentration of N₂ was 60% and the UFL of H₂ at that point was 12%. In this case, the fraction of release gas must equal at least \((1 – 0.60) / (1 – 0.30) = 0.57 \) for the inerting constraint.
to be removed. At this release gas fraction, the H₂ concentration in the mixture is (0.57)(0.35), or 20%, which is higher than the 12% UFL of H₂ at 60% N₂ (according to Posthumus [1930]), and is too rich to be flammable. If a 21% concentration of H₂ had been chosen for the release gas, with the same N₂ concentration in the mixture, it could have produced flammable mixtures for any release fraction greater than 0.57.

The above calculations show that realistic generated-gas compositions can produce self-flammable conditions in a well-mixed headspace, but that the release gas fraction in the headspace probably has to be greater than 0.30, and possibly greater than 0.50. A large volume of gas must be released, and it follows that a large volume of retained gas must be present before the release. This report does not include a comprehensive discussion of the generation rate of total gas (not solely H₂) and event duration that are necessary to produce high volume fractions of retained gas. Only a brief discussion of observations of the relation between waste properties and high gas retention is included.

Rassat et al. (2014) performed tests of gas retention in, and release from, layers of gas-generating bentonite-Min-u-Sil simulant slurry in vessels of 58 cm (23 in.) and 178 cm (70 in.) diameter. In these tests, the slurry layer thickness was 17% of the diameter and the thickness of the supernatant liquid (water) layer was, in most tests, approximately one-fourth of the slurry thickness. In those tests where the shear strength of the slurry was 16 to 33 Pa, the retained gas fraction at the time of release was consistently about 30%, and 90% or more of the gas inventory was released.

A large gas release causes the headspace volume to increase significantly because of the subsidence of the waste surface. The released gas expands from its hydrostatic in-situ pressure to the lower pressure of the headspace, which may be pressurized⁴ by the release if outflow is limited. The release gas fraction in the well-mixed vessel headspace after release can be calculated for a release of all retained gas at isothermal conditions on two bases, one where there is no headspace pressurization (open unrestricted outflow) and one where all gas remains in the headspace (closed to outflow). The two conditions bound the effect of headspace pressurization on the release gas fraction in the headspace.

The expressions for release gas fraction under open and closed conditions can be derived:

\[
f_{\text{open}} = \frac{\phi R_P}{R_I} \tag{5.2}
\]

\[
f_{\text{closed}} = \frac{\phi R_P/R_V}{\phi R_P/R_V + 1} \tag{5.3}
\]

where \(R_P \) is the ratio of in-situ gas pressure divided by the headspace pressure before release, \(R_I \) is the ratio of headspace volume after release to the non-gas volume of the gas-retaining layer, and \(\phi \) is equal to \(\alpha/(1-\alpha) \), \(\alpha \) being the retained gas volume fraction in the gas-retaining layer. Because the inertant is held in the headspace under closed conditions, the release gas fraction is lower in the closed headspace (other parameters being equal). If the retained gas volume fraction is 0.3, as was seen in laboratory tests, and \(R_I \) is 1 (i.e., the non-gas volume in the gas-retaining layer equals headspace volume), then even under closed conditions the total release of retained gas at an \(R_P \) of 1 (no hydrostatic head) will produce a release gas fraction of 0.3, which may be self-flammable. The hydrostatic head would increase the release gas fraction.

⁴ Note that flammability limits are a function of pressure but do not change significantly in the pressure range of 1-2 atm (Shapiro and Moffette 1957).
fraction. For comparison, a release gas fraction of 0.6 could not be produced at $R_T = 1$ unless there was an R_P of 1.4 under open conditions or an R_P of 3.5 under closed conditions. The closed-condition R_P value requires too high a hydrostatic pressure to be plausible, but the open-condition value might be possible. A determination of the values for R_T and R_P that are plausible in actual WTP vessels, including the possibility that solids settle and produce relatively small gas-retaining layers, could be carried out, as could an evaluation of the possible extent of headspace pressurization.

The preceding discussion assumed that the headspace was well-mixed. Localized plumes of release gas would increase the chances of self-flammable regions in the headspace, although these regions would be smaller volumes. In addition, there is a possibility of layers of release gas that are denser than air, self-flammable, and do not mix rapidly with the inerting N_2 in the headspace. For example, if the release gas composition was 30% N_2, 24% H_2, and 46% N_2O, the molecular weight of the mixture would be 29 g/gmol, greater than the molecular weight of N_2, and the release gas composition would be in the middle of the flammable zone if it did not mix substantially with the headspace inertant.

6.0 Conclusions

Gases produced from laboratory-tested samples of Hanford wastes from several tanks have contained enough fuel (primarily H_2) and N_2O oxidizer to be self-flammable (i.e., flammable in the absence of air). Insufficient evidence is available to determine how the N_2O:H_2 ratio and amount of self-inerting by waste-generated N_2 will vary with modest amounts of water-dilution of the tank waste or with other aspects of waste processing in the WTP that change the waste liquid composition.

Example calculations of flammability at 25°C (see Section 5.0) indicated that a release gas fraction of approximately 0.3 in a well-mixed, initially N_2-inerted headspace could produce marginal self-flammability for a release gas composition of 15% N_2, 25% H_2, and 60% N_2O, a composition that is not outside the realm of possibility. Higher release gas fractions (i.e., in the range of 0.5 to 0.6) would be needed to reach self-flammability at a broader range of H_2 fractions for this N_2 fraction, or to reach marginal self-flammability for a higher-N_2 release gas (30% N_2, 21% H_2, and 49% N_2O). Given high enough in-situ pressures on the retained gas, small enough headspace volumes, and outflow of gas from the headspace during the gas release, a retained gas volume fraction of 0.3 could produce release gas fractions that would make an initially N_2-inerted well-mixed headspace self-flammable. This retained gas fraction has been observed in laboratory tests of retention in gas-generating simulant layers of 16 to 33 Pa.

7.0 References

Posthumus K. 1930. “On explosion regions of gas mixtures, in which one or two of the gases are endothermic.” *Rec. trav. chim.* **49**: 309-347.

Rassat SD, PA Gauglitz, LA Mahoney, RP Pires, DR Rector, JA Fort, GK Boeringa, DN Tran, MR Elmore, and WC Buchmiller. 2014. *Gas Release Due to Rayleigh-Taylor Instability within Sediment Layers in Hanford Double-Shell Tanks: Results of Scaled Vessel Experiments, Modeling, and Extrapolation to Full Scale.* PNNL-23060, Rev 1, DSGREP-RPT-002, Pacific Northwest National Laboratory, Richland, WA.

Distribution*

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONSITE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DOE Office of River Protection</td>
<td>Washington River Protection Solutions</td>
</tr>
<tr>
<td>LK Holton</td>
<td>JM Grigsby</td>
</tr>
<tr>
<td>BM Mauss</td>
<td>N Kirch</td>
</tr>
<tr>
<td></td>
<td>JE Meacham</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Bechtel National Inc.</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>BT Allen</td>
<td>SA Bryan</td>
</tr>
<tr>
<td>HR Hazen</td>
<td>JR Bontha</td>
</tr>
<tr>
<td>WF Lenzke III</td>
<td>DM Camaioni</td>
</tr>
<tr>
<td>SW Schreiber</td>
<td>RC Daniel</td>
</tr>
<tr>
<td>DJ Sherwood</td>
<td>PA Gauglitz (3)</td>
</tr>
<tr>
<td>RJ Van Vleet</td>
<td>LA Mahoney</td>
</tr>
<tr>
<td>WTP PETD Docs</td>
<td>LM Peurrung</td>
</tr>
<tr>
<td></td>
<td>SD Rassat</td>
</tr>
<tr>
<td></td>
<td>PP Schonewill</td>
</tr>
<tr>
<td></td>
<td>BE Wells</td>
</tr>
<tr>
<td></td>
<td>Information Release (pdf)</td>
</tr>
<tr>
<td></td>
<td>Project File</td>
</tr>
</tbody>
</table>

All distribution will be made electronically.