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Executive Summary 
 
 

Hanford’s Waste Treatment and Immobilization Plant (WTP) project may predict the mixing 
performance of full-scale vessels based on tests that are planned to be conducted in the Large 
Scale Integrated Testing (LSIT) program using reduced-scale vessels, equipment, and facilities.  
This report discusses the statistical methods for quantifying uncertainties in 
 

A) test responses and other parameters that would be measured or calculated in the LSIT 
 

B) estimates of coefficients and predictions of mixing performance from models developed 
to relate test responses to test parameters. 

 
Current plans for the LSIT involve testing pulse jet mixer (PJM) technology in three scaled 
vessels with nominal diameters of 43 in., 8 ft, and 14 ft.  It is anticipated that LSIT testing would 
use several test responses to quantify mixing performance, including effective clearing radius 
(ECR), bottom-clearing velocity (UBC)(1), blending criteria, no solids accumulation during 
pump-out, and sampling requirements. 
 

There may be practical restrictions on the order of performing LSIT tests over the three 
scales, including: 
 

1. performing all tests for a given test vessel size (scale) before switching to a different test 
vessel size. 

 
2. performing all tests with a given simulant for a given test vessel size before switching to 

a different simulant. 
 

3. performing all tests with a given solids concentration for a given test vessel size and a 
given simulant before switching to a different solids concentration. 

 
4. performing all tests with varying nozzle-jet velocities for a given combination of test 

vessel size, simulant, and solids concentration before switching to a different 
combination. 

 
For example, restrictions 1–4 are expected to apply to ECR data and restrictions 1–3 are expected 
to apply to UBC data from LSIT.  Such restrictions on the order of performing tests complicate 
the error structure of the resulting test data.  Specifically, there are k + 1 uncertainty components 
when there are k restrictions.  Also, the restrictions cause subgroups of the test response values to 
be correlated.  The complicated error structure must be accounted for in developing the (i) LSIT 
                                                      
(1) The minimum PJM nozzle-jet velocity required to achieve bottom motion of solids. 
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experimental design and (ii) models to predict mixing performance as a function of scale and 
other LSIT test parameters. 
 

The LSIT experimental design (i.e., the test matrix, replicates, order of performing the tests) 
should be developed to support quantifying the uncertainties in A) and B) and reducing the 
uncertainties in B).  Statistical experimental design methods guided by subject-matter knowledge 
provide for (i) distributing test parameter combinations (tests) over the test parameter space to 
provide optimal support for the model forms fitted to the test data, and (ii) determining the 
amount of replication needed at each level of restriction to estimate the k + 1 uncertainty 
components. 
 

Section 3 discusses methods for quantifying the uncertainties in test responses and associated 
calculated parameters that account for the complicated data structure resulting from restrictions 
on the order of performing LSIT tests.  Error propagation methods for calculating the uncertainty 
in a parameter expressed as a known function of other uncertain parameters are also presented. 
 

Section 4 discusses the following methods for developing, and quantifying uncertainties in, 
models for mixing performance metrics expressed as functions of dimensional and/or 
dimensionless parameters. 
 

 Methods to avoid models with spurious correlation, which can result in a model 
appearing to fit experimental data better than it actually does, are presented. 

 
 The feasible generalized least squares (FGLS) methodology for fitting models to data 

with error structures resulting from restrictions on the order of performing tests is 
presented.  FGLS formulas are presented for quantifying uncertainties in model 
coefficients and the uncertainty in model predictions of mixing performance. 

 
 Methods are presented for evaluating how well a model fits the associated data and 

whether the uncertainties in model predictions are within the uncertainty of the data. 
 

Section 5 presents example applications and discussions of the methods for quantifying 
uncertainties discussed in Sections 3 and 4.  For the examples in Section 5, it is assumed that the 
k + 1 uncertainty components for a given mixing performance metric have a multiplicative 
structure, which is converted to an additive structure by taking natural logarithms (ln).  This 
yields the formulas for the uncertainties (standard deviations, SD) in the ECR and UBC test  
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responses: 
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where the Scale, Simulant, SolidsConc and NozzleVel subscripts correspond to the uncertainty 
components associated with the restrictions 1–4 (for ECR) and 1–3 (for UBC).  The Error 
subscript refers to the uncertainties within test combinations of all other test parameters.  If the 
original data structure is additive rather than multiplicative, the formulas in Equations (S.1) and 
(S.2) are the same, except that the natural logarithms of ECR and UBC would not be taken.  
Example calculations with Equations (S.1) and (S.2) are provided in Section 5.  Section 5 also 
contains an example of applying the error propagation methods from Section 3 to calculate the 
uncertainty in the estimated PJM nozzle velocity based on uncertainties of the input parameters 
in the calculation equation. 
 

Section 5 also includes discussion and examples of the methods for quantifying uncertainties 
in model coefficients and predictions for mixing performance metrics (presented in Section 4).  
An example model for UBC (developed to avoid spurious correlation, see Appendix B) used in 
Section 5 is 
 

 
 c

0 )(  
*

uc
S

c
S

Dc
WTPBC uuDcU  (S.3) 

 
where D = diameter of the scaled test vessel, S = volume fraction of solids in the vessel, 
uS = nominal settling velocity of the particles as they settle on to the floor of the vessel, *u  and 

0 = material properties of the layer of settled solids, and cWTP, cD, c , cu, and *c  are coefficients 

to be estimated by fitting the model to experimental data.  Assuming a multiplicative data 
structure for Equation (S.3) and taking the natural logarithm of both sides yields 
 

 )ln()ln()ln()ln()()ln( 0 *SuSDWTPBC ucuccDcclnU   (S.4) 

 
where all notation is as previously defined.  Assuming that the experimental design would be 
subject to restrictions 1–3 on the order of performing tests, the model term(s) in Equation (S.4) 
associated with the three uncertainty components are:  Scale [ln(D)], Simulant [ )ln( Su , )ln( *u ], 

and Solids Concentration [ )ln( S ].  Section 5.2.4 contains discussion and examples of the 

methods in Section 4.3.4 for quantifying uncertainties in model predictions of mixing 
performance. 
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In summary, LSIT testing is currently planned to be performed in three scaled test vessels, 
with the order of performing the tests expected to be subject to several restrictions.  Such 
restrictions result in a complicated uncertainty structure for the data.  The experimental design 
for LSIT must be constructed to adequately “cover” the test parameter space (in dimensional 
and/or nondimensional parameter space) so as to provide support for fitting the model forms 
hypothesized.  The experimental design must also include sufficient replication at each level of 
restriction to provide for quantifying the associated variance components.  Then, statistical 
methods can be applied to fit the physically based models to the experimental data, and to 
evaluate the data for outliers and the models for adequate fits.  Initially hypothesized model 
forms may be revised based on model evaluation methods.  When final fitted versions of 
physically based models are obtained that fit the data within its uncertainty, they can then be 
used to predict mixing performance for full-scale vessels.  Statistical methods for quantifying 
uncertainties of model predictions can be applied to attach uncertainties to predicted values of 
the mixing performance metrics. 
 

Quality Requirements 
 

The quality requirements for this report, as established in Test Plan TP-WTPSP-027(1), are 
described in this section. 
 

The Pacific Northwest National Laboratory (PNNL) Quality Assurance Program is based on 
the requirements as defined in the U.S. Department of Energy Order 414.1D, Quality Assurance 
(DOE 2011), and 10 CFR 830, Energy/Nuclear Safety Management, Subpart A – Quality 
Assurance Requirements (10 CFR 830, 2011), a.k.a., the “Quality Rule.”  PNNL has chosen to 
implement the following consensus standards in a graded approach: 
 
 American Society of Mechanical Engineers (ASME) NQA-1-2000, Quality Assurance 

Requirements for Nuclear Facility Applications, Part 1, Requirements for Quality Assurance 
Programs for Nuclear Facilities 

 
 ASME NQA-1-2000, Part II, Subpart 2.7, Quality Assurance Requirements for Computer 

Software for Nuclear Facility Applications 
 
 ASME NQA-1-2000, Part IV, Subpart 4.2, Graded Approach Application of Quality 

Assurance Requirements for Research and Development. 
 

The quality assurance plan for the Waste Treatment Plant Support Project (WTPSP) 
implements the requirements of ASME NQA-1-2000, Part 1:  Requirements for Quality 
Assurance Programs for Nuclear Facilities, presented in two parts.  Part 1 of the Quality 
                                                      
(1) Minette M.  2011.  Test Plan for PNNL Support of Large Scale Testing.  TP-WTPSP-027 Rev. 0, WTP Support 
Program at Pacific Northwest National Laboratory, Richland, Washington. 
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Assurance Manual describes the graded approach developed by applying ASME NQA-1-2000, 
Subpart 4.2, Guidance on Graded Application of Quality Assurance (QA) for Nuclear-Related 
Research and Development to the requirements based on the type of work scope the WTPSP is 
facing.  Part 2 of the QA Manual lists all of the ASME NQA-1-2000 requirements that the 
project is implementing for the different technology levels of research and development (R&D) 
work.  Requirements are clearly listed for the technology level to which they apply. 
 

The Waste Treatment Plant Support Project Quality Assurance Manual (QA-WTPSP-0002) 
describes the technology life cycle stages under the Waste Treatment Plant Support Program 
Quality Assurance Plan (QA-WTPSP-0001).  The technology life cycle includes the progression 
of technology development, commercialization, and retirement in process phases of basic and 
applied R&D, engineering and production, and operation until process completion.  The life 
cycle is characterized by flexible and informal quality assurance activities in basic research, 
which becomes more structured and formalized through the applied R&D stages: 
 
 BASIC RESEARCH – Basic research consists of research tasks that are conducted to acquire 

and disseminate new scientific knowledge.  During basic research, maximum flexibility is 
desired in order to allow the researcher the necessary latitude to conduct the research. 

 
 APPLIED RESEARCH – Applied research consists of research tasks that acquire data and 

documentation necessary to provide satisfactory reproducibility of results.  The emphasis 
during this stage of a research task is on achieving adequate documentation and controls 
necessary to be able to reproduce results. 

 
 DEVELOPMENT WORK – Development work consists of research tasks moving toward 

technology commercialization.  These tasks still require a degree of flexibility, and there is 
still a degree of uncertainty that exists in many cases.  The role of quality in development 
work is to make sure that adequate controls to support movement into commercialization 
exist. 

 
 RESEARCH AND DEVELOPMENT SUPPORT ACTIVITIES – Support activities are 

those that are conventional and secondary in nature to the advancement of knowledge or 
development of technology, but allow the primary purpose of the work to be accomplished in 
a credible manner.  An example of a support activity is controlling and maintaining 
documents and records.  The level of quality for these activities is the same as for 
development work. 

 
This work was performed at the Basic Research technology level, though many of the 
recommendations in this report are likely to require further research to establish specific 
approaches for quantifying uncertainties as the LSIT work is further planned. 
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Acronyms and Abbreviations 
 
 
APV application prediction variance 
 
ASME American Society of Mechanical Engineers 
 
ASTM American Society for Testing and Materials 
 
CFR Code of Federal Regulations 
 
DF degrees of freedom 
 
DOE U.S. Department of Energy 
 
ECR effective clearing radius 
 
FGLS feasible generalized least squares 
 
FPV fitting prediction variance 
 
GLS generalized least squares 
 
ln natural logarithm 
 
LOF lack of fit 
 
LSIT Large Scale Integrated Testing 
 
NLS nonlinear least squares 
 
OED optimal experimental design 
 
OLS ordinary least squares 
 
%RSD percent relative standard deviation 
 
PJM pulse jet mixer 
 
PNNL Pacific Northwest National Laboratory 
 
QA Quality Assurance 
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R&D research and development 
 
REML restricted maximum likelihood 
 
RSD relative standard deviation 
 
SD standard deviation 
 
TPSD total prediction standard deviation 
 
WP whole plot 
 
WTP Hanford Waste Treatment and Immobilization Plant 
 
WTPSP Waste Treatment Plant Support Project 
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Symbols 
 
 
APV application prediction variance 
 
B constant bias regardless of the kth replicate of the jth test in the ith 

performance of the complete test matrix (or a subset thereof) 
 

c0, cr, cH, cS, cθ  coefficients to be estimated by fitting an example model for BCK  to 

data 
 
cD, c , *c , cu, cWTP coefficients of example UBC model 

 
COVij, COVji covariance of the ith and jth values of a given test response 
 
D diameter of the scaled test vessel 
 
Dn nozzle diameter of a PJM tube 
 
DPI inner diameter of a PJM tube 
 
DPR diameter of a Drexelbrook probe rod 
 
dJ diameter of the PJM nozzle 
 
dS nominal diameter of the particles forming the settled solids 
 
ECR effective clearing radius 
 
ECRha,ib,jc,kd,e eth replicate measurement of ECR for the dth replicate of the kth 

nozzle velocity for the cth replicate of the jth solids concentration for 
the bth replicate of the ith simulant for the ath replicate of the hth scale 

 
)( ijyE  statistical expectation of yij 

 
)( iyE  statistical expectation of iy

 
 

  ]E[
11 nx,,xnX,,XR


  statistical expectation of a function R of input parameters 

nX,,X,X 21  evaluated at the values nx,,x,x 21  
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FPVIndividual fitting prediction variance when the model prediction is considered 
as an individual value from one test at a given set of test conditions 

 
FPVMean fitting prediction variance when the model prediction is considered 

as the mean value over a conceptually large number of tests at a 
given set of test conditions 

 
H distance from the PJM nozzle to the vessel floor 
 
hs PJM stroke length 
 
In n × n identity matrix with 1’s on the diagonal and 0’s elsewhere 

 
K constant to convert inches to meters (1/39.37 m/inch) 
 
KBC minimum kinematic momentum flow from the PJM that clears the 

settled solids (termed the “bottom clearing” condition) 
 
M number of sets of test conditions in a test matrix 
 
n number of test response values 
 
ni number of replicate measurements of a test response at the ith set of 

test conditions and during the specific data collection period 
 
NJ number of PJMs in a vessel 
 

ECR
k

NozzleVel  effect of the kth nozzle velocity on ECR
 

 
%RSD percent relative standard deviation 
 
%RSDLT long-term percent relative standard deviation 
 
%RSDST short-term percent relative standard deviation 
 
%RSDST+LT total (long-term and short-term) percent relative standard deviation 
 

ECR
ErrorRSD%   percent relative standard deviation of the distribution of 

multiplicative random errors ECR
e,kd,jc,ib,ha

  associated with 

determinations of ECR at given settings of all other test parameters
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ECR
NozzleVelRSD%   percent relative standard deviation of the distribution of 

multiplicative random errors ECR
kd,jc,ib,ha  in ECR, corresponding to the 

restriction (on the order of performing tests) associated with nozzle 
velocity

 
 

ECR
ScaleRSD%   percent relative standard deviation of the distribution of 

multiplicative random errors ECR
ha  in ECR, corresponding to the 

restriction (on the order of performing tests) associated with scale
  

ECR
SimulantRSD%   percent relative standard deviation of the distribution of 

multiplicative random errors ECR
ib,ha

  in ECR, corresponding to the 

restriction (on the order of performing tests) associated with simulant
 

 
ECR
SolidsConcRSD%   percent relative standard deviation of the distribution of 

multiplicative random errors ECR
ic,ib,ha

  in ECR, corresponding to the 

restriction (on the order of performing tests) associated with solids 
concentration 

 
ECR
TotalRSD%   percent relative standard deviation of total uncertainty in ECR, 

calculated using the root mean squared error of the percent relative 

standard deviations ECR
ScaleRSD% , ECR

SimulantRSD% , ECR
SolidsConcRSD% , 

ECR
NozzleVelRSD% , and ECR

ErrorRSD%  corresponding to the multiplicative 

random errors in ECR 
 

BCU
ErrorRSD%   percent relative standard deviation of the distribution of 

multiplicative random errors BCU

e,jc,ib,ha
 , associated with 

determinations of UBC at given settings of all other test parameters
  

BCU
ScaleRSD%   percent relative standard deviation of the distribution of 

multiplicative random errors BCU
ha  in UBC, corresponding to the 

restriction (on the order of performing tests) associated with scale
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BCU
SimulantRSD%   percent relative standard deviation of the distribution of 

multiplicative random errors BCU

ib,ha
  in UBC, corresponding to the 

restriction (on the order of performing tests) associated with simulant
 

 
BCU

SolidsConcRSD%   percent relative standard deviation of the distribution of 

multiplicative random errors BCU

ic,ib,ha
  in UBC, corresponding to the 

restriction (on the order of performing tests) associated with solids 
concentration 

 
BCU

TotalRSD%   percent relative standard deviation of total uncertainty in UBC, 

calculated using the root mean squared error of the percent relative 

standard deviations BCU
ScaleRSD% , BCU

SimulantRSD% , BCU
SolidsConcRSD% , and 

BCU
ErrorRSD%  corresponding to the multiplicative random errors in UBC 

 
Y
ErrorRSD%  percent relative standard deviation of the distribution of additive 

random errors in test response Y (e.g., ECR or UBC), associated with 
determinations of Y at given settings of all other test parameters 

 
Y
NozzleVelRSD%   percent relative standard deviation of the distribution of additive 

random errors Y
kd,jc,ib,ha  in test response Y (e.g., ECR), 

corresponding to the restriction (on the order of performing tests) 
associated with nozzle velocity

 
 

Y
ScaleRSD%   percent relative standard deviation of the distribution of additive 

random errors Y
ha  in test response Y (e.g., ECR or UBC), 

corresponding to the restriction (on the order of performing tests) 
associated with scale 

 
Y
SimulantRSD%   percent relative standard deviation of the distribution of additive 

random errors Y
ib,ha

  in test response Y (e.g., ECR or UBC), 

corresponding to the restriction (on the order of performing tests) 
associated with simulant 
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Y
SolidsConcRSD%   percent relative standard deviation of the distribution of additive 

random errors Y
ic,ib,ha

  in test response Y (e.g., ECR or UBC), 

corresponding to the restriction (on the order of performing tests) 
associated with solids concentration 

 
Y
TotalRSD%  total percent relative standard deviation that accounts for all of the 

variance components associated with the structure of the data set for 
test response Y (e.g., Y = ECR or UBC) 

 

P n × c matrix with ith row equal to pi, where pi is an indicator vector 

with a 1 in the kth position if the ith run involves the kth simulant 
(within a scale) or a 0 otherwise.  Also, n is the number of test runs 
in the test matrix and c is the number of distinct simulants. 

 

Q n × d matrix with ith row equal to qi, where qi is an indicator vector 

with a 1 in the kth position if the ith run involves the kth solids 
concentration (within a scale and simulant) or a 0 otherwise.  Also, n 
is the number of test runs in the test matrix and c is the number of 
distinct solids concentrations. 

 

R n × e matrix with ith row equal to ri, where ri is an indicator vector 

with a 1 in the kth position if the ith run involves the kth nozzle 
velocity (within a scale, simulant, and solids concentration) or a 0 
otherwise.  Also, n is the number of test runs in the test matrix and e 
is the number of distinct nozzle velocities. 

 
R output parameter that is expressed as a function of input parameters 

nX,,X,X 21 ; that is,  nX,,X,XRR 21  
 
r radius from the centerline of the PJM out to the collision of the radial 

wall jet with those from surrounding PJMs 
 
RSD(y) relative standard deviation of y 
 

2
is  sample variance of n replicate measurements yij, j = 1, 2, …, n 

 

s2 pooled sample variance to estimate 22
2

2
1

2
KYYYY ...    
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ECR
hScale  effect of the hth scale on ECR

 
 

BCU
hScale  effect of the hth scale on UBC

 
 
SD[ln(y)] standard deviation of the natural logarithm of y

 

 
SDLT long-term standard deviation 
 
SDST short-term standard deviation 
 
SDST+LT total (long-term and short-term) standard deviation 
 

ECR
ErrorSD   standard deviation of the distribution of additive random errors 

ECR
e,kd,jc,ib,ha

  associated with determinations of ECR at given settings of 

all other test parameters
  

ECR
NozzleVelSD   standard deviation of the distribution of additive random errors 

ECR
kd,jc,ib,ha  in ECR, corresponding to the restriction (on the order of 

performing tests) associated with nozzle velocity
 

 
ECR
ScaleSD   standard deviation of the distribution of additive random errors 

ECR
ha  in ECR, corresponding to the restriction (on the order of 

performing tests) associated with scale
  

ECR
SimulantSD   standard deviation of the distribution of additive random errors 

ECR
ib,ha

  in ECR, corresponding to the restriction (on the order of 

performing tests) associated with simulant
 

 
)ln( ECR

SimulantSD  standard deviation of the distribution of additive random errors 
)(ECRln

ib,ha
  in ln(ECR), corresponding to the restriction (on the order of 

performing tests) associated with simulant 
 

ECR
SolidsConcSD   standard deviation of the distribution of additive random errors 

ECR
ic,ib,ha

  in ECR, corresponding to the restriction (on the order of 

performing tests) associated with solids concentration 
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ECR
TotalSD   standard deviation of total uncertainty in ECR, calculated using the 

root mean squared error of the standard deviations ECR
ScaleSD , 

ECR
SimulantSD , ECR

SolidsConcSD , ECR
NozzleVelSD , and ECR

ErrorSD  corresponding to 

the additive random errors in ECR 
 

)ln(ECR
ErrorSD  standard deviation of the distribution of additive random errors 

)(ECRln

e,kd,jc,ib,ha
  associated with determinations of ln(ECR) at given 

settings of all other test parameters 
 

)ln(ECR
NozzleVelSD  standard deviation of the distribution of additive random errors 

)(ECRln
kd,jc,ib,ha  in ln(ECR), corresponding to the restriction (on the order 

of performing tests) associated with nozzle velocity
 

 
)ln(ECR

ScaleSD  standard deviation of the distribution of additive random errors 
)(ECRln

ha  in ln(ECR), corresponding to the restriction (on the order of 

performing tests) associated with scale
  

)ln(ECR
SolidsConcSD  standard deviation of the distribution of additive random errors 

)(ECRln

ic,ib,ha
  in ln(ECR), corresponding to the restriction (on the order of 

performing tests) associated with solids concentration 
 

)n(ECRl
TotalSD  standard deviation of total uncertainty in ln(ECR), calculated using 

the root mean squared error of the standard deviations )ECRln(
ScaleSD , 

)ECRln(
SimulantSD , )ECRln(

SolidsConcSD , )ECRln(
NozzleVelSD , and )ECRln(

ErrorSD  corresponding to 

the additive random errors in ln(ECR) 
 

BCU
ErrorSD   standard deviation of the distribution of additive random errors 

BCU

e,jc,ib,ha
  in UBC, associated with determinations of UBC at given 

settings of all other test parameters
  

BCU
ScaleSD   standard deviation of the distribution of additive random errors 

BCU
ha  in UBC, corresponding to the restriction (on the order of 

performing tests) associated with scale
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BCU
SimulantSD   standard deviation of the distribution of additive random errors 

BCU

ib,ha
  in UBC, corresponding to the restriction (on the order of 

performing tests) associated with simulant
 

 
BCU

SolidsConcSD   standard deviation of the distribution of additive random errors 

BCU

ic,ib,ha
  in UBC, corresponding to the restriction (on the order of 

performing tests) associated with solids concentration 
 

)ln( BCU
SolidsConcSD  standard deviation of the distribution of additive random errors 

)( BCUln

ic,ib,ha
  in ln(UBC), corresponding to the restriction (on the order of 

performing tests) associated with solids concentration 
 

BCU
TotalSD   standard deviation of total uncertainty in UBC, calculated using the 

root mean squared error of the standard deviations BCU
ScaleSD , 

BCU
SimulantSD , BCU

SolidsConcSD , and BCU
ErrorSD  corresponding to the additive 

random errors in UBC 
 

)ln( BCU
ErrorSD  standard deviation of the distribution of additive random errors 

)( BCUln

e,jc,ib,ha
  in ln(UBC), associated with determinations of UBC at given 

settings of all other test parameters 
 

)ln( BCU
ScaleSD  standard deviation of the distribution of additive random errors 

)( BCUln
ha  in ln(UBC), corresponding to the restriction (on the order of 

performing tests) associated with scale
  

)ln( BCU
SimulantSD  standard deviation of the distribution of additive random errors 

)( BCUln

ib,ha
  in ln(UBC), corresponding to the restriction (on the order of 

performing tests) associated with simulant 
 

)n( BCUl
TotalSD  standard deviation of total uncertainty in UBC, calculated using the 

root mean squared error of the standard deviations )BCUln(
ScaleSD , 

)BCUln(
SimulantSD , )BCUln(

SolidsConcSD , and )BCUln(
ErrorSD  corresponding to the 

additive random errors in ln(UBC) 
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)ln(Y
ErrorSD  standard deviation of the distribution of additive random errors in the 

natural logarithm of test response Y (e.g., ECR or UBC), associated 
with determinations of Y at given settings of all other test parameters 

 
)ln(

NozzleVel
YSD   standard deviation of the distribution of additive random errors in the 

natural logarithm of test response Y (e.g., ECR), corresponding to the 
restriction (on the order of performing tests) associated with nozzle 
velocity

 
 

)ln(Y
ScaleSD   standard deviation of the distribution of additive random errors in the 

natural logarithm of test response Y (e.g., ECR or UBC), 
corresponding to the restriction (on the order of performing tests) 
associated with scale 

 
)ln(Y

SimulantSD   standard deviation of the distribution of additive random errors in the 

natural logarithm of test response Y (e.g., ECR or UBC), 
corresponding to the restriction (on the order of performing tests) 
associated with simulant 

 
)ln(Y

SolidsConcSD   standard deviation of the distribution of additive random errors 
Y

ic,ib,ha
  in test response Y (e.g., ECR or UBC), corresponding to the 

restriction (on the order of performing tests) associated with solids 
concentration 

 
Y
ErrorSD  standard deviation of the distribution of additive random errors in 

test response Y (e.g., ECR), associated with determinations of Y at 
given settings of all other test parameters 

 
Y
NozzleVelSD   standard deviation of the distribution of additive random errors 

Y
kd,jc,ib,ha  in test response Y (e.g., ECR), corresponding to the 

restriction (on the order of performing tests) associated with nozzle 
velocity

 
 

Y
ScaleSD   standard deviation of the distribution of additive random errors Y

ha  

in test response Y (e.g., ECR or UBC), corresponding to the restriction 
(on the order of performing tests) associated with scale 
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Y
SimulantSD   standard deviation of the distribution of additive random errors 

Y
ib,ha

  in test response Y (e.g., ECR or UBC), corresponding to the 

restriction (on the order of performing tests) associated with simulant 
 

Y
SolidsConcSD   standard deviation of the distribution of additive random errors 

Y
ic,ib,ha

  in test response Y (e.g., ECR or UBC), corresponding to the 

restriction (on the order of performing tests) associated with solids 
concentration 

 
Y
TotalSD  total standard deviation that accounts for all of the variance 

components associated with the structure of the data set for test 
response Y (e.g., Y = ECR or UBC) 

 
ECR
iSimulant  effect of the ith simulant on ECR

 
 

BCU
iSimulant  effect of the ith simulant on UBC

 
 

ECR
j

SolidsConc
 

effect of the jth solids concentration on ECR
 

 
BCU

j
SolidsConc

 
effect of the jth solids concentration on UBC 

 
tC cycle time 
 
Td drive time of the duty cycle for a pulse 
 
tD time available for the PJM momentum to clear the settled solids 
 
tS time during which particles settle 
 
TPSDIndividual total prediction standard deviation, formed as the square root of the 

sum of FPVIndividual and APV 
 
TPSDMean total prediction standard deviation, formed as the square root of the 

sum of FPVMean and APV 
 
uS nominal settling velocity of the particles as they settle on to the floor 

of the vessel 
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*u  material property of the layer of settled solids in a vessel 

 
U PJM nozzle velocity 
 
UBC minimum PJM nozzle-jet velocity required to achieve bottom 

clearing 
 
(UBC)ha,ib,jc,e eth replicate measurement of UBC for the cth replicate of the jth solids 

concentration for the bth replicate of the ith simulant for the ath 
replicate of the hth scale 

 
V1 estimated PJM nozzle velocity 
 

)( ijyV  variance of yij 

 
)( iyV  variance of iy

 
 

)( iyV̂  estimate of the variance of iy
 

 

)Var( FGLSβ̂  variance-covariance matrix of the coefficient vector estimated by 

feasible generalized least squares 
 
V true, unknown n  n variance-covariance matrix for data from LSIT 

for a given test response 
 
VECR true, unknown n  n variance-covariance matrix for ECR data from 

LSIT assuming the data structure discussed in Section 2.3 
 

V̂  estimated n  n variance-covariance matrix for data from LSIT for a 
given test response 

 
W p  p variance-covariance matrix of the vector x, expanded in the 

form of the model 
 

ix  estimate of the long-term mean of the test response for the ith row of 

a test matrix 
 

nX,,X,X 21  input parameters that are related to a different parameter through a 

known functional relationship 
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nx,,x,x 21  specific values of nX,,X,X 21  
 
x  p  1 vector formed by expanding the model parameters in the form 

of the terms in the model 
 
x  1  p vector (the vector transpose of x) formed by expanding the 

model parameters in the form of the terms in the model 
 
X n  p matrix formed by expanding the test matrix so that the columns 

of X correspond to the p terms in the model 
 
Y test response 
 
Yi test response for the ith combination of experimental conditions 

during a specific data collection period 
 

inii y,,y,y 21  a set of n replicate measurements of Yi obtained under the ith set of 

test conditions and during the specific data collection period 
 
Z n × b matrix with ith row equal to zi, where zi is an indicator vector 

with a 1 in the kth position if the ith run belongs to the kth scale and 
zero otherwise.  Also, n is the number of test runs in the test matrix 
and b is the number of distinct scaled test vessels. 

 
yij the jth replicate measured value of a test response Yi for the ith 

combination of experimental conditions during a specific data 
collection period 

 
yijk measured test response for the kth replicate of the jth test in the ith 

performance of the complete test matrix (or a subset thereof) 
 

iy  sample mean of n replicate measurements yij, j = 1, 2, …, n 

 
y n  1 vector of test response values 
 

)(xŷ  model-predicted value of the mixing performance metric y at the 

expanded vector of model parameters x 
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Greek Symbols 
 
 
β p  1 vector of true, unknown model coefficients 
 

FGLSβ̂  p  1 vector of model coefficients estimated using feasible generalized 

least squares 
 

ECR
ib,ha

  random error in ECR for the bth replicate of the ith simulant for the ath 

replicate of the hth scale 
 

BCU

ib,ha


 
random error in UBC for the bth replicate of the ith simulant for the ath 

replicate of the hth scale 

 longer-term random error, which is constant for all tests j and replicates k 

in the ith performance of the complete test matrix (or a subset thereof), but 
varies randomly over different performances i 

 
ECR
ha  random error in ECR for the ath replicate of the hth scale 

 
BCU

ha  random error in UBC for the ath replicate of the hth scale 

 
ε n  1 vector of random experimental/testing errors with 

variance-covariance matrix V 
 
ijk random error for the kth replicate of the jth test in the ith performance of the 

complete test matrix (or a subset thereof) 
 

ECR
e,kd,jc,ib,ha

  random error for the eth replicate measurement of ECR for dth replicate of 

the kth nozzle velocity for the cth replicate of the jth solids concentration for 
the bth replicate of the ith simulant for the ath replicate of the hth scale 

 
BCU

e,jc,ib,ha


 
random error for the eth replicate measurement of UBC for the cth replicate 

of the jth solids concentration for the bth replicate of the ith simulant for the 
ath replicate of the hth scale 
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ECR
jc,ib,ha

  random error in ECR for the cth replicate of the jth solids concentration for 

the bth replicate of the ith simulant for the ath replicate of the hth scale 
 

BCU

jc,ib,ha


 
random error in UBC for the cth replicate of the jth solids concentration for 

the bth replicate of the ith simulant for the ath replicate of the hth scale 
 
µj unknown long-term mean of a test response for the jth test in a test matrix, 

which is assumed not to depend on the ith performance of a complete test 
matrix (or a subset thereof) or on the kth replicate of the jth test 

 
ECR

k,j,i,h
  unknown mean ECR for the kth nozzle velocity at the jth solids 

concentration of the ith simulant at the hth scale 
 

BCU

j,i,h


 
true mean UBC for the jth solids concentration of the ith simulant at the hth 

scale 
 

iY  true mean of the distribution of yij values for the jth replicate measured 

value of a test response Yi for the ith combination of experimental 
conditions during a specific data-collection period 

 

R  true, unknown mean of a function R of random variables 



nXXX ,,,  
21  

means of input parameters
 nX,,X,X 21 


0 solids volume fraction in vortices after entraining solids from vessel floor 

S volume fraction of solids in the vessel 
 

2
Error  variance component associated with the random errors in the test response 

for a given set of values of all other test parameters 
 

2
NozzleVel  variance component of the test response corresponding to the restriction 

(on the order of performing tests) associated with nozzle velocity 
 

2
Scale  variance component of the test response corresponding to the restriction 

(on the order of performing tests) associated with the size of the scaled test 
vessel 
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2
Simulant  variance component of the test response corresponding to the restriction 

(on the order of performing tests) associated with the simulant 
 

2
SolidsConc  variance component of the test response corresponding to the restriction 

(on the order of performing tests) associated with the solids concentration 

 
2
R̂  estimate of the variance of a function R of input parameters 

nX,,X,X 21  

 
22

2
2

1 nXXX ,,,  
 

true variances of the input parameters
 nX,,X,X 21 

 
2

iX̂  estimate of the variance for input parameter Xi 

 
2
Y  true variance of the test response Y 

 
2  
iYiY ,   true standard deviation and variance of the distribution of yij values for the 

jth replicate measured value of a test response Yi for the ith combination of 
experimental conditions during a specific data-collection period 

 
ECR

kd,jc,ib,ha  random error in ECR for the dth replicate of the kth nozzle velocity for the 

cth replicate of the jth solids concentration for the bth replicate of the ith 
simulant for the ath replicate of the hth scale 

 

iX  sensitivity coefficient for the input parameter Xi in for a function R of 

input parameters nX,,X,X 21  
 
θS dimensionless group as defined in Eq. (B.2) 
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1.1 

 

1.0 Introduction 
 
 

This report discusses the statistical methods for quantifying uncertainties in 1) test responses 
and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of 
coefficients and predictions of mixing performance from models that relate test responses to test 
parameters.  Testing at a larger scale has been committed to by Bechtel National Inc. and the 
U.S. Department of Energy (DOE) to “address uncertainties and increase confidence in the 
projected, full-scale mixing performance and operations”(1) in the Waste Treatment and 
Immobilization Plant (WTP). 
 

1.1 Background and Organization of This Document 
 

Current plans for the LSIT involve testing pulse jet mixer (PJM) technology in three scaled 
vessels, namely 43 in., 8 ft, and 14 ft.  It is envisioned that LSIT would use several metrics to 
quantify mixing performance, including the effective clearing radius (ECR), the minimum PJM 
nozzle-jet velocity required to achieve bottom motion of solids (UBC), blending criteria, no solids 
accumulation during pump-out, and sampling requirements.  In this report, the discussion 
focuses on ECR and UBC, but the methods can be applied or adapted to other metrics of mixing 
performance. 
 

In LSIT work, it will be important to quantify the uncertainties of test responses and other 
parameters of interest.  Test data could be used to develop models relating test responses (of 
mixing performance) to test parameters.  Such models would enable predicting the mixing 
performance of parameter combinations not tested in LSIT, including extrapolations to full-scale 
WTP vessels.  In such work, it is very important to reduce (to the extent possible) and quantify 
the 1) uncertainties of model coefficient estimates (which may be interpretable in physical 
models), and 2) predictions of mixing performance, including extrapolations to full scale. 
 

Section 2 discusses the important role of the error structure in experimental data when 
quantifying uncertainties in the data and in models developed from the data.  Possible error 
structures for two mixing performance test responses are presented and discussed.  Section 3 
discusses and illustrates the statistical methods that could be used to quantify uncertainties in test 
responses and other parameters associated with LSIT to assess mixing performance in the WTP.  
Section 4 discusses and illustrates the approach and methods that could be used to reduce and 
quantify uncertainties for predictions of full-scale mixing performance using models developed 
from scaled test data collected during LSIT.  Section 5 presents and discusses applications of the 

                                                      
(1) Hazen H.  September 2011.  Contract No. DE-AC27-01RV14136, Hanford Tank Waste Treatment and 
Immobilization Plant, Memorandum of agreement (MOA) 24590-QL-WA49-00001, - Directive subcontractor 
change notice No. 119 for WA39LSIT testing, CCN237865, Bechtel National Inc., Richland, Washington. 
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methods from Sections 3 and 4 to an example LSIT situation.  Section 6 summarizes the content 
of the report, while Section 7 lists the references cited in the report. 
 

1.2 Quality Requirements 
 

The quality requirements for this report were established in Test Plan TP-WTPSP-027(1).  
The test plan requirements related to this report are described below. 
 

The Pacific Northwest National Laboratory (PNNL) Quality Assurance Program is based on 
the requirements as defined in DOE Order 414.1D, Quality Assurance, and 10 CFR 830, 
Energy/Nuclear Safety Management, Subpart A - Quality Assurance Requirements (a.k.a., the 
“Quality Rule”).  PNNL has chosen to implement the following consensus standards in a graded 
approach: 
 
 American Society of Mechanical Engineers (ASME) NQA-1-2000, Quality Assurance 

Requirements for Nuclear Facility Applications, Part 1, Requirements for Quality Assurance 
Programs for Nuclear Facilities 

 
 ASME NQA-1-2000, Part II, Subpart 2.7, Quality Assurance Requirements for Computer 

Software for Nuclear Facility Applications 
 
 ASME NQA-1-2000, Part IV, Subpart 4.2, Graded Approach Application of Quality 

Assurance Requirements for Research and Development. 
 

The quality assurance plan for the Waste Treatment Plant Support Project (WTPSP) 
implements the requirements of ASME NQA-1-2000, Part 1:  Requirements for Quality 
Assurance Programs for Nuclear Facilities, presented in two parts.  Part 1 of the Quality 
Assurance (QA) Manual describes the graded approach developed by applying ASME 
NQA-1-2000, Subpart 4.2, Guidance on Graded Application of Quality Assurance for 
Nuclear-Related Research and Development to the requirements based on the type of work scope 
the WTPSP is facing.  Part 2 of the QA Manual lists all of the ASME NQA-1-2000 requirements 
that the project is implementing for the different technology levels of research and development 
(R&D) work.  Requirements are clearly listed for the technology level to which they apply. 
 

The Waste Treatment Plant Support Project Quality Assurance Manual (QA-WTPSP-0002) 
describes the technology life cycle stages under the Waste Treatment Plant Support Program 
Quality Assurance Plan (QA-WTPSP-0001).  The technology life cycle includes the progression 
of technology development, commercialization, and retirement in process phases of basic and 
applied R&D, engineering and production, and operation until process completion.  The life 

                                                      
(1) Minette M.  2011.  Test Plan for PNNL Support of Large Scale Testing.  TP-WTPSP-027, Rev 0, WTP Support 
Program at Pacific Northwest National Laboratory, Richland, Washington. 
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cycle is characterized by flexible and informal quality assurance activities in basic research, 
which becomes more structured and formalized through the applied R&D stages. 
 
 BASIC RESEARCH – Basic research consists of research tasks that are conducted to acquire 

and disseminate new scientific knowledge.  During basic research, maximum flexibility is 
desired to allow the researcher the necessary latitude to conduct the research. 

 
 APPLIED RESEARCH – Applied research consists of research tasks that acquire data and 

documentation necessary to provide satisfactory reproducibility of results.  The emphasis 
during this stage of a research task is on achieving adequate documentation and controls 
necessary to be able to reproduce results. 

 
 DEVELOPMENT WORK – Development work consists of research tasks moving toward 

technology commercialization.  These tasks still require a degree of flexibility, and there is 
still a degree of uncertainty that exists in many cases.  The role of quality in development 
work is to make sure that adequate controls to support movement into commercialization 
exist. 

 
 RESEARCH AND DEVELOPMENT SUPPORT ACTIVITIES – Support activities are 

conventional and secondary in nature to the advancement of knowledge or development of 
technology, but allow the primary purpose of the work to be accomplished in a credible 
manner.  An example of a support activity is controlling and maintaining documents and 
records.  The level of quality for these activities is the same as for development work. 

 
The work undertaken in developing the report was performed at the Basic Research 

technology level, although many of the recommendations are likely to require further research to 
establish specific approaches for quantifying uncertainties as the LSIT work is further planned. 
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2.0 The Important Role of Error Structure in Experimental 
Data when Quantifying Uncertainties in Data and Models 

Developed from Data 
 
 

Before discussing methods for quantifying uncertainties in 
 

 test responses and other parameters from LSIT 
 

 estimates of coefficients and predictions of mixing performance from models that relate 
test responses to test parameters 

 
it is important to first discuss how the error structure of experimental data impacts quantifying 
these two kinds of uncertainties. 
 

In this report, “test response” refers to a measured parameter, or a parameter calculated from 
one or more measured quantities, which represents mixing results from an LSIT test.  Other 
parameters associated with LSIT testing may also be subject to uncertainty, such as parameters 
varied during testing whose values can only be measured or calculated with uncertainty.  During 
LSIT, it is assumed there will be a test matrix (maybe more than one) that specifies the test runs 
to be performed.  Test runs are the combinations of test parameters at which scaled mixing tests 
are to be performed and test response (e.g., mixing performance) data obtained. 
 

Section 2.1 discusses the error structure that results when test runs of a test matrix are 
performed in a completely random order.  Section 2.2 discusses the error structure that results 
when the test runs of a test matrix must be performed with restrictions on the order of testing.  
Restrictions of this kind are expected in the LSIT.  The error structure when there are restrictions 
on the order of performing test matrix runs is much more complicated, and must be accounted 
for in 1) developing the test matrix, 2) quantifying the uncertainties of test responses, and 
3) modeling the data and quantifying uncertainties of the model predictions.  Sections 2.3 and 2.4 
discuss possible error structures for two mixing performance metrics and provide the equations 
for the uncertainty [standard deviation (SD) or percent relative standard deviation (%RSD)] in 
test responses based on possible restrictions on the order of performing test matrix runs in the 
LSIT. 
 

2.1 Error Structure of Test Response Data When the Test Runs are 
Performed in a Completely Randomized Order 

 
Conducting the test runs comprising a test matrix in a completely randomized order generally 

provides the simplest error structure for the resulting test response data.  Performing test runs in 
a completely randomized order protects against trend effects and the effects of uncontrolled 
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parameters being confounded with the effects of the test parameters of interest (Draper and 
Smith 1998; Montgomery et al. 2001). 
 

Consider the following two statistical models for test data, where it is assumed that the test 
responses are directly measured 
 
 ijkijijk By    (2.1) 

 
 ijkijijk By    (2.2) 

 
where yijk = measured test response for the kth replicate of the jth test in the ith 

performance of the complete test matrix (or a subset thereof) 
 µj = unknown long-term mean of a test response for the jth test in a test matrix 

(assumed not to depend on i or k) 
 B = constant bias regardless of the values of i, j, or k 
 δi = longer-term random error, which is constant for all tests j and replicates k 

in the ith performance of the complete test matrix (or a subset thereof), but 
varies randomly over different performances i 

 εijk = random error for the kth replicate of the jth test in the ith performance of the 
complete test matrix (or a subset thereof). 

 
The difference between Equations (2.1) and (2.2) is whether the errors combine additively or 
multiplicatively.  In general, additive errors are appropriate when the magnitudes of the errors do 
not depend on the magnitudes of test response values.  On the other hand, multiplicative errors 
generally depend on the magnitudes of test response values.  When values of a test response at 
different test conditions span more than a factor of 10, it is more likely that the magnitudes of 
errors are dependent on the magnitude of the test response.  In such cases, multiplicative errors 
would be more likely to be appropriate.  Performing a logarithmic transformation of both sides of 
Equation (2.2) converts the multiplicative structure to an additive structure. 
 

When the test runs comprising the test matrix are performed in a completely randomized 
order, it is often reasonable to make the assumptions in Table 2.1.  In that table, the SDLT, SDST, 
%RSDLT, and %RSDST quantities are true, unknown values that must be estimated using data.  
Because the subsequent interest in this document is for estimates of those quantities, for 
simplicity the same notation is used to represent the estimates of the true, unknown quantities.  
Finally, the topic of bias estimation, assessment, and correction is not discussed further in this 
report, since it is presumed that materials with representative and certified mixing results do not 
exist. 
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Table 2.1.  Assumptions for Test Runs Performed in Completely Randomized Order 
 

Equation(s) Assumption 

(2.1) The δi are independently and identically distributed with a normal (Gaussian) 
distribution having mean 0 and standard deviation SDLT and that the εijk are 
independently and identically distributed with a normal (Gaussian) 
distribution having mean zero and standard deviation SDST.(a)	

(2.2) The δi are independently and identically distributed with a normal (Gaussian) 
distribution having mean 1 and a percent relative standard deviation %RSDLT, 
and that the εijk are independently and identically distributed with a normal 
(Gaussian) distribution having mean 1 and percent relative standard deviation 
%RSDST.(b)	

(2.1), (2.2) In many cases the bias B may be negligible.  However, if possible, certified 
standards should be measured along with tests to provide a basis for 
estimating the bias [e.g., B in Equations (2.1) and (2.2)], determining whether 
the estimate is statistically different from zero given the uncertainty of the 
estimate, and correcting for bias if it exists. 

(a)  LT = long-term and ST = short-term. 
(b)  %RSD = percent relative standard deviation = 100 (standard deviation)/mean. 
 
 

The assumptions in Table 2.1 associated with performing test matrix runs in a completely 
randomized order provide for simple quantification of the random uncertainties in the test 
responses, as well as simple statistical data analyses.  For example, the estimated combined SD 
and combined %RSD are given by 
 

 SDST+LT = 5022 )( .
STLT SDSD   (2.3) 

 
and 
 

 %RSDST+LT = 5022 )( .
STLT RSD%RSD%   (2.4) 

 
for the cases of Equations (2.1) and (2.2), respectively. 
 

In addition to the variances of the test response values, it is important to quantify the 
covariances of the ith and jth test response values (COVij).  The variances and covariances for a 
set of test response values i = 1, 2, …, n can be summarized as a variance-covariance matrix, 
denoted V (which is of dimension n  n).  The ith diagonal element of V is the variance of the 
ith test response value, while the entry in the ith row and jth column is the covariance of the ith and 
jth test response values.  Note that a covariance matrix is always symmetric, since COVij = COVji. 
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Under the assumptions in Table 2.1, the variance-covariance matrix for the test response data 
resulting from a test matrix performed in a completely randomized order is diagonal (i.e., all 
off-diagonal entries are zero).  For Equation (2.1), the estimated variance-covariance matrix is 
denoted by 
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For Equation (2.2), the estimated variance-covariance matrix is given by 
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where ix  denotes an estimate of the long-term mean of the test response for the ith row of the test 

matrix (which contains n tests), and the other notation is as previously defined. 
 

Variance-covariance matrices and statistical methods for analyzing experimental data are 
more complicated when errors are not independent and/or identically distributed.  One more 
complicated method is discussed in Section 3, while others are discussed by Draper and Smith 
(1998), Myers and Montgomery (1995), and Montgomery et al. (2001).  The more complicated 
methods should be applied as appropriate during uncertainty and data analyses of experimental 
results from LSIT. 
 

The subscript “i” in Equations (2.1) and (2.2) assumes it is possible to perform a whole test 
matrix over one period of time, and then re-perform the test matrix (or a subset of the test runs in 
the test matrix) at one or more subsequent periods of time.  Performing a whole test matrix (or a 
subset thereof) during subsequent periods of time is what provides data for quantifying SDLT or 
%RSDLT.  However, even if a test matrix is performed only once, the error structure given by 
Equations (2.1) or (2.2) still applies.  In such cases, it is necessary to quantify the longer-term 
random uncertainty (i.e., SDLT or %RSDLT) using data or information external to the testing 
results from performing the test matrix only once (e.g., previous testing results). 
 



 

2.5 

2.2 Experiments When There are Restrictions on the Order of 
Performing Test Matrix Runs 

 
There are often cost, time, or other reasons why the test runs in a test matrix cannot be 

performed in a completely randomized order.  Restrictions on randomization (i.e., restrictions on 
the order of performing tests) in a test matrix must be accounted for as part of developing the 
experimental design, as well as in analyzing and modeling the data from testing.  The order of 
performing LSIT tests could have practical restrictions, which may include those listed in 
Table 2.2.  There may be still other, or different, restrictions on the order of performing LSIT 
tests.  For example, the PJM array in a scale vessel, the duty cycle, or other test parameters may 
also be varied with associated restrictions on the order of performing tests.  However, the 
restrictions listed in Table 2.2 are sufficient to illustrate the concepts in this report. 
 
 

Table 2.2.  Possible Practical Restrictions on the Order of Performing LSIT Tests 
 

Restriction 
Number 

Restriction on the Order of Performing Tests 

1 Performing all tests for a given test vessel size (scale) before switching to a 
different test vessel size 

2 Performing all tests with a given simulant for a given test vessel size before 
switching to a different simulant 

3 Performing all tests with a given solids concentration for a given test vessel size 
and a given simulant before switching to a different solids concentration 

4 Performing all tests with varying nozzle-jet velocities for a given combination of 
test vessel size, simulant, and solids concentration before switching to a different 
combination 

 
 

Each restriction on the order of performing tests creates an additional component of 
uncertainty (i.e., variance), and causes values of test responses within groups and subgroups of 
tests to be correlated (i.e., have nonzero covariances).  Hence, data collected from experiments 
with restrictions on the order of performing tests have a more complicated variance-covariance 
matrix than when tests can be performed in a completely randomized order. 
 

Experiments with restrictions on the order of performing tests (such as discussed previously) 
are called split-plot experiments because they were initially developed for agricultural 
experiments where plots of land were subdivided (split) with restrictions on the ways in which 
test matrix runs were conducted.  However, split-plot experiments are now widely used in many 
areas of industrial and scientific experimentation (Steel and Torrie 1960; Montgomery et al. 
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2001; Goos et al. 2006; Kowalski et al. 2007).  Instead of fields of land that are subdivided, 
split-plot experiments often involve investigating the effects of test parameters on test responses 
in iteratively subdivided periods of time corresponding to certain settings of test parameters.  In 
such applications of split-plot experiments, it is not the restrictions on the order of performing 
tests and subdivided periods of time that are directly the issue.  Rather, by not “starting over” and 
resetting values of test parameters for each test run in a test matrix, subgroups of data are 
affected systematically by random uncertainties, which causes subgroups of results to be 
correlated.  In addition, restrictions on the order of performing tests increase the number of 
variance components.  The number of variance components is one more than the number of 
restrictions (i.e., k + 1 if there are k restrictions). 
 

The following Sections 2.3 and 2.4 present the statistical models and the structures of the 
variance-covariance matrices for split-plot experiments associated with two of the test responses 
to be investigated in LSIT: 
 

 ECR:  The effective clearing radius of a pulse jet for a given nozzle velocity.  We assume 
that at least two nozzle velocities would be investigated.  The split-plot experiment to 
measure ECR for each test matrix run and nozzle velocity value involves all four of the 
restrictions on the order of performing tests listed in Table 2.2. 

 
 UBC:  The minimum nozzle velocity at which all particles are cleared from the bottom of 

the test vessel (UBC), referred to as bottom-clearing velocity.  This velocity could be 
determined experimentally for each test run by increasing nozzle velocity incrementally 
until ‘bottom clearing’ occurs.  The split-plot experiment to measure UBC for each test run 
involves only the first three of the restrictions on the order of performing tests listed in 
Table 2.2.  The nozzle-jet velocities are not counted as a restriction because the test 
response (UBC) is only a single velocity determined from the progression of nozzle 
velocities considered. 

 
Hence, because ECR has four restrictions on the order of performing tests, there are five variance 
components that affect the total variance.  Because UBC has three restrictions on the order of 
performing tests, there are four variance components that affect the total variance.  These are 
discussed in the following subsection. 
 
2.3 ECR Error Structure and Uncertainties for the Anticipated 

Restrictions on the Order of Performing LSIT Tests 
 

The statistical models for ECR corresponding to the anticipated structure of the LSIT 
experiments are given in the following equations, for the situations of additive and multiplicative 
structures of test parameter effects and errors. 
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ECR, Additive Structure 
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ECR, Multiplicative Structure 
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where ECRha,ib,jc,kd,e = eth replicate measurement of ECR for the dth replicate of the kth 

nozzle velocity for the cth replicate of the jth solids concentration for 
the bth replicate of the ith simulant for the ath replicate of the hth 
scale 

 ECR
k,j,i,h

  = unknown mean ECR for the kth nozzle velocity at the jth solids 

concentration of the ith simulant at the hth scale 

 ECR
hScale  = effect of the hth scale on ECR 

 ECR
ha  = random error in ECR for the ath replicate of the hth scale 

 ECR
iSimulant  = effect of the ith simulant on ECR 

 ECR
ib,ha

  = random error in ECR for the bth replicate of the ith simulant for the 

ath replicate of the hth scale 

 ECR
j

SolidsConc  = effect of the jth solids concentration on ECR 

 ECR
jc,ib,ha

  = random error in ECR for the cth replicate of the jth solids 

concentration for the bth replicate of the ith simulant for the ath 
replicate of the hth scale 

 ECR
k

NozzleVel  = effect of the kth nozzle velocity on ECR  

 ECR
kd,jc,ib,ha  = random error in ECR for the dth replicate of the kth nozzle velocity 

for the cth replicate of the jth solids concentration for the bth replicate 
of the ith simulant for the ath replicate of the hth scale 
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 ECR
e,kd,jc,ib,ha

  = random error for the eth replicate measurement of ECR for dth 

replicate of the kth nozzle velocity for the cth replicate of the jth 
solids concentration for the bth replicate of the ith simulant for the ath 
replicate of the hth scale. 

 

The terms ECR
hScale , ECR

iSimulant , ECR
j

SolidsConc , and ECR
k

NozzleVel  are general 

representations of the effects of those test parameters on ECR.  Each one can be replaced with 
any applicable model term or terms.  If a model is to include two-parameter interaction terms (to 
represent the effect of one parameter depending on the value of another parameter), then any 
such interaction term has as its error term the rightmost of the error terms [in Equation (2.7) or 
(2.8)] for the two parameters.  For example, if a model for ECR were to include an interaction 
term between SolidsConc and NozzleVel, then that interaction would have the error term 
associated with NozzleVel. 
 

Because the statistical models [Equations (2.7) and (2.8)] are already complicated enough, it 
was assumed that there is no possibility of a constant bias, so such a model term was not 
included in these ECR models as it was in Equations (2.1) and (2.2).  Depending on the situation, 
performing a logarithmic transformation of both sides of Equation (2.8) may convert a 
multiplicative structure to an additive structure as in Equation (2.7).  That approach is used for a 
UBC example in Section 5. 
 

For ECR data collected with the previous experimental structures, the assumptions in 
Table 2.3 are typically made to provide for statistical analyses of the experimental data.  The 

assumptions in Table 2.3 lead to the following expressions for total SD ( ECR
TotalSD ) and the total 

%RSD ( ECR
TotalRSD% ) of ECR for Equations (2.7) and (2.8), respectively: 
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As noted previously, these expressions account only for random uncertainties under the 
assumption that the data are not biased. 
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Table 2.3.  Assumptions Associated with Equations (2.7) and (2.8) 
 
Equation Assumptions 

(2.7) 

The ECR
ha , ECR

ib,ha
 , ECR

jc,ib,ha
 , and ECR

kd,jc,ib,ha 	are each independently and identically 

distributed with a normal (Gaussian) distribution having mean 0 and standard 

deviations ECR
ScaleSD , ECR

SimulantSD , ECR
SolidsConcSD , and ECR

NozzleVelSD .  The ECR
e,kd,jc,ib,ha

  are 

independently and identically distributed with a normal (Gaussian) distribution 

having mean 0 and standard deviation ECR
ErrorSD .  Further, the ECR

e,kd,jc,ib,ha
  terms are 

independent of the ECR
ha , ECR

ib,ha
 , ECR

jc,ib,ha
 , and ECR

kd,jc,ib,ha
	terms. 

(2.8) 

The ECR
ha , ECR

ib,ha
 , ECR

jc,ib,ha
 , and ECR

kd,jc,ib,ha are each independently and identically 

distributed with a normal (Gaussian) distribution having mean 1 and percent 

relative standard deviations ECR
ScaleRSD% , ECR

SimulantRSD% , ECR
SolidsConcRSD% , and 

ECR
NozzleVelRSD% .  The ECR

e,kd,jc,ib,ha
  terms are independently and identically 

distributed with a normal (Gaussian) distribution having mean 1 and percent 

relative standard deviation ECR
ErrorRSD% .  Further, the ECR

e,kd,jc,ib,ha
  terms are 

independent of the ECR
ha , ECR

ib,ha
 , ECR

jc,ib,ha
 , and ECR

kd,jc,ib,ha  terms. 

 
 

Although the random errors within each of Equations (2.7) and (2.8) are assumed to be 
independently and identically distributed, the ECR values for a test matrix have a complicated 
covariance structure because of the multiple restrictions on the order of performing tests.  The 
variance-covariance matrices corresponding to Equations (2.7) and (2.8) are given in Section A.1 
of Appendix A.  Note that the covariances in Section A.1 are all functions of the variances.  
Hence, the problem of estimating the variance-covariance matrix for ECR data reduces to the 
problem of estimating the variance components in Equations (2.9) or (2.10).  The methods for 
estimating variance components using data from split-plot experiments are discussed in 
Section 2.2 and subsequently in Section 3.1.3. 
 

2.4 UBC Error Structure and Uncertainties for the Anticipated 
Restrictions on the Order of Performing LSIT Tests 

 
The statistical models for UBC corresponding to the anticipated structure of the LSIT 

experiments are given in the following equations, for the situations of additive and multiplicative 
structures of test parameter effects and errors. 
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UBC, Additive Structure 
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UBC, Multiplicative Structure 
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where (UBC)ha,ib,jc,e = eth replicate measurement of UBC for the cth replicate of the jth solids 

concentration for the bth replicate of the ith simulant for the ath 
replicate of the hth scale 

 BCU

j,i,h
  = true mean UBC for the jth solids concentration of the ith simulant at 

the hth scale 

 BCU
hScale  = effect of the hth scale on UBC 

 BCU
ha  = random error in UBC for the ath replicate of the hth scale 

 BCU
iSimulant  = effect of the ith simulant on UBC 

 BCU

ib,ha
  = random error in UBC for the bth replicate of the ith simulant for the 

ath replicate of the hth scale 

 BCU

j
SolidsConc  = effect of the jth solids concentration on UBC 

 BCU

jc,ib,ha
  = random error in UBC for the cth replicate of the jth solids 

concentration for the bth replicate of the ith simulant for the ath 
replicate of the hth scale 

 BCU

e,jc,ib,ha
  = random error for the eth replicate measurement of UBC for the cth 

replicate of the jth solids concentration for the bth replicate of the ith 
simulant for the ath replicate of the hth scale. 

 

The terms BCU
hScale , BCU

iSimulant , and BCU

j
SolidsConc

	
are general representations of the 

effects of those test parameters on UBC.  Each one can be replaced with any applicable model 
term or terms.  If a model is to include two-parameter interaction terms (to represent the effect of 
one parameter depending on the value of another parameter), then any such interaction term has 
as its error term the rightmost of the error terms [in Equation (2.11) or (2.12)] for the two 
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parameters.  For example, if a model for UBC were to include an interaction term between 
Simulant and SolidsConc, that interaction would have the error term associated with SolidsConc. 
 

Because Equations (2.11) and (2.12) are already complicated enough, it was assumed that 
there is no possibility of a constant bias, so such a model term was not included in these UBC 
models as it was in Equations (2.1) and (2.2).  Depending on the situation, performing a 
logarithmic transformation of both sides of Equation (2.12) may convert a multiplicative 
structure to an additive structure as in Equation (2.11).  That approach is used for an UBC 
example in Section 5. 
 

For UBC data collected with the previous experimental structures, the assumptions in 
Table 2.4 are typically made to provide for statistical analyses of the experimental data. 
 

Table 2.4.  Assumptions Associated with Equations (2.11) and (2.12) 
 
Equation Assumption 

(2.11) 

The BCU
ha , BCU

ib,ha
 , and BCU

jc,ib,ha
  terms are each independently and identically 

distributed with a normal (Gaussian) distribution having mean 0 and standard 

deviations BCU
ScaleSD , BCU

SimulantSD , and BCU
SolidsConcSD .  The BCU

e,jc,ib,ha
  terms are 

independently and identically distributed with a normal (Gaussian) distribution 

having mean 0 and standard deviation BCU
ErrorSD .  Further, the BCU

e,jc,ib,ha
  terms are 

independent of the BCU
ha , BCU

ib,ha
 , and BCU

jc,ib,ha
 . 

(2.12) 

The BCU
ha , BCU

ib,ha
 , and BCU

jc,ib,ha


	
terms are each independently and identically 

distributed with a normal (Gaussian) distribution having mean 1 and percent 

relative standard deviations BCU
ScaleRSD% , BCU

SimulantRSD% , and BCU
SolidsConcRSD% .  The 

BCU

e,jc,ib,ha
  terms are independently and identically distributed with a normal 

(Gaussian) distribution having mean 1 and percent relative standard deviation 
BCU

ErrorRSD% .  Further, the BCU

e,jc,ib,ha
  terms are independent of the BCU

ha , BCU

ib,ha
 , 

and BCU

jc,ib,ha
  terms. 

 
 

The assumptions in Table 2.4 lead to the following expressions for the total SD ( BCU
TotalSD ) and the 

total %RSD ( BCU
TotalRSD% ) of UBC for Equations (2.11) and (2.12), respectively. 
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Equations (2.13) and (2.14) for UBC are similar to Equations (2.9) and (2.10) for ECR, except that 
the former do not include the SD or %RSD associated with nozzle velocity because of the way 
UBC is determined.  As noted previously, these expressions account only for random uncertainties 
under the assumption that the data are not biased. 
 

Although the random errors within each of Equations (2.11) and (2.12) are assumed to be 
independently and identically distributed, the UBC values for a test matrix have a complicated 
covariance structure because of the multiple restrictions on the order of performing tests.  The 
variance-covariance matrices corresponding to Equations (2.11) and (2.12) are given in 
Section A.2 of Appendix A.  Note that the covariances in Section A.2 are all functions of the 
variances.  Hence, the problem of estimating the variance-covariance matrix for UBC data reduces 
to the problem of estimating the variance components in Equations (2.13) or (2.14).  The 
methods for estimating variance components using data from split-plot experiments are 
discussed in Section 3.2.	
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3.0 Methods for Quantifying Uncertainties of LSIT Test 
Responses and Other Parameters 

 
 

This section describes and illustrates the methods that could be used to quantify the 
uncertainties in test responses and other parameters resulting from the LSIT.  For test responses 
that are directly measured, uncertainties could be quantified using appropriate statistical methods 
that consider the error structure of the test data resulting from the number, nature, and order of 
tests in the experimental design (test matrix) and the testing/measurement method(s) and the 
contributing uncertainties.  For test responses or other parameters associated with LSIT testing 
that are obtained by calculation rather than direct measurement, the methods for quantifying 
uncertainties can account for the specific form of the equation used to perform the calculations, 
as well as the uncertainties of parameters appearing in the equation. 
 

3.1 Methods for Estimating Uncertainties in Test Responses 
 

This section discusses methods for estimating uncertainties in test responses from 
experiments performed during LSIT.  Section 3.1.1 introduces terminology and some key 
references for the methods.  Section 3.1.2 discusses the role of the experimental design (i.e., the 
test matrix and the order in which the tests are performed).  Section 3.1.3 discusses the methods 
for estimating the uncertainties of LSIT test responses. 
 
3.1.1 Terminology and References for Methods to Estimate Uncertainties in 

Test Responses 
 

ASME PTC 19.1-2005, Test Uncertainty, (ASME 2006) discusses many useful methods for 
quantifying test uncertainties that could be applied to test responses and parameters associated 
with LSIT.  For example, it discusses methods for 1) quantifying the standard uncertainty of 
measured test responses, and 2) error propagation methods for quantifying the standard 
uncertainty in a parameter of interest that is calculated using a specified function of one or more 
other parameters.  However, uncertainties resulting from restrictions on the order of performing 
tests in a test matrix are not directly addressed by ASME (2006), although such restrictions do 
result in systematic error as defined by ASME (2006).  Because ASME does not directly address 
quantifying standard uncertainties when there are restrictions on the order of performing tests in 
a test matrix, statistical methods from other references (e.g., Montgomery et al. 2001; Goos et al. 
2006; Kowalski et al. 2007) are likely to be needed. 
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A more complete set of terminology than used in ASME (2006) is used in this report to refer 
to uncertainties of LSIT results.  One reason is the restrictions on the order of performing LSIT 
tests, as discussed in Section 2.2.  Second, in ASME (2006) all uncertainties are categorized as 
resulting from either 
 

 Random Error:  The portion of total error that varies randomly in repeated measurements 
of the true value throughout a test process. 

 
 Systematic Error:  The portion of total error that remains constant in repeated 

measurements of the true value throughout a test process. 
 

While the definitions of these terms are typical, ASME (2006) departs from standard 
statistical practice by using SDs to quantify uncertainties resulting from systematic errors as well 
as random errors.  That practice is appropriate if the magnitude of an error is constant throughout 
a test process, but the magnitude varies randomly over different applications of the test process.  
In such cases, what ASME (2006) refers to as a systematic error is actually just a random error 
that changes systematically over a longer period of time.  Because the term “systematic error” is 
often equated to the term “bias” in the measurement uncertainty literature (e.g., ISO 1993; 
Ellison and Williams 2012; ASTM 2007; ASTM 2010), “systematic error” is best reserved for 
situations when the magnitude of the difference (or relative difference) in a test result from the 
true value remains the same over different applications of a test process.  Statistical methods for 
estimating bias, quantifying the uncertainty in the estimate of bias, and bias-correcting data 
appear in the literature (Bowen and Bennett 1988; ASTM 2007) and can be applied in situations 
where 1) standards with certified values of test responses and uncertainties of the certified values 
have been developed, and 2) the standards can be included as a part of testing.  However, there 
are no standard simulants with certified response values for various mixing test conditions that 
can be included in the LSIT.  Hence, it probably will not be possible to quantify and correct for 
bias in LSIT test results. 
 

Because the LSIT is expected to have the error structure discussed in Section 2.2, the 
variance components discussed in Section 2.3 (for ECR) and Section 2.4 (for UBC) are referred to 
in this report as having resulted from random errors associated with different restrictions on the 
order of performing tests.  Hence, the “systematic error” terminology of ASME (2006) is not 
used, although in fact the sources of error associated with the restrictions on the order of 
performing tests are “systematic errors” which are applicable to (and vary randomly over) 
different subsets of the data.  The calculations of the total uncertainty in this report do account 
for several categories of systematic error and one category of random error in the sense of ASME 
(2006).  However, ultimately all of the categories of error are random errors with different 
periods of time over which they are constant or vary. 
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3.1.2 Experimental Design and Replicates 
 

Statistical experimental design methods should be used to select the test matrix for LSIT to 
support the planned data analyses and modeling of data.  The number of tests, distribution of test 
combinations over the test-parameter space, and order of performing the tests must be addressed 
in specifying the experimental design.  Statistical experimental design methods enable reducing 
(to the extent possible given the test budget and limitations) the uncertainties of model 
coefficients and predictions obtained by fitting the model to test data.  See Section 4.2 for further 
discussion of this topic. 
 

A sufficient number of tests should be replicated to provide a basis for quantifying the testing 
and measurement uncertainties that affect the test responses.  In an experiment with restrictions 
on the order of performing tests, there is a different uncertainty (variance) component associated 
with each restriction.  Replicates at the level of each restriction provide for estimating the 
uncertainty component associated with that restriction.  For example, to estimate the uncertainty 
component associated with the effect of test vessel size, replicate tests are needed for each vessel 
size.  More specifically, after the full set of tests with all vessel sizes are completed, some tests at 
some vessel sizes must be replicated.  Similarly, for a given vessel size, after the full set of tests 
with all simulants is completed, some tests with some simulants must be replicated.  The same is 
true for different 1) solids concentrations of a given simulant with a given test vessel size, and 
2) nozzle velocities for a given solids concentration of a given simulant with a given vessel size. 
 

There has been some discussion of ‘replicates’ and ‘duplicates’ in other documents for 
planning LSIT testing.  However, those concepts and terms are insufficient for the structure of 
data that will occur if there are restrictions on the order of performing tests (see Sections 2.2, 2.3, 
and 2.4).  Hence, the term “replicate” is used in this report in a more general sense to refer to 
tests that must be performed more than once at each level of restriction, with the level of 
restriction determining the sources of uncertainty included in replicates at that level. 
	
3.1.3 Methods for Estimating Variance Components when There are 

Restrictions on the Order of Performing Tests in an Experiment 
 

This section discusses the method for estimating the variance components associated with the 
restrictions on the order of performing test matrix runs, as discussed in Sections 2.2 to 2.4.  It is 
assumed that data are available from an experimental design with appropriate replication at each 
level of restriction (see Section 3.1.2 and additional discussion in Section 4.2.4). 
 

Restricted maximum likelihood (REML) is the standard method used to estimate variance 
components when replicate data are available from each level of restriction in a split-plot data 
structure.  REML works with balanced and unbalanced data structures, as well as data structures 
resulting from restrictions on the order of performing tests.  The REML methodology ensures 
that the variance component estimates are non-negative.  The REML methodology is discussed 
by West et al. (2006, Section 2.4.2) and is available in full-featured statistical software packages. 
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3.1.4 Averaging Over Replicate Measurements to Effectively Reduce 
Uncertainty 

 
Consider cases where replicate measurements are available at the “lowest” level of the data 

structure, that is, associated with the ε error term in Equations (2.7), (2.8), (2.11), and (2.12).  In 
such cases, the replicate measurements can be averaged to obtain an estimate of the quantity of 
interest.  This averaging offers the benefit of effectively reducing the uncertainty in the estimated 
quantity of interest.  For such cases, the averaging must be conducted using replicate 
measurements obtained for a particular combination of experimental conditions during a specific 
data-collection period (the “lowest” level of the data structure).  The following discussion 
presents the relevant formulas. 
 

Let yij represent the jth replicate measured value of a test response Yi for the ith combination of 
experimental conditions during a specific data-collection period.  Also, let 

iY  and 
iY  denote 

the true mean and true SD of the distribution of yij values for the ith combination of experimental 
conditions and during the specified data-collection period.  If a single measured value yij is used 
to estimate 

iY , and yij is assumed to be a randomly selected measurement of Yi, then the 

expectation and variance of  yij are 
 

 iYijyE )(   and  2)(
iYijyV  . (3.1) 

 
Suppose instead that replicate measurements of Yi are available to estimate 

iY .  Let 

inii y,,y,y 21  denote a set of n replicate measurements of Yi obtained under the ith set of test 

conditions and during the specific data-collection period.  Further, assume these values represent 
a random sample of Yi values.  Then the sample mean of the n replicate measurements, 
calculated as 
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has the properties 
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Thus, iy  is an unbiased estimator of 
iY  and has reduced uncertainty [i.e., the variance in 

Equation (3.3)] compared to that of a single measured value of Yi [i.e., the variance in 
Equation (3.1)].  The variance is reduced by a divisor of n, while the SD is reduced by a divisor 

of n . 
 

Just as iy  was selected as an estimator for 
iY , an estimator for 2

iY  must also be selected.  

Regardless of whether the experimental runs were conducted using 1) a completely randomized 
structure (as discussed in Section 2.1), or 2) a more complicated data structure involving 
restrictions on the order of performing tests (as discussed in Sections 2.2 to 2.4), the sample 
variance 
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is an appropriate estimator for 2
iY .  Then, if 222
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can be used as an estimator for 2
Y .  In this case, the estimated variance of iy  is 
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and the estimated SD would be the square root of the above. 
 

Note that Equation (3.5) assumes there are exactly n replicate measurements yij for every 
i = 1, 2, … , M.  A more complicated formula for the pooled sample variance applies when there 
are different numbers (ni) of replicate measurements for at least some of i = 1, 2, … , M: 
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However, averaging over different numbers of replicate measurements would require that 
subsequent data analyses be more complicated, because the sample means ( iy ) for the different 

test conditions would have different estimated variances 
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rather than the same estimated variance ( n/s2 ) as in Equation (3.6). 
 

If the assumption 222
2

2
1 YMYYY ...    for all M sets of test conditions in the test 

matrix is not appropriate, then the pooled sample variance formulas [Equations (3.5) and (3.7)] 

are not appropriate.  In that situation, the individual sample variance estimates 2
is  in 

Equation (3.4) would need to be used, so that 
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depending on whether the number of replicate measurements yij of Yi is the same (n) or different 
(ni) for i = 1, 2, … , M. 
 

It is important to note that the discussion in this subsection applies only to the last error term 
and its variance component (or SD) when there are multiple variance components because of 
restrictions on the order of performing tests, as discussed in Sections 2.2 to 2.4.  The variance 
components “earlier” in the structure would still be estimated using the methods discussed in 
Section 3.1.4, using the averages of replicate measurements at the “lowest” level of the structure. 
 

Finally, note that the reduction in uncertainty associated with an estimate obtained by 
averaging over replicate measurements only applies to the random error components; averaging 
does not reduce bias or systematic error. 
 
3.1.5 Methods for Estimating Uncertainties in Test Response Values 
 

Ultimately, the goal is to estimate the uncertainties in test response values obtained from 
conducting the experimental test runs.  These uncertainties must be the total uncertainties, 
accounting for all of the variance components associated with the structure of the data set (see 

Sections 2.2 to 2.4).  The formulas for the total SD ( Y
TotalSD ) and the total %RSD ( Y

TotalRSD% ) 

depend on whether the model and error structure is multiplicative or additive for the test 
response Y (e.g., ECR or UBC).  These formulas are given in Section 2.3 for the ECR performance 
metric and in Section 2.4 for the UBC performance metric.  Specifically, the formula for 
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Y
TotalSD when the model and error structure are additive is given by Equation (2.9) for ECR and 

by Equation (2.13) for UBC.  The formula for Y
TotalRSD% when the model and error structure are 

multiplicative is given by Equation (2.10) for ECR and by Equation (2.14) for UBC. 
 

The formulas referred to in the previous paragraph are for the true, unknown values of 
Y
TotalSD  and Y

TotalRSD% .  Hence, it is necessary to substitute estimates of the variance 

components (in the form of SD or %RSD) into the right-hand sides of those equations.  
However, as noted in Section 2, this report uses the same notation for the true, unknown values 
of SD and %RSD for convenience.  Hence the equations for the estimated SD or %RSD are the 
same, and are listed here again for convenience. 
 
ECR, Additive Structure 
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ECR, Multiplicative Structure 
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UBC, Additive Structure 
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UBC, Multiplicative Structure 
 

 BCU
Total%RSD 	=	 502222 ]))()()[( .BCU

Error
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In the above equations ECR
TotalSD  and BCU

TotalSD  denote the estimated total SDs, while ECR
Total%RSD  and 

BCU
Total%RSD  denote the estimated total %RSDs, for ECR and UBC, as indicated in the superscripts.  

The Y
ScaleSD , 

Y
SimulantSD , Y

SolidsConcSD , and Y
ErrorSD  quantities (with Y either ECR or UBC) denote 

the estimated SDs corresponding to the sources of uncertainty in the ECR or UBC additive data 
structure.  Those estimates are obtained using the methodology discussed in Section 3.1.3 (and 

Section 3.1.4 if applicable).  The Y
ScaleRSD% , 

Y
SimulantRSD% , Y

SolidsConcRSD% , and Y
ErrorRSD%  

(with Y = either ECR or UBC) denote the estimated %RSDs corresponding to the sources of 
uncertainty in the Y = ECR or UBC multiplicative data structure.  The estimated %RSD values are 
calculated in general as 
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Mean

SD
%RSD

)100(
   (3.14) 

 
where SD = one of the estimated SDs listed above, and Mean = estimated mean of ECR or UBC 
over the whole data set.	
	
3.2 Quantifying the Uncertainty in a Parameter that is a Function of 

Uncertain Parameters Using Error Propagation Methods 
 

In some cases, one parameter (the output parameter) may be expressed as a known function 
of other parameters (the input parameters), where the input parameters are subject to uncertainty.  
The methodology referred to as error propagation can be applied to propagate the uncertainties of 
the input parameters through the function to approximate the uncertainty in the output parameter.  
The following describes first-order error propagation methods. 
 

Let R denote the output parameter that is expressed as a function of the input parameters 

nX,,X,X 21 .  That is,  nX,,X,XRR 21 .  Assume the input parameters are subject to 

random uncertainty, and hence are random variables in statistical terminology. 
 

Assume that nX,,X,X 21  have means 
nXXX ,,,  

21
 and variances 22

2
2

1 nXXX ,,,   , 

respectively.  Now, consider expanding R using a Taylor series in a neighborhood of the point 
 nx,,x,x 21  where it is assumed that higher-order terms in the expansion are negligible 

compared to the first-order terms.  Then, if the random variables nX,,X,X 21  are all 

statistically independent, the true, unknown mean of R is 
 

 
 

nXXXR ,,,R  
21

  (3.15) 

 
and the expected value of R evaluated at the point  nx,,x,x 21  is 

 

    nnx,,x,xn x,,x,xRX,,X,XR 
 212121 ]E[   . (3.16) 

 
Then, the variance of R when nn xX,,xX,xX        2211   can be approximated using 

first-order error propagation as 
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where 
nx,,x,xi

iX X

R

21



 is often referred to as the sensitivity coefficient for Xi (ASME 2006).  

Because the random variables nX,,X,X 21  are considered statistically independent, no 

covariance terms appear in Equation (3.17).  Other error propagation formulas are available that 
make use of higher-order terms from the Taylor-series expansion, or that do not assume 
independence among the random variables involved in the function of interest (Colman and 
Steele 1999; Hahn and Shapiro 1967).  However, Equation (3.17) is commonly used and is 
considered adequate for the purposes of many applications.  Note that Equation (3.17) only 
accounts for random uncertainty in R due to the random variables nX,,X,X 21 ; it does not 

account for bias. 
 

An example illustrating the application of this methodology is discussed in Section 5.1.2. 
 

3.3 Combined and Expanded Uncertainties 
 

A fundamental aspect of the uncertainty analyses outlined in ASME (2006) is to determine 
what is called the combined standard uncertainty associated with some quantity of interest.  This 
combined uncertainty accounts for uncertainties (quantified as SDs or %RSDs) from all 
applicable error sources.  Combined standard uncertainties for ECR are given by 
Equations (3.10) and (3.11) in Section 3.1.5, while combined standard uncertainties for UBC are 
given by Equations (3.12) and (3.13) in Section 3.1.5. 
 

An additional step that may be included in uncertainty analyses is to determine an expanded 
uncertainty associated with a particular quantity of interest.  The expanded uncertainty includes 
an additional multiplying factor applied to the combined standard uncertainty.  The multiplying 
factor is chosen to yield a desired confidence level, and generally depends on the structure of the 
data and replicates used to estimate the combined standard uncertainty.  The expanded 
uncertainty hence establishes a confidence interval for estimating the quantity of interest. 
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4.0 Methods for Reducing and Quantifying the Uncertainties 
of Full-Scale Mixing Performance Using Models 

Developed from LSIT Data 
 
 

This section discusses the methods for reducing and quantifying the uncertainties in model 
predictions of mixing performance for full-scale WTP vessels. 
 

4.1 General Plans to Quantify Performance and Performance 
Uncertainty of WTP Mixing Systems 

 
A general plan for quantifying the performance of the mixing systems in the WTP vessels is 

to 
 

1. Select the mixing systems that have the least performance margin. 
 

2. Conduct mixing performance tests of those systems in three successively larger 
geometrically scaled test vessels. 

 
3. Develop mixing performance models and fit any adjustable coefficients to the 

experimental data. 
 

4. Extrapolate the models for mixing performance to the full-scale systems.  Mixing 
tests are planned to be conducted using vessels with diameters of 43 in., 8 ft, and 
14 ft(1) having Newtonian designs. 

 
There are two approaches that could be used to implement this general plan. 
 

 Approach 1:  Steps 2), 3), and 4) could be performed separately for each of the WTP 
vessels with lower performance margins.  Separate sets of tests, mixing performance 
models, and extrapolations to full-scale mixing performance would be performed for each 
WTP vessel identified. 

 
 Approach 2:  Steps 2), 3), and 4) would be performed once with tests conducted over 

ranges of parameters corresponding to all the WTP vessels with lower performance 
margins. 

 

                                                      
(1) The technical basis for vessel sizing and array choices are provided in R. Hanson and J. Meehan, April 2012, 
Vessel Configuration for Large Scale Integrated Testing, 24590-WTP-RPT-ENG-12-017, Rev. 0, Bechtel National, 
Inc., Richland, Washington. 
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For each WTP vessel, Approach 1 would involve fewer tests in the test matrix and simpler 
models for mixing performance because some parameters would be constant for each WTP 
vessel.  However, the total number of tests with Approach 1 could be substantively larger than 
with Approach 2, especially if there are more than a few WTP vessels of interest.  In this case, 
the other advantage to Approach 2 is that the mixing performance models obtained under that 
approach would be applicable over the whole region of test parameters investigated in testing.  
Thus, the models could be used to predict mixing performance (and the uncertainties of predicted 
mixing performance) over combinations of test parameters not specifically tested.  Approach 1 
may not support that capability, or may support it to a lesser extent.  The choice of an approach 
for testing in LSIT will be made in the future.  Regardless of the approach chosen, the methods 
for reducing and quantifying uncertainties of extrapolated mixing performance discussed in this 
section are applicable. 
 

A general plan to reduce and quantify the uncertainty in performance of WTP mixing 
systems would be to 1) select model forms for mixing performance metrics (e.g., ECR and 
UBC)(1) that would defensibly support extrapolation to full scale and represent the experimental 
data within their uncertainties, and 2) develop an experimental design for testing at the three 
scales that would minimize (to the extent possible) the uncertainties and provide for quantifying 
those uncertainties.  Here, “uncertainties” refers to uncertainties in the 1) estimates of model 
coefficients, and 2) predictions of mixing performance metrics (e.g., ECR and UBC) made with 
the models.  The term “experimental design” refers to the number of test runs, the distribution of 
test combinations over the feasible space of test conditions, the order of performing the tests, any 
other restrictions on the tests, and appropriate replication of tests.  Replicate tests provide for 
quantifying the uncertainties in test results (see Section 3.1.2) and for statistically assessing 
whether the models for mixing performance metrics (e.g., ECR and UBC) adequately fit the 
experimental data. 
 

4.2 Experimental Design for Large Scale Integrated Testing 
 

The experimental design (i.e., the test matrix and specifics of testing) for the LSIT plays an 
important role in 1) developing models for quantifying the mixing performance in full-scale 
WTP vessels, and 2) reducing and quantifying uncertainties in model coefficients (which may be 
interpretable in physical models) and predictions of mixing performance. 
 
4.2.1 Matched-Condition Tests 
 

The experimental design for LSIT should be developed as part of future scope to prepare a 
test plan that includes the three scales of testing.  The experimental design should be generated to 

                                                      
(1) While ECR and UBC are discussed in this report, it is envisioned that the LSIT also examine other metrics of 
mixing performance, including blending, no solids accumulation during pump-out, and sampling.  The concepts 
described for ECR and UBC can be applied or adapted to these other metrics of mixing performance. 
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support developing models for key mixing-performance metrics (e.g., ECR and UBC) that 
accurately 1) estimate model coefficients, and 2) predict mixing performance metrics for 
full-scale vessels, with uncertainties that are as low as possible for the number of tests 
performed.  One option for the test matrix would be for it to consist of matched-condition tests 
performed at corresponding operating conditions and geometries, and with the same simulants, in 
the 43 in., 8 ft, and 14 ft vessels.  For practical reasons, the simulated waste would not be scaled 
with the size of the test.  For each size vessel, the matched-condition tests could exercise the 
following parameters: 
 

 PJM configuration (number and configuration of jets operating) 
 PJM operations (pulse volume fraction, dimensionless cycle time = tC(U/D), where tC is 

the cycle time, U is nozzle velocity, and D is vessel diameter) 
 slurry level in vessel relative to vessel size 
 solids concentration 
 particle settling velocity (by changing the particle densities or sizes) 
 fluid rheological properties. 

 
Matched-condition tests, when completed at all three scales, would provide for assessing the 

scaling relationships for the ECR and UBC mixing performance criteria at each set of test 
conditions.  If the scaling relationships differ for different sets of test conditions, the data from 
the matched-condition tests would provide for evaluating the differences and/or developing 
models for ECR and UBC that account for the effects of the parameters varied in the testing.  
After the models are developed using the LSIT experimental data, they could be applied to 
predict mixing performance for various configurations and conditions in full-scale vessels.  
Uncertainties in the test data and other relevant uncertainties can then be accounted for in 
quantifying the uncertainties in model coefficients and predictions of mixing performance 
metrics (e.g., ECR and UBC) in full-scale vessels. 
 
4.2.2 Statistical Experimental Design Methods Guided by Subject-Matter 

Knowledge 
 

The test conditions investigated should be selected using statistical experimental design 
methods, guided by subject-matter knowledge, to adequately cover the multidimensional 
parameter space relevant to WTP vessel/PJM configurations and waste properties.  The 
parameter space of interest will depend on whether Approach 1 or Approach 2 (Section 4.1) to 
experimentation is chosen.  Statistical experimental design methods, with subject-matter 
guidance, will enable reducing (to the extent possible given the test budget and limitations) the 
uncertainties of the ECR and UBC model coefficients and predictions based on the resulting data.  
The coverage of the parameter space should be assessed in terms of the relevant dimensional 
parameters, as well as dimensionless parameters/groups relevant to modeling mixing 
performance metrics such as ECR and UBC.  Dimensionless parameters/groups may support 
interpolating over more of the parameter space of interest than when the space is expressed in 
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terms of dimensional parameters.  Generally, interpolation is subject to less uncertainty than 
extrapolation.  So, from this perspective, models expressed in terms of dimensionless 
parameters/groups may have an advantage over models expressed in terms of dimensional 
parameters.  Designing the LSIT experiments to provide good coverage of the test condition 
spaces expressed in both dimensional parameters and dimensionless parameters/groups would 
provide robustness for developing predictive models that have acceptable accuracy and 
precision. 
 

Statistical optimal experimental design (OED) methods (Atkinson et al. 2007) provide for 
selecting the test combinations in a test matrix to minimize the uncertainties of the model 
coefficients and/or predictions (e.g., of ECR and UBC) from a prespecified model form.  Hence, a 
test matrix developed using the OED approach is optimized for a specific model form.  A test 
matrix developed for a model form expressed in terms of dimensionless parameters/groups may 
differ substantively from a test matrix developed for a model expressed in terms of dimensional 
parameters.  Also, a model for a mixing performance metric ultimately developed from the LSIT 
data may be different from the model form hypothesized to develop the test matrix.  Thus, it is 
recommended that model-robust experimental design methods be used, so that the data will 
provide good support for developing a range of model forms.  For example, Albrecht et al. 
(2012) propose developing a test matrix that is relatively efficient for both a hypothesized model 
form (e.g., expressed in terms of dimensionless parameters/groups) and a second-order 
polynomial model in the dimensional test parameters.  Second-order polynomial models 
(second-order, Taylor-series expansions) can well approximate many model forms.  Hence, the 
experimental design method of Albrecht et al. (2012) would provide for generating a test matrix 
that is model-robust.  That is, the experimental design will provide good support (i.e., reduce 
uncertainties of model coefficients and model predictions) regardless of the final forms of the 
mixing performance models to be fit to the data.  Piepel (2010) provides a review of 
model-robust experimental design methods that have been proposed in the statistical literature. 
 
4.2.3 Restrictions on the Order of Performing Test Matrix Runs 
 

Tests in the LSIT must be sufficiently and appropriately replicated(1) (accounting for 
restrictions in the order of performing tests) to provide for quantifying the testing/measurement 
uncertainties of the test results, the model coefficients, and model predictions of ECR and UBC in 
full-scale vessels.  In a split-plot experiment, there is a different variance component associated 
with each restriction.  Replicates at the level of each restriction provide for estimating the 
variance component associated with that restriction. 
 

To estimate the variance component associated with the effect of test vessel size, replicate 
tests are needed using the different-size vessels.  More specifically, after the set of tests with a 
given size vessel are completed in one period of time, at least some of those tests must be 

                                                      
(1) See Section 3.1.2 for a discussion of how the term “replicates” is used in this report. 
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replicated during one or more subsequent periods of time.  Table 4.1 illustrates an example for 
LSIT with the three scaled vessels (43 in., 8 ft, and 14 ft) in which a complete test matrix is 
performed during the first three time periods, which are referred to as whole plots (WP) in the 
split-plot literature (Steel and Torrie 1960; Montgomery et al. 2001; Goos et al. 2006; Kowalski 
et al. 2007).  Then, a smaller number of tests(1) are replicated in WPs 4 to 9.  Note in Table 4.1 
that WPs 4, 5, and 6 involve testing each of the three scaled vessels again, although in a different 
randomized order.  Also, WPs 7, 8, and 9 involve testing in the 43 in. vessel twice and the 8 ft 
vessel once.  The 14 ft vessel is not tested a third time, and instead the 43 in. vessel is tested 
again twice, because it saves time and money.  Although desirable, it is not necessary to perform 
replicate tests with each scaled vessel size the same number of times, which the example in 
Table 4.1 illustrates. 
 
 
Table 4.1. Example of Replicate Tests with Different-Size Vessels to Enable Quantifying the 

Variance Component Associated with the Scale Restriction on the Order of 
Performing Tests 

 
Whole Plot (WP) 1 2 3 4 5 6 7(a) 8 9(a)

Test Vessel Scale 43 in. 8ft 14 ft 8 ft 43 in. 14 ft 43 in. 8 ft 43 in. 
Other Test 
Parameters 

Full test matrix 
Small number of tests 

replicated 
Small number of tests 

replicated 
(a) Rather than testing using all three sizes of vessel in WPs 7–9, the 43 in. vessel is tested in WPs 7 and 9, and 
the 8 ft vessel is tested in WP 8.  While it would be ideal to replicate each vessel size the same number of times, it 
is possible to focus on smaller vessels in some WPs to save time and expense of testing in the 14 ft vessel. 
 
 

The amount of replicate testing of scaled vessel sizes in Table 4.1 provides eight degrees of 
freedom (DF) for WPs, because the DF is one less than the number of values (number of WPs in 
this case).  Two of those DF are available to quantify the scale effect of the test response (since 

there are three scaled vessels tested), leaving six DF(2) for estimating Y
ScaleSD  or Y

ScaleRSD%  (this 

notation was introduced in Section 3.1.5).  Performing only one set of replicates (WPs 4, 5, and 
6) instead of two sets of replicates would require only six WPs rather than nine WPs.  However, 

that would provide only three DF for estimating Y
ScaleSD  or Y

ScaleRSD% , which is considered too 

small.  Variances (and %RSDs) are difficult to estimate precisely (Natrella 1966, Section 2-4), so 

even six DF is a very limited basis for estimating Y
ScaleSD  or Y

ScaleRSD% .  Based on Figure 2-2 in 

Section 2-4 of Natrella (1966), 6 DF only provides for estimating a SD within about 47% of the 

                                                      
(1) The future work of developing the LSIT experimental design needs to determine the number of tests to perform 
with ‘replicates’ of test vessels. 
(2) Statistical algorithms and software to fit models to split-plot data determine the applicable DF, which can be 
fractional values.  Hence, the DF mentioned in the discussion are approximate and for conceptual understanding 
only. 
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true value with 90% confidence.  However, from a practical standpoint, it was thought that nine 
sets (i.e., WPs) of tests with different-size test vessels may be the most that would be considered 
given time and budget constraints. 
 

As a second example of replication at each level of restriction, consider replicate tests with 
simulants.  Suppose there are three simulants (denoted A, B, C) that are to be tested at each of 
the three sizes of test vessels.  Table 4.2 illustrates having two replicates of each of the three 
simulants within each of WPs 1, 2, and 3 (and hence for each test vessel size).  The order of 
testing the two replicates of the three simulants was randomized for each of WPs 1, 2, and 3.  

The number of DF for estimating Y
SimulantSD  or Y

SimulantRSD%  are calculated as follows.  In WP 1, 

three simulants are each replicated twice, for a total of three DF.  Because the three simulants are 

also replicated twice in WPs 2 and 3, there are a total of nine DF for estimating Y
SimulantSD  or 

Y
SimulantRSD% . 

 
 
Table 4.2. Example of Replicate Tests with Simulants at Three Test Vessel Sizes to Enable 

Quantifying the Simulant Variance Component 
 
Whole Plot (WP) 1 2 3 
Test Vessel Scale 43 in. 8 ft 14 ft 
Simulants A, B, C, B, C, A(a) B, C, A, B, A, C A, C, B, C, A, B 
(a) This denotes that all 43 in. vessel tests with simulant A are completed first, then all tests with simulant B, then 
all tests with simulant C, then all tests with simulant B, then all tests with simulant C, and finally all tests with 
simulant A. 
 
 

Although no tables are provided to illustrate the concepts, the different solids concentrations 
must be replicated at combinations of test vessel size and simulant to enable quantifying the 

estimates Y
SolidsConcSD  or Y

SolidsConcRSD% .  For the UBC test response, the nozzle velocity 

restriction on the order of performing tests does not apply.  However, it does apply for the ECR 
test response, as discussed in Section 2.3.  In that case, the nozzle velocities must be replicated at 
combinations of test vessel size, simulant, and solids concentration to enable quantifying the 

estimates Y
NozzleVelSD  or Y

NozzleVelRSD% . 

 
As one gets to the third and fourth restrictions on the order of performing tests, the DF 

accumulate very quickly.  For example, consider Table 4.2, where in WPs 1, 2, and 3, there are a 
total of 3 × 6 = 18 combinations of test vessel size and simulant.  If three solids concentrations 
were replicated twice at each of the 18 combinations, there would be 3 × 18 = 54 DF for 

estimating Y
SolidsConcSD  or Y

SolidsConcRSD% .  This accumulation of larger numbers of DF for 

subsequent restrictions is considered one of the advantages of split-plot experiments—namely, 
the effects of test parameters associated with such restrictions can be estimated very precisely.  
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However, this advantage comes with a significant consequence of larger numbers of tests.  
Fortunately, it is not necessary to replicate solids concentrations at every one of the 
18 combinations.  This aspect of designing split-plot experiments can be addressed by 
developing an experimental design using the OED methodology (see Section 4.2.2) and software 
specific to developing split-plot experimental designs.  That methodology allows for partial 
replication, so that there are sufficient DF for estimating the variance component associated with 
each restriction, without there being too many DF and having too large a number of tests to 
perform. 
 

In deciding on the number of replicate tests needed at each level of restriction in the 
experimental design, trade-offs generally have to be made between (i) wanting to estimate 
variance components with more precision, and (ii) practical limitations on the number of tests 
and replicates of different kinds that can be performed. 
	
4.3 Model Development, Fitting, and Evaluation 
 

Models for mixing performance metrics (e.g., ECR and UBC) as functions of the parameters 
varied in LSIT can be developed, fitted to data, and evaluated using the experimental test data.  
These topics are discussed in the following subsections. 
	
4.3.1 Models for Mixing Performance Responses and Spurious Correlation 
 

Models of mixing performance metrics (e.g., ECR and UBC) could be expressed as functions 
of dimensional test parameters or dimensionless parameters/groups.  Typically, such models are 
written in terms of dimensionless parameters/groups, which can increase the appropriateness of 
extrapolating the model to full scale.  However, models expressed in terms of dimensionless 
parameters/groups can be subject to spurious correlation, causing the model to appear to fit the 
test data better than it actually does (Pearson 1897; Kenney 1982; Jackson and Comers 1991; 
Brett 2004).  Spurious correlation can result when a dependent dimensionless group contains 
1) one or more dimensional parameters included in one or more independent dimensionless 
groups, and/or 2) one or more dimensional parameters that are highly correlated with 
dimensional parameters included in one or more independent dimensionless groups.  The 
severity of spurious correlation depends on how the dependent and independent dimensionless 
groups are defined in terms of the dependent and independent dimensional parameters and the 
variations of the dimensional parameters in the experimental data (Brett 2004).  Examples of 
spurious correlation in physical models for two mixing performance metrics, and how this was 
avoided, are discussed in Section 7.3.2 of Meyer et al. (2012). 
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Models for mixing performance metrics (e.g., ECR and UBC) in LSIT may still be 
appropriately developed in terms of dimensionless groups, provided the models are fit and 
assessed using mathematically equivalent re-expressions of the models (which removes the 
possibility of spurious correlation). 
 
4.3.2 Fitting Mixing Performance Models to Data 
 

Appropriate regression methods should be used to fit the models for mixing performance 
metrics (e.g., ECR and UBC) to the experimental data.  The most commonly used methods for 
fitting models to experimental data are 1) ordinary least squares (OLS) regression when the 
model is a linear function of the coefficients, and 2) nonlinear least squares (NLS) regression 
when the model is a nonlinear function of the coefficients.  OLS and NLS regression assume 
(require) that the values of a test response for all test runs in the experiment have approximately 
equal uncertainty (variance) and are uncorrelated (i.e., all covariances equal to zero).  The first of 
these assumptions (equal variance) may be violated if the variance increases with the magnitude 
of the test response.  In that case, taking the natural logarithm of both sides of the model may 
provide for approximately equal variances for all test combinations.  However, the second of 
these assumptions (zero covariances) is violated for split-plot experiments, as shown for ECR in 
Equation (A.1) of Section A.1 and for UBC in Equation (A.2) of Section A.2, both in 
Appendix A.  As seen by the equations in those locations, and as noted in Sections 2.3 and 2.4, 
the covariances are functions of the variance components.  Hence, estimating the variance 
components provides for estimating all entries in the variance-covariance matrix of the test 
response values from the experiment. 
 

If the testing and measurement uncertainties in test response values are additive (possibly 
after a natural-log transformation), generalized least squares (GLS) regression methods must be 
used to fit the model coefficients to the data, where the variance components are first estimated 
by the REML method (West et al. 2006, Section 2.4.2).  These methods are applicable for fitting 
linear models(1) of the general form 
 
 εXβy   (4.1) 

 
where y = n  1 vector of test response values 
 X = n  p matrix formed by expanding the test matrix so that the columns of X 

correspond to the p terms in the model 
 β = p  1 vector of true, unknown model coefficients 
 ε = n  1 vector of random experimental/testing errors with 

variance-covariance matrix V. 
 

                                                      
(1) Here, “linear model” refers to models that are linear in their coefficients. 
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In GLS theory, V is assumed to be known without uncertainty, so the formulas must be modified 
to account for the fact that the variance components are estimated.  Using an estimate of V in the 
formulas is referred to as feasible generalized least squares (FGLS).  Per the modified formula 
(Goos et al. 2006), the estimated coefficient vector is given by 
 

 yVXXVXβ 111
FGLS )(  ˆˆ'ˆ  (4.2) 

 

and the variance-covariance matrix of the FGLS-estimated coefficient vector ( FGLSβ̂ ) is given by 

 

 11
FGLS )()Var(  XVXβ ˆ'ˆ  (4.3) 

 

where V̂ is the n  n estimated variance-covariance matrix of the data vector y and all other 

notation is as previously defined.  The matrix V̂  is obtained by substituting in the estimates of 
the variance components [e.g., in Equations (3.10) or Eq. (3.12)].  Equation (4.3) is used in the 
formula for calculating uncertainties of mixing performance predictions, which is discussed in 
Section 4.3.4. 
 

A statistical software package [e.g., SAS (2010) or R (R Development Core Team 2011)] 
with capabilities for fitting mixed models(1) (West et al. 2006; Jiang 2007) would provide for first 
estimating the variance components (and hence estimating V).  Then, the coefficients of the 
mixing performance model (e.g., ECR or UBC) would be estimated using FGLS.  Estimates of the 
variance components coupled with knowledge of the data structure in the experiment would 
provide for quantifying the uncertainties of the test response values (see Sections 2.3 and 2.4).  
The statistical software also provides for quantifying the uncertainties of model coefficients and 
model predictions of the mixing performance test responses (discussed in Section 4.3.4). 
 

If the model terms and testing/measurement uncertainties are multiplicative [as in 
Equation (2.8) or Equation (2.12)], it is often possible to transform the model (e.g., by taking the 
natural logarithm of both sides) to obtain model terms and uncertainties with an additive 
structure.  Although the model-fitting capabilities in Microsoft Excel® (including using Solver) 
are often used to fit mixing performance models, those Excel capabilities are all based on OLS or 
NLS, which are only appropriate for data with an additive error structure with no nonzero entries 
in the variance-covariance matrix.  Hence, the Excel model-fitting capabilities are not 
appropriate for the kinds of data structures envisioned for LSIT. 
 

                                                      
(1) A “mixed model” is one in which both model coefficients (fixed effects) and variance components of the data 
(random effects) must be estimated using the data. 



 

4.10 

4.3.3 Evaluating the Models for Mixing Performance 
 

To reduce the uncertainty in predictions of mixing performance metrics (e.g., ECR and UBC), 
the models developed from the test data should be evaluated for adequacy in three ways.  First, 
subject-matter knowledge and statistical methods should be applied to assess whether there are 
any influential or outlying data points.  Graphical and statistical methods for evaluating the 
goodness of a model should be applied (Draper and Smith 1998; Montgomery et al. 2001).  If 
influential or outlying data points are found, appropriate resolutions should be made and the 
models refitted if necessary. 
 

Second, statistical methods for model lack-of-fit (LOF) should be applied to ascertain 
whether the differences between model-predicted values and test values of mixing performance 
metrics (e.g., ECR and UBC) are larger than can be accounted for by experimental/measurement 
uncertainty in the data.  If the LOF for a particular model is not statistically (or practically) 
significant, then the model would be judged as adequately representing the true, unknown 
relationship between the dependent and independent variables (parameters).  If a model LOF is 
statistically and practically significant, additional model forms would need to be assessed in an 
attempt to obtain a revised model without significant LOF.  Almimi et al. (2009) and Goos and 
Gilmour (2013) discuss possible methods for assessing model LOF when the data structure 
involves restrictions on the order of performing tests. 
 

Third, the models finally developed from the LSIT test data should be validated using test 
data not used to fit/develop the models.  Statistical validation methods (Montgomery et al. 2001) 
should be used that account for model prediction uncertainties and the uncertainty in the 
validation data values of mixing performance metrics (e.g., ECR and UBC).  If there are no 
appropriate validation data (not used to fit/develop the models) available, then cross-validation 
methods (Montgomery et al. 2001) should be applied to the data used to develop the models. 
 

Draper and Smith (1998), Montgomery et al. (2001), Myers and Montgomery (1995), and 
Seber and Wild (1989) discuss the methods for fitting, evaluating, and validating models that are 
linear or nonlinear in their coefficients.  Although these references discuss these methods for 
linear and nonlinear models fitted to data using OLS or NLS, the methods can be extended for 
use with FGLS.  FGLS, as noted previously, is used with the complicated data structure caused 
by restrictions on the order of performing the test matrix runs. 
 
4.3.4 Quantifying Uncertainties in Model Coefficients and Predictions of Mixing 

Performance 
 

Equally important to estimating model coefficients and predicting mixing performance 
metrics (e.g., ECR and UBC) for various full-scale WTP situations is quantifying the uncertainties 
in the estimates of these quantities.  Estimating the uncertainty in quantities derived from test 
data first requires quantifying the uncertainties in test responses obtained during LSIT.  Methods 
for quantifying uncertainties of test responses or other test parameters are discussed in Section 3. 
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As discussed previously, it is envisioned that data analyses to assess the scaling relationships 

and develop models for mixing performance metrics (e.g., ECR and UBC) would involve 
regression fitting of models to experimental data.  There is considerable statistical theory on how 
to quantify uncertainties in estimated model coefficients and test response predictions made with 
fitted models (Draper and Smith 1998; Montgomery et al. 2001; Myers and Montgomery 1995; 
Seber and Wild 1989).  This theory is more complicated as a result of restrictions on the order of 
performing test matrix runs (Steel and Torrie 1960; Montgomery et al. 2001; Goos et al. 2006; 
Kowalski et al. 2007).  However, as noted previously, statistical software provides for 
implementing the statistical methods based on the appropriate theory. 
 
4.3.4.1 Two Types of Uncertainty in Regression Models 
 

There are two types of uncertainty that are commonly accounted for when working with 
model predictions of mixing performance metrics (e.g., ECR and UBC). 
 
 Uncertainty in Fitting a Model to Experimental Data.  The model form fit to experimental 

data can be, at best, an adequate approximation of the true, unknown relationship between a 
test response (e.g., ECR or UBC) and parameters varied as part of the experimental design.  
Also, the experimental data are subject to uncertainty from the testing and measurement 
processes.  Hence, predictions of mixing performance metrics (e.g., ECR and UBC) for 
full-scale mixing performance under various conditions are subject to uncertainty from fitting 
models to data.  This is referred to as fitting prediction uncertainty. 

 
 Uncertainty in Applying a Fitted Model to Make Response Predictions.  Predictions of 

mixing performance metrics (e.g., ECR and UBC) using models fitted to data are subject to a 
separate kind of uncertainty, which is referred to as application prediction uncertainty.  This 
kind of uncertainty results from the uncertainties in the values of model parameters (e.g., 
solids concentration, particle size and density, PJM stroke length) used to make model 
predictions of the mixing performance metrics. 

 
For known functions of uncertain parameters, error propagation methods can be used to 
approximate the total uncertainty of the parameter calculated by the equation for the known 
function.  Section 3.2 discusses and provides references for error propagation methods. 
 

A different situation occurs when a model for a mixing performance metric (e.g., ECR or 
UBC) fitted to data is used to predict values of one of those test responses for a given set of values 
of the model parameters.  The values of the model parameters can involve combinations different 
from those tested as part of the experimental design.  For such applications of fitted ECR and 
UBC models, the fitting uncertainty and application uncertainty are statistically independent.  
Hence, the total uncertainty of a model prediction (expressed as a SD) is the sum of the two 
uncertainties (variances or relative variances): 
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 Total Prediction Standard Deviation = [Fitting Prediction Variance 
                                                                         + Application Prediction Variance]0.5 (4.4) 
 
It is preferable to use this approach rather than first-order error propagation (Section 3.2) to 
quantify the total uncertainty in model predictions, because this approach utilizes the available 
statistical theory to quantify the fitting prediction variance.  However, error propagation is 
typically used to quantify the application prediction variance, by propagating the uncertainties of 
the model parameters (not the coefficients) through the model form. 
 
4.3.4.2 Matrix-Vector Notation for Model Predictions Conclusions 
 

Using the matrix-vector notation introduced in Section 4.3.2, a model prediction at a vector x 
of parameter combinations (expanded in the form of terms in the model) is given by 
 

 FGLS)( βxx ˆŷ   (4.5) 

 
where )(xŷ  = model-predicted value of the mixing performance metric y at the expanded 

vector of model parameters x 
 x  = 1  p vector (the vector transpose of x) formed by expanding the model 

parameters in the form of the terms in the model 

 FGLSβ̂  = p  1 vector of estimated model coefficients (from Equation (4.2)) obtained 

by FGLS regression. 
 
Ideally the vector x of parameter combinations should be within the region of combinations 
explored experimentally, although it is realized that predicting the mixing performance of 
full-scale vessels will involve extrapolation on the length scale. 
 
4.3.4.3 Formulas for Estimating the Fitting Prediction Variance 
 

The fitting prediction variance of a model prediction at the vector x of parameter 
combinations (expanded in the form of the model terms) depends on whether the prediction is 
considered as 1) a mean value of the test response y over a conceptually large number of tests at 
x, or 2) an individual value of y at x.  The matrix-vector formulas for the fitting prediction 
variance (FPV) in these two cases are given by: 
 
Prediction Considered as the Mean 
 

 xXVXxβx 11
Mean )(  w.r.t.)]([Var  ˆ'ˆŷFPV FGLSMean  (4.6) 
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Prediction Considered as an Individual Value 
 

 
xXVXx

βx

1122

Individual

)()()(

  w.r.t.)]([Var 





ˆ'SDFPVSD

ˆŷFPV

y
TotalMean

y
Total

FGLSIndividual
 (4.7) 

 
where FPVMean and FPVIndividual are the fitting prediction variances for the predicted value of the 
mixing performance metric considered as the mean or an individual value, respectively.  The 
middle portions of Equations (4.6) and (4.7) clarify that the fitting prediction variances have to 
do with the variances in predicted )(xŷ values with respect to the estimated coefficient vector	

( FGLSβ̂ ).		In Equation (4.7), y
TotalSD  denotes the total SD of a test response value y, as discussed 

in Section 3.1.5.  All other notation in Equations (4.6) and (4.7) is as previously defined. 
	
4.3.4.4 Formulas for Estimating the Application Prediction Variance Conclusions 
 

The application prediction variance (APV) of )(xŷ  quantifies the uncertainty in y resulting 

from the uncertainties in the components of the x vector when making a prediction using a 
previously developed model.  The matrix-vector formula for the APV is given by 

 

 







yuncertaint subject to is   If

yuncertaint subject tonot  is   If      0
  where)](Var[

xβWβ

x
xx

FGLS
'
FGLS

ˆˆ
ŷAPV  (4.8) 

 
where W = p  p variance-covariance matrix of the vector x, expanded in the form of 

the model 

 FGLSβ̂  = p  1 vector of estimated model coefficients from previously fitting the 

model to experimental data 
 
and all other notation is as defined previously.  When x is not subject to uncertainty (e.g., 
nominal values are chosen and input to the model), then APV = 0.  When x is subject to 
uncertainty (given by its variance-covariance matrix, W), then APV is calculated as shown in 
Equation (4.8).  In this latter case, the difficulty of applying Equation (4.8) in practice is in 
obtaining an estimate of the variance-covariance matrix W for the x vector.  Recall that the 
x vector contains all of the parameters used to develop the mixing performance model, and any 
transformations or extensions thereof in developing the model form.  If the errors in measuring 
or determining the components of x are statistically independent, then covariances of all the 
components are zero.  In that case, W is a diagonal matrix with the variance of each x component 
down the diagonal.  If there is a basis for estimating the variance of each component of x, then 
Equation (4.8) may be directly applied to calculate APV.  In this case, the results are equivalent 
to first-order error propagation, as discussed in Section 3.2. 
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4.3.4.5 Total Prediction Variance and Expanded Uncertainty 
 

The total prediction standard deviation (TPSD) defined in Equation (4.4) can be rewritten as 
 
 TPSDMean = [FPVMean + APV]0.5 (4.9) 
 
 TPSDIndividual = [FPVIndividual + APV]0.5 (4.10) 
 
where FPVMean and FPVIndividual are calculated using Equations (4.6) and (4.7), respectively, and 
APV is calculated using Equation (4.8).  The FPV and APV variance components can be added 
together because the uncertainties in the fitting and application processes for the model are 
statistically independent.  Note that the TPSDMean and TPSDIndividual quantities are “standard 
uncertainties” in the terminology of ASTM (2006).  Statistical methods for the sums of variances 
can be used to determine the proper multiplier if an expanded uncertainty (see Section 2.4) is 
desired.  Examples of expanded uncertainties include 95% confidence intervals and 95% 
predictions interval (Hahn and Meeker 1991). 
	
4.4 Quantifying Possible Uncertainties Not Observable from Testing 

Results 
 

This section addresses two possible kinds of uncertainty that are not observable from testing 
results.  Uncertainty associated with using an incorrect model form to represent the relationship 
between mixing performance responses and test parameters is discussed in Section 4.4.1.  
Uncertainties associated with differences in scaled test vessels and simulants compared to WTP 
vessels and actual waste feed materials are discussed in Section 4.4.2. 
 
4.4.1 Uncertainty Associated with an Incorrect Model Form 
 

The methods for quantifying the two types of uncertainty discussed in Section 4.3.4 (fitting 
prediction uncertainty and application prediction uncertainty) assume that the model forms for 
mixing performance metrics (e.g., ECR and UBC) adequately represent the true, unknown 
relationships between these responses and the parameters varied during testing.  This assumption 
can be assessed over the multivariate region of test parameters for which there are experimental 
data, using the model evaluation methods discussed in Section 4.3.3.  Also, if the model form 
extrapolates accurately (i.e., without bias), then statistical methods for quantifying the 
uncertainty of model predictions will account for the increased random uncertainty associated 
with extrapolation (if applicable given the form of the model). 
 

However, the methods for evaluating the mixing performance models and quantifying the 
uncertainties in their predictions do not address the accuracy (or possible bias) of extrapolating 
outside the multivariate experimental region of test parameters.  The mixing performance models 
selected should have agreement of knowledgeable experts regarding the appropriateness of the 
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models for extrapolation to full scale.  Assuming such agreement, it is advisable to determine 
whether predictions with such models should still include an uncertainty corresponding to some 
possibility of the model yielding biased predictions.  The potential that the mixing performance 
at full scale is different from (biased compared to) what is predicted by mixing performance 
models would have to be assessed by experts based on beliefs about how accurate the utilized 
model forms may be when extrapolated.  The greater the physical understanding of the observed 
behavior, the greater the ability to assess the validity of a scaling relationship at length scales 
beyond those tested, and hence the greater the ability to assess the uncertainty in extrapolating to 
larger scales.  The usefulness of the test data is not just from regression to fit models to test data.  
Test data are equally important for validating a physical conceptual model, which then provides 
a basis for judging the range of length scales for which the model is valid. 
 

The form of the model can be used to determine whether condition transitions are expected 
between the test vessel size and the plant vessel.  Establishing accurate, physically based models 
can significantly reduce the uncertainty of projecting test results if key phenomenological 
thresholds are not crossed during scale-up.  One example is describing the effect of PJM jets 
impinging on solids on the vessel floor using available models of impinging radial wall jets (see 
Sections 2.2.2 and 2.2.3 of Kuhn et al. 2012). 
	
4.4.2 Uncertainties Associated with Differences Between Scaled Test Vessels 

and Actual WTP Vessels and Between Simulants and Actual Waste 
Materials 

 
The two types of uncertainty discussed in Section 4.3.4 also assume that the experimental 

mixing-performance data from scaled vessels using simulants are unbiased estimates of what the 
mixing performance would be with actual waste slurries if WTP vessels were scaled down to the 
sizes of the scaled test vessels.  It is unrealistic to believe that these assumptions are exactly met.  
The scaled test vessels would not be exact, scaled-down versions of real WTP vessels, and the 
simulants used in testing would not be as complex as actual waste materials.  Unfortunately, the 
experimental results provide no information about the extent to which test responses may be 
biased or differ randomly compared to what the mixing performance responses would be for 
scaled versions of actual WTP vessels using actual waste materials.  Hence, the experimental 
results provide no information about the representativeness uncertainty in model predictions of 
mixing performance metrics (e.g., ECR and UBC) for full-scale WTP situations.  Ultimately, any 
uncertainties (bias or random) associated with the representativeness of scaled test data using 
simulants must be based on expert knowledge. 
 

Any expert-based estimates of random uncertainty in 1) estimates of model coefficients, or 
2) model predictions of mixing performance metrics (e.g., ECR or UBC) must be combined with 
the other estimates of random uncertainty (developed using statistical methods applied to test 
data) to yield the estimated total random uncertainty.  Methods for combining estimates of 
representativeness uncertainty with estimates of the types of uncertainty discussed in 
Section 4.3.4 depend on whether the representativeness uncertainty is quantified as a bias or a 
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random uncertainty.  If the representativeness uncertainty is quantified as a random uncertainty 
(variance), then that variance could be added to the total variance represented in Equation (4.9) 
or (4.10) for a new total variance.  If the representativeness uncertainty is quantified as a bias, 
then methods for separately reporting or combining random and bias uncertainties discussed by 
(ASTM 2007, 2010; ISA 2000) could be applied. 
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5.0 Example Applications and Discussions of Methods 
for Quantifying Uncertainties 

 
 

Example applications and discussion of the methods for quantifying uncertainties in mixing 
test results and models that were presented in Sections 3 and 4 are included in Sections 5.1 and 
5.2, respectively. 
 

5.1 Example Applications and Discussion of Methods for Quantifying 
Uncertainties in LSIT Test Responses and Other Parameters 

 
Sections 5.1.1 and 5.1.2 present examples that illustrate applying the uncertainty 

quantification methods discussed in Sections 3.1.3 and 3.2, respectively. 
 
5.1.1 Example of Methods for Estimating Uncertainties in Test Responses 

Using Replicate Data 
 

There are no data sets from previous mixing test studies that have the proper replication 
structure to use as an example illustrating the REML method discussed in Section 3.1.3 for 
quantifying variance components associated with multiple restrictions on the order of performing 
tests.  Also, it was beyond the scope of the work associated with this report to 1) develop a LSIT 
experimental design including replication at each level of restriction on the order of performing 
tests, and 2) simulate a data set with an assumed model to provide example data from which the 
REML method could be applied to estimate the applicable variance components.  For ECR and 
UBC, these estimated SDs or %RSDs (depending on whether the data have an additive or 
multiplicative structure) to be quantified are: 
 

 ECR Additive:  ECR
ScaleSD , ECR

SimulantSD , ECR
SolidsConcSD , ECR

NozzleVelSD , and ECR
ErrorSD  

 ECR Multiplicative:  
ECR
ScaleRSD% , 

ECR
SimulantRSD% , 

ECR
SolidsConcRSD% , 

ECR
NozzleVelRSD% , and 

ECR
ErrorRSD%  

 UBC Additive:  BCU
ScaleSD , BCU

SimulantSD , BCU
SolidsConcSD , and BCU

ErrorSD  

 UBC Multiplicative:  BCU
ScaleRSD% , BCU

SimulantRSD% , BCU
SolidsConcRSD% , and BCU

ErrorRSD% . 

 
Instead, we consider two possible estimated values for each variance component applicable 

for ECR and UBC, and then apply Equations (3.10) and (3.12) to calculate ECR
TotalSD  and BCU

TotalSD .  

For the purposes of this example, we assume that power-law models would be appropriate for 
ECR and UBC and that the error structures (as well as the power-law model forms) are 
multiplicative (see Sections 2.3 and 2.4).  Hence, taking the natural logarithm of both sides of 
each model would yield an additive model and error structure.  This is the situation used for a 
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UBC model example in Section 5.2, so it was appropriate to consider such a situation for this 
example as well.  This situation required the following modifications of Equations (3.10) and 
(3.12): 
 

 )n(ECRl
TotalSD 	=	 502)ln(2)ln()ln(2)ln(2)ln( ])()()()()[( .ECR

Error
ECR

NozzleVel
ECR

SolidsConc
ECR

Simulant
ECR

Scale SDSDSDSDSD   (5.1) 

 

 )ln( BCU
TotalSD 	=	 502)ln()ln(2)ln(2)ln( ])()()()[( .BCU

Error
BCU

SolidsConc
BCU

Simulant
BCU

Scale SDSDSDSD   (5.2) 

 
A useful relationship corresponding to the preceding equations is 
 
 SD[ln(y)] ≈ RSD(y) (5.3) 
 
where y represents a mixing performance metric (e.g., ECR or UBC) and RSD denotes “relative 
standard deviation” (the SD divided by the mean).  Based on this relationship, for the example 
we chose values of 0.05 and 0.10 for each of the SDs on the right-hand sides of Equations (5.1) 
and (5.2).  That corresponds to choosing RSD values of 0.05 and 0.10 (or %RSD values of 5 and 
10) for the test responses before logarithmic transformations.  Any of these estimated SDs could 
be smaller than 0.05 or larger than 0.10 in practice, but for illustrative purposes here the values 
0.05 and 0.10 suffice to demonstrate the range of total SD values that might result.  Table 5.1 

shows the combinations of values of the estimated SDs and the resulting values of )n(ECRl
TotalSD  and 

)ln( BCU
TotalSD  calculated using Equations (5.1) and (5.2), respectively.  Note that the )n(ECRl

TotalSD  

values range from 0.112 to 0.224, while the )ln( BCU
TotalSD  values range from 0.100 to 0.200.  The 

)ln( BCU
TotalSD  values are smaller than the )n(ECRl

TotalSD  values because the latter have one extra 

estimated SD ( )ln(ECR
NozzleVelSD ) that contributes to the total SD. 
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Table 5.1.  Example Calculations (for Information Only) of )n(ECRl
TotalSD  and )ln( BCU

TotalSD  for 

Various Combinations of the Input Variance Components 
 

)ln(Y
ScaleSD  )ln(Y

SimulantSD  )ln(Y
SolidsConcSD  )ln(Y

NozzleVelSD  )ln(Y
ErrorSD )n(ECRl

TotalSD  )ln( BCU
TotalSD  

0.05 0.05 0.05 0.05 0.05 0.112 0.100
0.05 0.05 0.05 0.05 0.10 0.141 0.132
0.05 0.05 0.05 0.10 0.05 0.141 0.100
0.05 0.05 0.05 0.10 0.10 0.166 0.132
0.05 0.05 0.10 0.05 0.05 0.141 0.132
0.05 0.05 0.10 0.05 0.10 0.166 0.158
0.05 0.05 0.10 0.10 0.05 0.166 0.132
0.05 0.05 0.10 0.10 0.10 0.187 0.158
0.05 0.10 0.05 0.05 0.05 0.141 0.132
0.05 0.10 0.05 0.05 0.10 0.166 0.158
0.05 0.10 0.05 0.10 0.05 0.166 0.132
0.05 0.10 0.05 0.10 0.10 0.187 0.158
0.05 0.10 0.10 0.05 0.05 0.166 0.158
0.05 0.10 0.10 0.05 0.10 0.187 0.180
0.05 0.10 0.10 0.10 0.05 0.187 0.158
0.05 0.10 0.10 0.10 0.10 0.206 0.180
0.10 0.05 0.05 0.05 0.05 0.141 0.132
0.10 0.05 0.05 0.05 0.10 0.166 0.158
0.10 0.05 0.05 0.10 0.05 0.166 0.132
0.10 0.05 0.05 0.10 0.10 0.187 0.158
0.10 0.05 0.10 0.05 0.05 0.166 0.158
0.10 0.05 0.10 0.05 0.10 0.187 0.180
0.10 0.05 0.10 0.10 0.05 0.187 0.158
0.10 0.05 0.10 0.10 0.10 0.206 0.180
0.10 0.10 0.05 0.05 0.05 0.166 0.158
0.10 0.10 0.05 0.05 0.10 0.187 0.180
0.10 0.10 0.05 0.10 0.05 0.187 0.158
0.10 0.10 0.05 0.10 0.10 0.206 0.180
0.10 0.10 0.10 0.05 0.05 0.187 0.180
0.10 0.10 0.10 0.05 0.10 0.206 0.200
0.10 0.10 0.10 0.10 0.05 0.206 0.180
0.10 0.10 0.10 0.10 0.10 0.224 0.200

(a)  y = ECR or UBC 
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5.1.2 Example of Quantifying the Uncertainty in a Parameter that is a Function 
of Uncertain Parameters Using Error Propagation Methods 

 
The following example illustrates using the error propagation methods discussed in 

Section 3.2.  Consider the formula for calculating nozzle velocity based on the volume change 
within a single pulse jet tube that occurs over the duration of the duty cycle of a pulse.  The 
calculation is given by 
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 (5.4) 

 
where V1 = estimated PJM nozzle velocity (m/sec) 
 DPI  = inner diameter of a PJM tube (in.) 
 DPR = diameter of a Drexelbrook probe rod (in.) 
 Dn = nozzle diameter of a PJM tube (in.) 
 K = conversion constant to convert inches to meters (1/39.37 m/in.) 
 hs = PJM stroke length (in.) 
 Td = drive time of the duty cycle for a pulse (sec) 
 π = mathematical constant (approximately 3.1416). 
 
Note that the function given in Equation (5.4) involves five measured quantities (random 
variables), DPI, DPR, Dn, hS, and Td.  The function also involves two constants, k and π, although 
π cancels from the final expression in Equation (5.4).  Nominal values are needed to represent a 
specified point, like  nx,,x,x 21  in the notation above, for the five measured quantities when 

applying Equations (3.15) and (3.16).  Additionally, estimates or assumed values are needed for 

the 2
iX
 
of the five measured (uncertain) quantities when applying Equation (3.17).  Table 5.2 

provides example values for the five measured quantities involved in Equation (5.4), thereby 
allowing the use of Equations (3.16) and (3.17) to calculate an expected nozzle velocity and 
associated uncertainty at this specified point. 
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Table 5.2.  Example Inputs for Estimating Nozzle Velocity and Associated Uncertainty (for 
Information Only) 

 

Input 
Label Used in 
Equation (5.1) 

Nominal 
Value 

Assumed 
Standard 

Uncertainty (
iX ) 

Inner PJM Diameter DPI 5.72 in. 0.003 in. 
Probe Rod Diameter DPR 0.56 in. 0.001 in. 
Nozzle Diameter Dn 0.655 in. 0.001 in. 
PJM Stroke Length hs 24.784 in. 0.362 in. 
PJM Drive Time Td 6.057 sec 0.001 sec 
Conversion Constant K 1/39.37 m/in NA 

 
 

Applying Equation (3.17) using the nominal values and assumed standard uncertainties in 
Table 5.2 yields the uncertainty estimates for the nozzle velocity listed in Table 5.3. 
 
 
Table 5.3.  Resulting Estimates of Nozzle Velocity and Associated Uncertainty (for Information 

Only) 
 

Nozzle Velocity Standard Uncertainty Relative Standard Uncertainty 
7.850 m/sec 0.117 m/sec 1.50% 

 
 

5.2 Example Applications and Discussion of Methods for Quantifying 
Uncertainties of Full-Scale Mixing Performance Using Models 
Developed from LSIT Data 

 
This section presents and discusses example applications of the methods from Section 4 for 

quantifying uncertainties of full-scale mixing performance using models developed from LSIT 
data. 
 
5.2.1 Introduction of Example and a UBC Model 
 

We consider an example situation in which it is assumed that Approach 1 for LSIT is used.  
In particular, we consider the situation of the LSIT testing associated with a single WTP vessel.  
This choice was made because it simplifies the example, not because of judgments that 
Approach 1 is preferable to Approach 2 or that testing for only a single WTP vessel is adequate. 
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For this situation, an example model for the mixing performance metric UBC is given by 
 

 
 c

0 )(  
*

uc
S

c
S

Dc
WTPBC uuDcU  (5.5) 

 
where D = diameter of the scaled test vessel 
 S = volume fraction of solids in the vessel 
 uS = nominal settling velocity of the particles as they settle on to the floor of the 

vessel 
 *u , 0 = material properties of the layer of settled solids 

 
and cWTP, cD, c , cu, and *c  are coefficients to be estimated by fitting the model to experimental 

data.  Equation (5.5) is the same as Equation (B.13) in Appendix B.  This model was developed 
from a model presented by Kuhn et al. (2012), the details of which are shown in Appendix B.  
The model form in Equation (5.5) was developed to avoid the possibility of spurious correlation 
(Section 4.3.1), which results from having test parameters appear on both the right- and left-hand 
sides of the model equation.  As shown in Appendix B, it is often possible to rewrite physically 
based models in mathematically equivalent forms so any input parameters on the left-hand side 
(e.g., in a dimensionless group) are transferred to the right-hand side of the model (thus avoiding 
the possibility of spurious correlation). 
 

As discussed in Sections 2.1, 2.3, and 4.3.2, taking the natural logarithm of both sides of 
Equation (5.5) converts the model from having a multiplicative structure to having an additive 
structure.  This assumes the error terms are also multiplicative (e.g., in Equations (2.8) and 
(2.12)), so that an additive structure is obtained for both model terms and error terms (e.g., in 
Equations (2.09) and (2.11)).  Using natural logarithms instead of common logarithms is 
preferred because the SD of a natural-logarithm-transformed parameter is well approximated by 
the relative SD of the parameter without the transformation.  This is a very useful approximation 
when quantifying uncertainties, so the natural logarithm transformation is preferred for that 
reason. 
 

The model after taking the natural logarithms of both sides of Equation (5.5) is 
 

 )ln()ln()ln()ln()()ln( 0 *SuSDWTPBC ucuccDcclnU   (5.6) 
 
where all notation is as previously defined following Equation (5.5). 
 

In this example, we assume that the experimental testing would be subject to restrictions 1–3 
on the order of performing tests given in Table 2.2.  Hence, the resulting data would have the  
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error structure discussed in Section 2.4, namely as given in Equation (2.11).  The model term(s) 
in (5.6) associated with each error term identified in Equation (2.11) are 
 

Scale:  ln(D) 
Simulant:  )ln( Su , )ln( *u  

 Solids Concentration:  )ln( S  

 
5.2.2 Discussion of Experimental Design for the Example 
 

It was beyond the scope of this work to develop an experimental design (including a test 
matrix) for this UBC example.  However, we briefly discuss the steps of the process that would be 
used.  The process would be somewhat different for Approach 1 versus Approach 2 as discussed 
in Section 4.1.  The following discussion more directly addresses Approach 2, but some of the 
steps may still be applicable to Approach 1. 
 

Several test parameters would be held fixed at specified levels indicated by Equations (B.7) 
to (B.10) in Appendix B.  The test parameters that would be varied appear on the right-hand side 
of Equations (5.5) and (5.6), namely D , S , Su , and 0*u .  It would be necessary for subject-

matter experts working with a statistician to specify lower and upper bounds on these parameters 
and to determine the number of values and the values themselves of the parameters to be 
investigated experimentally.  The spacing of the values must be decided, which for the example 
model in Equation (5.6) might be linear spacing in natural logarithm units of the parameters.  In 
addition, if it is not possible or is undesirable for certain combinations of values of the test 
parameters to occur simultaneously, then the subject-matter experts and statistician would 
develop multiparameter constraints (i.e., inequality expressions) that specify the allowable 
combinations of test parameter values.  The multidimensional space defined by the lower and 
upper bounds on the test parameters and the multiparameter constraints is referred to as the 
experimental region. 
 

The experimental design would have to be constructed to contain a sufficient number of 
distinct test combinations to adequately “cover” the experimental region and provide for 
estimating the model coefficients (e.g., in Equation (5.6)) so as to provide acceptable 
uncertainties of model coefficients and model predictions of UBC.  If the matched-condition 
testing approach (Section 4.2.1) were chosen, then the distinct test combinations would be 
chosen independent of test scale, and run at all three test scales.  Regardless, the statistical OED 
approach described in Section 4.2.2 could be used to provide for selecting test combinations 
adequately covering the experimental region to provide data robust to the assumed model form in 
Equation (5.6).  That way, the experimental data will provide support for fitting other model 
forms if, after the data are collected, it is found that the model form in Equation (5.6) can be 
improved upon. 
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Also, sufficient replication would need to be planned into the text matrix to provide for 
estimating variance components associated with the restrictions on the order of performing tests 
(Section 4.2.4).  As discussed in Section 4.2.4, partial replication must be used for some 
restrictions on the order of performing tests to avoid having a very large number of tests resulting 
from several kinds of replication.  Determining appropriate numbers and patterns of replication 
requires significant effort, so that aspect of developing an experimental design is not illustrated 
in this example. 
 
5.2.3 Discussion of Model Development, Fitting, and Evaluation for the 

Example 
 

There are no existing data sets from previously conducted tank mixing studies that account 
for the restrictions on the order of performing tests and that included appropriate replication.  
Hence, there were no appropriate data to use for an example to illustrate model development, 
fitting, and evaluation as discussed in Section 4.3.  We did consider using 1) the assumed model 
form in Equation (5.6), 2) some reasonable assumed coefficient values, and 3) the restricted error 
structure with assumed values of the multiple variance components to simulate a data set from an 
experimental design that could then have been used to illustrate model development, fitting, and 
evaluation.  However, as noted previously, it was beyond the scope and schedule for this report 
to develop a full experimental design (including appropriate replication) for the example. 
 

However, Kuhn et al. (2012) and Appendix B discuss the steps used in developing a 
physically based model for UBC.  Appendix B illustrates rewriting the model developed by Kuhn 
et al. (2012) into a mathematically equivalent form to avoid spurious correlation.  Appendix B 
also illustrates generalizing the model by allowing the S , Su , and 0*u  terms to have separate 

coefficients ( c , cu, and *c ) rather than the coefficients ( c , c , and c ) corresponding to the 

s  dimensionless group.  Generalizing a physically based model in this way provides for 

assessing the appropriateness of the physically based approach.  If fitting the model in 
Equation (5.6) to experimental data yielded estimates of the coefficients c , cu, and *c  that were 

substantially different (after accounting for uncertainties) than the c , c , and c  assumed 

relationships, it would indicate that an improvement in the physically based model may be 
needed.  Otherwise, restricted least squares methods could be used to force those terms to have 
the same coefficient except for the sign. 
 

When the LSIT tests are completed and data are available, the methods for evaluating the 
data (for potential outliers) and fitted models (to see whether they have significant LOFs to the 
data after accounting for uncertainties in the data) discussed in Section 4.3.3 should then be 
applied.  These are important methods for assessing whether models for mixing performance 
metrics are adequate for extrapolating to full scale. 
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5.2.4 Examples and Discussion of Quantifying Uncertainties in Model 
Coefficients and Predictions of Mixing Performance for the Example 

 
Because there is no appropriate real or simulated data set available with which to fit the 

example model in Equation (5.6), it is not possible to directly illustrate the methods for 
quantifying uncertainties in model coefficients and predictions of mixing performance 
summarized in Section 4.3.4.  However, by assuming some intermediate results that might have 
resulted from the variance component estimation and model fitting, it is possible to illustrate the 
application of some key formulas in Section 4.3.4. 
 

We assume that applying the REML variance-component estimation methodology discussed 
in Sections 3.1.3 and 4.3.2 to results of an experimental design (with appropriate replication at 
each level of restriction on the order of performing tests) yields the following variance 
component (SD) estimates: 
 

 050)n( .SD BCUl
Scale  , 050)n( .SD BCUl

Simulant  , 050)n( .SD BCUl
SolidsConc  , and 050)n( .SD BCUl

Error   (5.7) 

 

Applying Equation (5.2) yields )ln( BCU
TotalSD  = 0.100, as shown in Table 5.1.  Hence, for this 

example, values of UBC from the test matrix would have a total uncertainty of 10 %RSD. 
 

Suppose it is desired to apply the fitted UBC model to predict that metric of mixing 
performance for a full-scale vessel with a specified set of values for the input parameters of the 
model in Equation (5.6).  Assume that the model-predicted value of ln(UBC) = 2.48, which 
corresponds to UBC = 12 m/s. 
 

Now we illustrate using the methods of Section 4.3.4 (to the extent possible for this limited 
example) to quantify the total uncertainty (SD) in the preceding predicted value of ln(UBC), and 
hence of UBC.  Per Equations (4.9) and (4.10), the TPSDs are calculated as TPSDMean = [FPVMean  
+ APV]0.5 and TPSDIndividual = [FPVIndividual + APV]0.5.  Suppose that Equations (4.6) and (4.7) 
yield 
 

FPVMean = 0.020 

FPVIndividual = 2)ln( ][ BCU
TotalSD  + FPVMean = [0.100]2 + 0.020 = 0.030, 

 
respectively.  Also, assume that Equation (4.8) yields 
 

APV = 0.003 
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under the assumption that the uncertainties in the model input parameters (the vector x in 
Equation (4.8)) are statistically independent, as discussed in Section 4.3.4.4.  Then, 
Equations (4.9) and (4.10) yield 
 
 TPSDMean = [FPVMean + APV]0.5 = [0.020 + 0.003]0.5 = [0.023]0.5 = 0.152 
 
 TPSDIndividual = [FPVIndividual + APV]0.5 = [0.030 + 0.003]0.5 = [0.033]0.5 = 0.182 
 
The above values are SDs of ln(UBC) values.  By Equation (5.3), these can be interpreted as 
RSDs (or %RSDs via multiplying by 100).  Hence, for this illustrative example, the predicted 
UBC value of 12 m/s would have an estimated %RSD = 15.2 (18.2) if it is considered as the 
prediction of the long-term mean value (individual value) of UBC for the specific set of input 
parameters used to make the prediction. 
 

Now, suppose that 
 

 100)n( .SD BCUl
Scale  , 100)n( .SD BCUl

Simulant  , 100)n( .SD BCUl
SolidsConc  , and 100)n( .SD BCUl

Error   (5.8) 

 

instead of the values assumed in (5.7).  Applying Equation (5.2) yields )ln( BCU
TotalSD  = 0.200, as 

shown in Table 5.1.  Assuming FPVMean = 0.040 (twice as large as what was used previously 

because )ln( BCU
TotalSD  is twice as large), then FPVIndividual = 0.080.  Keeping APV = 0.003, then 

Equations (4.9) and (4.10) yield TPSDMean = 0.207 and TPSDIndividual = 0.288.  Hence, for this 
revised illustrative example, the predicted UBC value of 12 m/s would have an estimated 
%RSD = 20.7 (28.8) if it is considered as the prediction of the true, mean value (individual 
value) of UBC for the specific set of input parameters used to make the prediction. 
 

Keep in mind that the above example calculations use assumed (i.e., “made up”) values of 
intermediate quantities that in reality must be calculated from the data and the fitted model 
resulting from an appropriate experimental design with appropriate replication at each level of 
restriction on the order of performing tests.  Based on the amount of data and replication, 
expanded uncertainties such as a 95% confidence interval or a 95% prediction interval (see 
Sections 3.3 and 4.3.4.5) could be calculated for each predicted value of UBC (or other mixing 
performance metrics modeled as a function of test parameters) corresponding to a specific set of 
input parameter values.  Finally, because all of the example calculations use assumed (made up) 
values that may not represent reality, the results are “for information only.” 
 
5.2.5 Discussion of Quantifying Possible Uncertainties Not Observable from 

Testing Results 
 

Section 4.4 discusses two possible kinds of uncertainty that are not directly observable from 
testing results.  These include 1) a hypothesized model form to represent the relationship 
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between mixing performance responses and test parameters being incorrect, and 2) differences in 
scaled test vessels and simulants compared to WTP vessels and actual waste feed materials. 
 

With respect to 1), as noted in Section 4.4.1, the greater the physical understanding of the 
observed behavior, the greater the ability to assess the validity of a scaling relationship at length 
scales beyond those tested, and hence the greater the ability to assess the uncertainty in 
extrapolating to larger scales.  The usefulness of the test data is not just from regression to fit 
models to test data.  Test data are equally important for validating a physical conceptual model, 
which then provides a basis for judging the range of length scales for which the model is valid. 
 

The example model for UBC in Equations (5.5) and (5.6) is a generalization of a physically 
based model discussed in Appendix B.  The functional form of the model is based on a specific 
hypothesis about the phenomena that determine UBC, as is discussed in Chapters 2 and 4 in Kuhn 
et al. (2012).  This hypothesis resulted not only in the model form in Appendix B (and hence its 
generalization in Equation (5.5)), but also values of key model coefficients derived 
concomitantly with the model form.  Thus, the model form and its coefficients are an important 
“expert opinion.”  In particular, the values of the coefficients cD, c, cu, and c  are each expected 
to fall within a narrow range of values consistent with the physical conceptual model for UBC.  
Obtaining fitted coefficients substantially inconsistent with these expectations would invalidate 
the conceptual physical model.  Conversely, coefficient values consistent with expectations 
would tend to validate the model form.  To obtain the full weight of expert opinion on the side of 
validation might require supplemental tests designed to further evaluate detailed expectations 
implied by the model.  For example, that may include observing the time required to clear the 
bottom in addition to the velocity required ultimately to clear it, or measurements of the rate of 
erosion of settled solids as a function of jet velocity.  Both sets of supplemental data would serve 
to further validate physical concepts underlying the functional form of the model in Appendix B 
and its generalization in Equation (5.5).  Assuming such experiments add to the confidence in the 
model form already established by a favorable fit of the model to the anticipated LSIT data set 
discussed above, the “expert opinion” would be that the phenomena actually controlling the 
bottom-clearing velocity are as hypothesized.  Then, experts could evaluate whether there is any 
reason for the controlling phenomena to change as the length scale is increased from those of 
LSIT tests to that of the WTP.  If the controlling phenomena do not change between LSIT and 
WTP tests, the model developed from LSIT data applies at the scale of the WTP, and the 
uncertainties of model predictions are limited to the uncertainties discussed in Section 4.3.4 and 
illustrated in Section 5.2.4. 
 

With respect to 2) in the first paragraph, there are two parts to consider.  First, there are 
expected to be small departures from geometric similitude in tanks used for LSIT compared to 
the corresponding vessels in WTP.  Such small departures result from practical considerations, 
such as the cost of extensive machining to provide shapes matching WTP exactly compared to 
using standard metal sheet thicknesses and particularly pipe sizes, etc.  The resulting inexactitude 
is correspondingly small and probably not a technical issue.  Potential exceptions include 



 

5.12 

maintaining exact geometric similarity of the PJM arrays (number, relative size, and shape).  
Experts will need to consider the effect of the resulting change in the flow patterns on the 
associated transport of solids and ultimately on mixing. 
 

Second, there are expected to be differences between the physical attributes of the slurries 
tested in LSIT compared to the actual waste in WTP.  The most important properties are the 
average density of solids in the slurry, their settling rate, the rheological properties of the slurry, 
and the resistance of settled particles to suspension by adjacent fluid motion.  These can be 
matched to the attributes of the WTP waste only approximately because the properties and their 
variation with solids concentration depend on details such as the particle size density distribution 
and chemical properties.  Experts will need to consider the effect on density differences, settling 
of different particles, and rheological properties during mixing that might result from the 
impracticality of exactly matching all aspects of slurries in LSIT to actual WTP waste. 
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6.0 Summary 
 
 

This report discusses the statistical methods for quantifying uncertainties in 
 

A) test responses and other parameters that would be measured or calculated in the LSIT 
 

B) estimates of coefficients and predictions of mixing performance from models developed 
to relate test responses to test parameters. 

 
Testing at a larger scale has been committed to by Bechtel National, Inc., and DOE to “address 
uncertainties and increase confidence in the projected, full-scale mixing performance and 
operations”(1) in the WTP. 
 

Current plans for the LSIT involve testing PJM technology in three scaled vessels with 
nominal diameters of 43 in., 8 ft, and 14 ft.  It is anticipated that LSIT would use several test 
responses to quantify mixing performance, including ECR, UBC,(2) blending criteria, no solids 
accumulation during pump-out, and sampling requirements. 
 

There may be practical restrictions on the order of performing LSIT tests over the three 
scales, including those listed in Table 6.1.  Such restrictions on the order of performing tests 
 

Table 6.1.  Possible Practical Restrictions on the Order of Performing LSIT Tests 
 

Restriction 
Number 

Restriction on the Order of Performing Tests 

1 Performing all tests for a given test vessel size (scale) before switching to a 
different test vessel size 

2 Performing all tests with a given simulant for a given test vessel size before 
switching to a different simulant 

3 Performing all tests with a given solids concentration for a given test vessel size 
and a given simulant before switching to a different solids concentration 

4 Performing all tests with varying nozzle-jet velocities for a given combination of 
test vessel size, simulant, and solids concentration before switching to a different 
combination 

                                                      
(1) Hazen H.  September 2011.  Contract No. DE-AC27-01RV14136- Hanford Tank Waste Treatment and 
Immobilization Plant, Memorandum of agreement (MOA) 24590-QL-WA49-00001, - Directive subcontractor 
change notice No. 119 for WA39LSIT testing, CCN237865, Bechtel National, Inc., Richland, Washington. 
(2) The minimum PJM nozzle-jet velocity required to achieve bottom motion of solids. 
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complicate the error structure of the resulting test data, compared to the simpler error structure 
that would apply if the tests could be performed in a completely randomized order.  Specifically, 
instead of a single uncertainty component for a completely randomized data structure, there are k 
+ 1 uncertainty components when there are k restrictions on the order of performing tests.  Also, 
the restrictions cause subgroups of the test response values to have nonzero covariances.  
Appendix A gives the matrix-vector formulas for the variance-covariance matrices of the ECR 
and UBC test responses under the more complicated error structure.  The more complicated error 
structure that exists when there are restrictions on the order of performing tests must be 
accounted for in developing the LSIT experimental design and in analyzing the data (including 
developing models to predict mixing performance as a function of scale and other LSIT test 
parameters). 
 

Sections 2.3 and 2.4 present possible additive and multiplicative data structures of LSIT test 
responses for ECR and UBC.  The data structures discussed in Sections 2.3 and 2.4 assume that 
restrictions 1–4 in Table 6.1 apply for ECR and restrictions 1–3 in Table 6.1 apply for UBC.  
Estimates of the SDs for an additive data structure and the %RSD for a multiplicative data 
structure are: 
 

 ECR Additive:  ECR
ScaleSD , ECR

SimulantSD , ECR
SolidsConcSD , ECR

NozzleVelSD , and ECR
ErrorSD  

 ECR Multiplicative:  ECR
ScaleRSD% , ECR

SimulantRSD% , ECR
SolidsConcRSD% , ECR

NozzleVelRSD% , 

                                   and ECR
ErrorRSD%  

 UBC Additive:  BCU
ScaleSD , BCU

SimulantSD , BCU
SolidsConcSD , and BCU

ErrorSD  

 UBC Multiplicative:  BCU
ScaleRSD% , BCU

SimulantRSD% , BCU
SolidsConcRSD% , and BCU

ErrorRSD%  

 
where the Scale, Simulant, SolidsConc, and NozzleVel subscripts correspond to the 
restrictions 1–4 in Table 6.1, respectively.  The Error subscript refers to the uncertainties within 
test combinations of Scale, Simulant, and SolidsConc (for UBC), as well as NozzleVel (for ECR). 
 

The LSIT experimental design (i.e., the test matrix, including replicates; order of performing 
the tests; etc.) must be developed to provide for quantifying the uncertainties in A) and B) above 
and reducing the uncertainties in B).  Statistical OED methods guided by subject-matter 
knowledge provide for distributing test parameter combinations (tests) over the test parameter 
space to provide optimal support for the model forms that may be fitted to the test-response data.  
Including replicates at each level of restriction on the order of performing tests provides for 
quantifying the SDs associated with the sources of uncertainty in the data.  Statistical 
experimental design methods provide for determining the amount of replication needed to 
estimate as precisely as possible the SDs given a specified limit on the total number of tests. 
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The guidance document ASME PTC 19.1-2005 (Test Uncertainty, ASME 2006) discusses 
many useful methods for quantifying uncertainties in test responses and parameters that are 
discussed in this report.  Section 3.2 discusses the error propagation methodology for calculating 
the uncertainty in a parameter expressed as a known function of other uncertain parameters.  
Section 3.3 discusses the concepts of combined uncertainties (combining estimates of uncertainty 
from all sources into a single total uncertainty) and expanded uncertainties (uncertainties with a 
multiplier chosen to provide a specified level of statistical confidence).  However, uncertainties 
resulting from restrictions on the order of performing tests in a test matrix are not directly 
addressed by ASME (2006).  Hence, statistical methods from other references (e.g., Montgomery 
et al. 2001; Goos et al. 2006; Kowalski et al. 2007) are also required. 
 

Assuming an appropriate experimental design with adequate replication at the different levels 
of restriction on the order of performing tests, the method for estimating the associated SDs for a 
given test response is discussed in Section 3.1.3.  Section 3.1.4 discusses how replicate 

measurements may be averaged to effectively reduce the magnitude of Y
ErrorSD  or Y

ErrorRSD% , 

where Y is a given test response.  Section 3.1.5 gives the formulas for quantifying the total 
uncertainty (SD or %RSD) in values of the test responses ECR and UBC, assuming the data 
structures in Table 6.1, as discussed previously.  For example, if UBC has a multiplicative data 
structure, the total %RSD is given by 
 

BCU
Total%RSD 	=	 502222 ]))()()[( .BCU

Error
BCU

SolidsConc
BCU

Simulant
BCU

Scale RSD(%RSD%RSD%RSD%    (6.1) 

 
where the notation is as defined previously. 
 

Section 4 presents and discusses methods for	reducing and quantifying the uncertainties of 
full-scale mixing performance using models developed from LSIT data.  Section 4.1 discusses 
two approaches for developing the experimental design for LSIT.  Section 4.2 discusses the OED 
method for generating test parameter combinations to 
 

 adequately “cover” the test parameter space (which may be expressed in terms of 
dimensional and/or dimensionless parameters) 

 
 provide support for fitting models of the forms that might be required to adequately 

represent the dependence of mixing performance on test parameters, including scale. 
 
Section 4.2 also discusses and illustrates what is meant by replicates at each level of restriction 
on the order of performing tests, and describes approaches that would provide sufficient numbers 
of replicates at each level of restriction without having too large a total number of tests. 
 

Section 4.3.1 discusses the development of model forms for test responses as functions of test 
parameters (dimensional, and/or dimensionless).  It also describes 1) the concept of spurious 
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correlation, (which can result in a model form appearing to fit experimental data better than it 
actually does), and 2) methods for re-expressing models to mathematically equivalent forms to 
avoid spurious correlation.  Section 4.3.2 discusses the FGLS methodology for fitting models to 
data that have more complicated error structures because of restrictions on the order of 
performing tests.  Section 4.3.3 discusses methods for evaluating how well a model form fits a 
given data set, and whether the uncertainties in model predictions are within the uncertainty of 
the data.  Section 4.3.4 presents matrix-vector formulas for quantifying uncertainties in model 
coefficients and model predictions of mixing performance.  The total uncertainty in a model 
prediction comprises fitting prediction uncertainty (uncertainty resulting from fitting model 
coefficients to experimental data) and application prediction uncertainty (uncertainty resulting 
from uncertainties in the model parameter values used to make the prediction).  The variance 
components associated with these two sources of model prediction uncertainty are denoted FPV 
and APV, respectively.  The FPV can be calculated considering the predicted value to be an 
estimate of 1) the true, unknown mean for the given set of input parameter values (denoted 
FPVMean), or 2) an individual test result (denoted FPVIndividual). 
 

Section 5 presents example applications and discussions of the methods for quantifying 
uncertainties discussed in Sections 3 and 4.  For the examples in Section 5, it is assumed that 
models for mixing performance metrics have a multiplicative structure (e.g., power-law models) 
with multiplicative errors.  Then, taking the natural logarithm of both sides of the model yields 
an additive model form with additive errors. 
 

Table 5.1 in Section 5.1.1 lists the values of )n(ECRl
TotalSD  and )ln( BCU

TotalSD  that result from the 

formulas 
 

 )n(ECRl
TotalSD 	=	 502)ln(2)ln()ln(2)ln(2)ln( ])()()()()[( .ECR

Error
ECR

NozzleVel
ECR

SolidsConc
ECR

Simulant
ECR

Scale SDSDSDSDSD   (6.2) 

 

 )ln( BCU
TotalSD 	=	 502)ln()ln(2)ln(2)ln( ])()()()[( .BCU

Error
BCU

SolidsConc
BCU

Simulant
BCU

Scale SDSDSDSD  , (6.3) 

 
where the SDs on the right-hand sides of the equations take all possible combinations of the 
values 0.05 and 0.10.  The approximate relationship 
 
 SD[ln(y)] ≈ RSD(y) (6.4) 
 
indicates that the SDs on both sides of Equations (6.2) and (6.3) can be interpreted as %RSDs 
(i.e., 100  RSD).  Hence, the values of 0.05 or 0.10 for SDs on the right-hand sides of the 

equations correspond to %RSD values of 5% or 10%.  The )ln(ECR
TotalSD  values from Equation (6.2) 

range from 0.112 to 0.224 (11.2 to 22.4 %RSD), while the )ln( BCU
TotalSD  values from Equation (6.3)  
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range from 0.100 to 0.200 (10 to 20 %RSD).  The )ln( BCU
TotalSD  values are smaller than the 

)ln(ECR
TotalSD  values because the latter have one extra estimated SD ( )ln(ECR

NozzleVelSD ) that contributes to 

the total SD. 
 

Section 5.1.2 contains an example illustrating application of the error propagation methods 
from Section 3.2 to calculate the uncertainty in the estimated PJM nozzle velocity based on 
uncertainties of the input parameters in an equation used to estimate the PJM nozzle velocity. 
 

Section 5.2 presents applications and discussion of the methods (in Section 4) for quantifying 
uncertainties of full-scale mixing performance using an example model for UBC, 
 

 
 c

0 )(  
*

uc
S

c
S

Dc
WTPBC uuDcU , (6.5) 

 
where D = diameter of the scaled test vessel 
 S = volume fraction of solids in the vessel 
 uS = nominal settling velocity of the particles as they settle on to the floor of the 

vessel 
 *u , 0 = material properties of the layer of settled solids 

 
and cWTP, cD, c , cu, and *c  are coefficients to be estimated by fitting the model to experimental 

data.  To avoid spurious correlation, a physically based model developed by Kuhn et al. (2012) 
was re-expressed in the mathematically equivalent form in Equation (6.5), as discussed in 
Appendix B.  Because Equation (6.5) has a multiplicative structure and is under the assumption 
that the error structure is multiplicative, taking the natural logarithm of both sides yields 
 

 )ln()ln()ln()ln()ln()ln( 0 *SuSDWTPBC ucuccDccU   (6.6) 
 
where all notation is as previously defined.  Assuming that the experimental design would be 
subject to restrictions 1–3 on the order of performing tests given in Table 6.1, the model term(s) 
in (6.6) associated with each error term are 
 

Scale:  ln(D) 
Simulant:  )ln( Su , )ln( *u  

Solids Concentration:  )ln( S . 

 
It was beyond the scope of work summarized in this report to develop an experimental design 

(including a test matrix) for this UBC example.  Section 5.2.2 briefly discusses the steps of the 
process that would be used to develop an experimental design. 
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There are no existing data sets from previous tank mixing studies that 1) were conducted 
accounting for the restrictions on the order of performing tests, and 2) included appropriate 
replication.  Hence, there were no existing data that could be used to illustrate the model fitting 
and evaluation methods discussed in Section 4.3.  Because developing an experimental design 
for the example model was beyond the scope of the effort, it was not possible to simulate a data 
set using specified model coefficient values and estimates of the SDs for the multiple sources of 
uncertainty associated with restrictions on the order of performing tests.  However, Section 5.2.3 
discusses development of the example model in Equation (6.5) and notes that model evaluation 
methods could be applied if a data set were available. 
 

Section 5.2.4 contains examples and discussion of the methods in Section 4.3.4 for 
quantifying uncertainties in model predictions of mixing performance.  Because no real or 
simulated data were available, some intermediate values were assumed that would normally be 
obtained by analyzing data from an experimental design with appropriate replication.  Assuming 
 

 050)ln( .ˆ BCU
Scale  , 050)ln( .ˆ BCU

Simulant  , 050)ln( .ˆ BCU
SolidsConc  , and 050)ln( .ˆ BCU

Error   (6.7) 

 

and applying Equation (6.3) yields )ln( BCU
TotalSD  = 0.100.  This can be interpreted, via 

Equation (6.4), as UBC values from the test matrix having a total uncertainty of 10 %RSD. 
 

Suppose the fitted UBC model Equation (6.6) was available and used to predict UBC for a 
full-scale vessel with a specified set of values for the input parameters of the model.  Assume 
that the model-predicted value of ln(UBC) = 2.48, which corresponds to UBC = 12 m/s.  As shown 
in Section 5.2.4, Equations (4.6) and (4.7) yield FPVMean = 0.020 and FPVIndividual = 0.030, 
respectively.  Then, assuming that Equation (4.8) yields APV = 0.003, Equations (4.9) and (4.10) 
yield 
 
 TPSDMean = [FPVMean + APV]0.5 = [0.020 + 0.003]0.5 = [0.023]0.5 = 0.152 
 
 TPSDIndividual = [FPVIndividual + APV]0.5 = [0.030 + 0.003]0.5 = [0.033]0.5 = 0.182, 
 
respectively.  The above values are TPSDs of the predicted value ln(UBC) = 2.48.  Via 
Equation (6.4), these can be interpreted as %RSD =15.2 if the predicted value of UBC = 12 m/s is 
considered a prediction of the long-term mean value, and %RSD = 18.2 if it is considered a 
prediction of an individual value. 
 

A second example in Section 5.2.4 uses 0.10 instead of 0.05 for each of the four SDs in 
Equation (6.7).  The results are TPSDMean = 0.207 and TPSDIndividual = 0.288.  Via Equation (6.4), 
these can be interpreted as %RSD values of 20.7 if the predicted value of UBC  = 12 m/s is 
considered a prediction of the long-term mean value, and 28.8 if it is considered a prediction of 
an individual value. 
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In conclusion, LSIT testing is planned to be performed in three scaled test vessels, with the 
order of performing the tests expected to be subject to several restrictions.  Such restrictions 
result in a more complicated variance-covariance matrix for the data (which has the sum of all 
relevant variance components in the diagonal elements of the matrix, and nonzero covariances in 
several off-diagonal elements).  The nonzero covariances are also sums of certain variance 
components.  Hence, estimating the whole variance-covariance matrix requires estimating only 
the multiple variance components associated with the restrictions on the order of performing the 
tests.  The experimental design for LSIT must be constructed to adequately “cover” the test 
parameter space (in dimensional and/or nondimensional parameter space) so as to provide 
support for fitting the model forms hypothesized.  The experimental design must also include 
sufficient replication at each level of restriction to provide for quantifying the associated 
variance components.  Then, statistical methods can be applied to fit the physically based models 
to the experimental data, and to evaluate the data for outliers and the models for adequate fits.  
Initially hypothesized model forms may be revised based on model evaluation methods.  When 
final fitted versions of physically based models are obtained that fit the data within its 
uncertainty, they can then be used to predict mixing performance for full-scale vessels.  
Statistical methods for quantifying uncertainties of model predictions can be applied to attach 
uncertainties to predicted values of the mixing performance metrics. 
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Appendix A 
 

Variance-Covariance Matrices for Example LSIT Data 
Structures of ECR and UBC Test Responses 

 
 

Section A.1 displays the variance-covariance matrices for the effective clearing radius (ECR) 
test response assuming the Large Scale Integrated Testing (LSIT) data structure discussed in 
Section 2.3.  Section A.2 displays the variance-covariance matrices for the UBC test response 
assuming the LSIT data structure discussed in Section 2.4. 
 

A.1 Variance-Covariance Matrices for the ECR Test Response with 
an Example LSIT Data Structure 

 
The variance-covariance matrix corresponding to the additive data structure for ECR in 

Equation (2.8) of Section 2.3 is given by 
 

	 nErrorNozzleVelSolidsConcSimulantScaleECR '''' IRRQQPPZZV 22222    (A.1)	

	
where Z is an n × b matrix with ith row equal to zi, P is an n × c matrix with ith row equal to pi, Q 
is an n × d matrix with ith row equal to qi, R is an n × e matrix with ith row equal to ri, and In is 
an n × n identity matrix (i.e., with ones on the diagonal and zeroes elsewhere).  The constant n is 
the number of test runs in the experimental design (i.e., test matrix), while the constants b, c, d, 
and e are respectively the numbers of distinct scaled test vessels, simulants, solids concentration 
levels and nozzle velocity levels in the experiment.  Further, zi is an indicator vector with a one 
in the kth position if the ith run involves the kth scale and zero otherwise.  Similarly, pi is an 
indicator vector with a one in the kth position if the ith run involves the kth simulant (within a 
scale) and zero otherwise.  The vectors qi and ri are similarly defined for solids concentration 

and nozzle velocity.  The variances 2
Scale , 2

Simulant , 2
SolidsConc , and 2

NozzleVel  are the variance 

components associated with the corresponding restrictions on the order of performing tests.  The 

variance 2
Error  is associated with the random errors in the test response for a given set of values 

of all other test parameters. 
 

With the multiplicative structure for ECR in Equation (2.7) of Section 2.3, the modeling 
approach could be to take the natural logarithm of both sides so that the model and error 
structure are then additive.  The variance-covariance matrix for that approach would then have 

the same form as in Equation (A.1), except that 2
Scale , 2

Simulant , 2
SolidsConc , 2

NozzleVel , and 
2
Error  would be for natural logarithm transformations of ECR. 
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A.2 Variance-Covariance Matrices for the UBC Test Response with an 
Example LSIT Data Structure 

 
The variance-covariance matrix corresponding to the additive data structure for UBC in 

Equation (2.11) of Section 2.4 is given by 
 

	 nErrorSolidsConcSimulantScale ''' IQQPPZZV 2222    (A.2) 

 
where the notation is as defined in Section A.1. 
 

With the multiplicative structure for UBC in Equation (2.12) of Section 2.4, the modeling 
approach could be to take the natural logarithm of both sides so that the model and error 
structure are then additive.  The variance-covariance matrix for that approach would then have 

the same form as in Equation (A.2), except that 2
Scale , 2

Simulant , 2
SolidsConc , and 2

Error  would 

be for natural logarithm transformations of UBC. 
 

We now illustrate the matrices in the variance-covariance matrix formula in Equation (A.2), 
for an example(1) with the UBC response and a balanced experiment with 16 total runs.  This 
includes eight runs at each of the two different scales (conducted as two whole plots), two 
simulants (run as two sub-plots within each whole plot), two solids concentrations conducted as 
sub-sub-plots within each sub-plot, and finally an application of the process incrementing nozzle 
velocity to determine UBC for each of the pairs of eight combinations of scale, simulant, and 

solids concentrations.  The matrices 'ScaleZZ2 , 'SimulantPP2 ,	 'SolidsConcQQ2 , and	 nErrorI2 	are 

shown in Figures A.1 to A.4, respectively.  These matrices assume the data are ordered such that 
 

 Scale varies least frequently (i.e., tests 1-8 are at one scale, and tests 9-16 are at the 
second scale) 

 
 Simulant varies next most frequently (i.e., tests 1–4 and 9–12 use the first simulant, while 

tests 5–8 and 13–16 use the second simulant) 
 

 Solids concentration varies the next most frequently (i.e., tests 1, 2, 5, 6, 9, 10, 13, 14 use 
the first solids concentration, while tests 3, 4, 7, 8, 11, 12, 15, and 16 use the second 
solids concentration) 

 
 The measurement process to determine UBC varies the most frequently (i.e., is replicated 

twice for each of tests 1–16). 

                                                      
(1) This example was not constructed to be realistic, but rather to be simple enough to produce a variance-covariance 
matrix whose component matrices could be displayed. 
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This order was selected for simplicity in displaying the matrices.  In practice, the order of testing 
the values of each test parameter should be randomized within each level of restriction on the 
order of performing tests. 
 

Finally, recall that this example for UBC with two values for each test parameter and no 
replication was chosen solely to keep the total number of tests to a bare minimum to enable 
illustrating the forms of the matrices, which when added together, form the variance-covariance 
matrix for the data.  In reality, the appropriate numbers of values of each test parameter would be 
investigated, and some (e.g., partial) replication would be required at each level of restriction on 
the order of performing the tests.  The specific combinations of test parameters and the 
replications comprising an actual test matrix should be determined using statistical experimental 
design methods and software (which account for the complicated split-plot structure of the data) 
in combination with subject-matter expertise. 
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Figure A.1.  The 'ScaleZZ2  Matrix from Equation (A.2) for the UBC Example 
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Figure A.2.  The 'SimulantPP2  Matrix from Equation (A.2) for the UBC Example 
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Figure A.3.  The 'SolidsConcQQ2  Matrix from Equation (A.2) for the UBC Example 
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Figure A.4.  The nError I2  Matrix from Equation (A.2) for the UBC Example 
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B.1 

Appendix B 
 

Development of a Physical Model for UBC 
 
 

The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built 
to pre-treat and vitrify a large portion of the waste stored in the Hanford Site’s 177 underground 
waste storage tanks.  Several process vessels will hold the waste at various processing stages.  
These vessels have mixing(1) system requirements to maintain conditions in which hydrogen gas 
accumulation remains below acceptable limits, and mixing within the vessels is sufficient to 
make sure that pump transfer and normal operations occur reliably.  WTP uses pulse jet mixing 
(PJM) technology for slurry mixing applications.  There is a suction phase, during which process 
liquid is drawn into the PJM from the vessel.  That is followed by the drive phase, during which 
air in the PJM is pressurized, discharging the PJM liquid contents at high velocity into the vessel, 
causing mixing to occur.  A PJM system differs fundamentally from many industrial mixers.  In 
a sense, PJMs alternate between mixing success and failure during every pulse cycle.  During the 
refill phase, some of the solids settle from the slurry, which nominally is a failure in mixing, but 
during the drive phase all of the solids can be resuspended.  The extent to which settled solids are 
cleared from the vessel floor and resuspended can be linked fundamentally to the momentum 
flow rate out of the PJM during the drive phase. 
 

Thus, it is essential to predict the minimum momentum flow rate at which settled solids are 
cleared from the bottom of a WTP vessel.  One approach is presented by Kuhn et al. (2012) 
based on 1) the expected behavior of the radial wall jet on the vessel flow induced by the PJM 
momentum, and 2) certain hypotheses about the relationship of shear stress action on the settled 
solids to the rate of erosion of the solids.  See Sections 2.2.2 and 2.2.3 of Kuhn et al. (2012) for 
details.  The result is the expression 
 

      c
S

Sc
S

Hcrc
BC dHrrcK  10   (B.1) 

 
where KBC = minimum kinematic momentum flow from the PJM that clears the settled 

solids (termed the “bottom clearing” condition) 
 r = radius from the centerline of the PJM out to the collision of the radial wall 

jet with those from surrounding PJMs 
 H = distance from the PJM nozzle to the vessel floor 

                                                      
(1) Mixing refers to the mobilization and subsequent suspension of undissolved solids within a vessel.  Mixing can 
have varying results:  1) a fully-mixed vessel where the solids concentration is uniform throughout the vessel, 
2) a partially mixed vessel where there is a solids concentration gradient that is higher at the bottom of the vessel, or 
3) a poorly mixed vessel where the solids are disturbed but remain on or near the bottom of the vessel. 



 

B.2 

 dS = nominal diameter of the particles forming the settled solids 
 θS = dimensionless group as defined in Equation (B.2). 
 
and c0, cr, cH, cS, and cθ are coefficients to be estimated by fitting the model to data.  Also in 
Equation (B.1), θS is given by 
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where S = volume fraction of solids in the vessel 
 uS = nominal settling velocity of the particles as they settle on to the floor of the 

vessel 
 tS = time during which the particles settle 
 *u , 0 = material properties of the layer of settled solids 

 tD = time available for the PJM momentum to clear the settled solids. 
 
Kuhn et al. (2012) evaluated S by assuming that the product ( 0*u ) is small enough that 

S >> 1, in which case the (1 + S) in Equation (B.1) may be replaced by S.  Doing that and then 
substituting Equation (B.2) into Equation (B.1) yields 
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The radius r can be estimated by assuming each PJM clears the same area of settled solids 

 

 
 JNDr 2  (B.4) 

 
where D is the diameter of the vessel and NJ is the number of PJMs in the vessel.  The 
momentum flow rate is the product of the volumetric flow rate and the velocity.  Evaluating this 
at the PJM nozzle gives 
 

 
UdK JBC 4


  (B.5) 

 
where dJ is the diameter of the PJM nozzle and U is the PJM nozzle velocity.  Substituting 
Equations (B.4) and (B.5) into Equation (B.3) yields 
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B.3 

If the Large Scale Integrated Testing were going be done using Approach 1 discussed in 
Section 4.1, consider the tests associated with a single type of WTP vessel.  All tests would be 
done for one set of parameters specified to maintain geometric similitude.  Regarding the 
parameters considered here, the values of the ratios dJ/D and H/D would be kept constant at the 
values of the ratio in the WTP vessel.  Thus we would have 
 

 
 WTPJJ DdD/d   (B.7) 

 

 
 WTPDHDH   (B.8) 

 

 
 WTPJJ NN    (B.9) 

 
Also, the ratio tS/tD would be kept constant at its value for that WTP vessel, so that 
 

 
   WTPDSDS tttt   (B.10) 

 
Substituting Equations (B.7) to (B.10) into Equation (B.6) and solving for UBC yields 
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where 
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is a constant depending on the identity of the WTP vessel on which the testing is based. 
 

If the form of the model Equation (B.11) is correct, but one wants to assess whether S , Su , 

and ( 0u ) all have coefficients equal to cθ or its negative, the following generalized form of 

Equation (B.11) may be considered 
 

 
 c
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where S , Su , and ( 0u ) have been given different exponents (coefficients).  In this equation, 

we assume the components of the product ( 0*u ) cannot be distinguished physically from the 

tests done to check the functional form for UBC.  Hence, this product is treated as a single 
parameter. 
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