PNWD-3251 WTP-RPT-026, Rev 0

Equilibrium Batch Contact Testing of SuperLig® 639

B. M. Rapko D. L. Blanchard, Jr. K. J. Carson

March 2003

Prepared for the Bechtel National, Inc. under Contract 24590-101-TSA-W0000-0004

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS

OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

PNWD-3251 WTP-RPT-026, Rev 0

Equilibrium Batch Contact Testing Of SuperLig[®] 639:

B. M. Rapko D. L. Blanchard, Jr. K. J. Carson

March 2003

Test specification: N/A Test plan: CHG-TP-41500-014, Rev. 0 Test exceptions: None R&T Focus Area: Pretreatment Test Scoping Statement(s): B-50

Battelle, Pacific Northwest Division Richland, Washington 99352

Completeness of Testing

This report describes the results of work and testing specified by CHG-TP-41500-014, Rev. 0. The work and any associated testing followed the quality assurance requirements outlined in the Test Specification/Plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

Gordon H. Beeman, Manager WTP R&T Support Project Date

G. Todd Wright, Manager Research and Technology Date

Summary

Objectives

Battelle, Pacific Northwest Division (PNWD) is contracted to Bechtel National Inc. (BNI) on the River Protection Project – Waste Treatment Plant (RPP-WTP) project to perform research and development activities. Unit operations of the WTP process include the separation of ⁹⁹Tc by ion exchange from the liquid portion of the waste. The SuperLig[®] 639 (SL-639) ion exchange resin was selected by the project to perform this ⁹⁹Tc separation.

The RPP-WTP is evaluating the SL-639 resin to determine its behavior under various potential processing conditions. Under test scoping statements S-142 and S-143, a model is being developed at the Savannah River Technical Center (SRTC) that will be able to predict the response of SL-639 under various processing conditions. This investigation was conducted according to the test plan prepared by Rapko (2001) in response to the test requirements to investigate ion exchange resin degradation delineated by Barnes et al. (2002) in Section 3.7.2.1 of the Research and Technology Plan and test scoping statement B-50. The results from these tests will be incorporated into the afore-mentioned model. Objectives as noted in test scoping statement B-50 were to:

- evaluate the impact of the solution's nitrate to pertechnetate ratio on the SL-639 distribution ratio
- evaluate the impact of the solution's chloride to pertechnetate ratio on the SL-639 distribution ratio
- evaluate the impact of the solution's ionic strength on the SL-639 distribution ratio
- evaluate the impact of temperature and time on the SL-639 distribution ratio.

These results were achieved.

Conduct of Testing

A batch of SuperLig[®] 639 was preconditioned by contact with an alkaline solution at 5 M sodium. Excess hydroxide and sodium were removed by repeated contacts with deionized water, and the resin was dried to a constant weight. Approximately 0.1 g of resin was contacted with 10 mL of a pertechnetate (⁹⁹Tc)-containing test solution. Sample aliquots were taken before and after contact with the resin, and their activity was analyzed by liquid scintillation counting.

Results and Performance Against Objectives

The variables tested and a summary of key findings are given below:

- <u>Room-temperature kinetic measurements were performed under the experimental conditions used</u> for subsequent batch contacts. The primary purpose behind this measurement was to verify that subsequent room-temperature batch contacts were performed under equilibrium conditions. It was determined from the results reported in Section 3.1 that under the experimental conditions employed for these batch contacts, in particular the speed (225 rpm) used with this rotary shaker, that 48 h would be sufficient to achieve equilibrium. Contact times of 72 h were used in subsequent measurements to assure that these measurements were made under equilibrium conditions.
- 2) Elevated (65°C) kinetic measurements were performed under the experimental conditions used for subsequent batch contacts. At high (5 M) sodium concentrations, the targeted concentration for treated Hanford tank solutions by the SuperLig[®] 639 resin, the results reported in Section 3.2 indicate that the system reaches equilibrium at 65°C, the temperature proposed for elution of the SuperLig[®] 639 resin, much more rapidly than at room temperature, with the system achieving a distribution value within 4 h that remained unchanged even if contacted for several additional days. For consistency's sake with the room-temperature measurements, 72 h was used for subsequent measurements made at 65°C. As described in Section 3.3, at 65°C and low, approximately 2 mM, sodium concentrations, the pertechnetate distribution values were so low that no decrease in pertechnetate concentration was observed (a K_d of effectively zero). Such low K_d values are a desirable feature for the resin under elution conditions.
- 3) Pertechnetate K_d measurements were made as a function of [NO₃⁻]/[TcO₄⁻] at room temperature. In Section 3.4, the pertechnetate K_d is reported as a function of the equilibrium nitrate/pertechnetate ratio over a range of 10⁶. In addition, pertechnetate measurements on an envelope A supernatant, AN-105, simulant, as well as selected perrhenate K_d measurements, were reported. The most striking features are: 1) the enhanced K_ds for perrhenate and pertechnetate observed in the AN-105 simulant versus the simple, 5 M [Na⁺] simulant and 2) the approximately 50% lower perrhenate K_d as compared to the pertechnetate K_d. The cause of the enhanced K_ds is unclear, but extraction of pertechnetate as an ion-pair coupled with the presence of a more tightly binding cation (such as potassium) in the AN-105 simulant or a slightly higher sodium concentration in the AN-105 simulant are possible explanations.
- 4) Pertechnetate K_d measurements were made as a function of [NO₃⁻]/[TcO₄⁻] at elevated temperature (65°C). In Section 3.5, the same scope of measurements performed in Section 3.4 is repeated, but with the test samples at 65°C. The same trends noted above are also found at 65°C, but the distribution values are substantially decreased.
- 5) <u>Pertechnetate K_d measurements were studied as a function of changing the solution's ionic strength.</u> In Section 3.7, the impact of changing the salt concentration on the pertechnetate distribution value was examined. A strong linear correlation of the pertechnetate distribution value to both the total sodium concentration and to the solution's ionic strength was found. In this test, those two factors are so closely related that it cannot be said with certainty which

solution property is impacting the pertechnetate distribution value. If the ionic strength effect is indeed the controlling factor, the magnitude of the response is remarkable. However, the resin has been reported to operate by extracting a sodium pertechnetate ion pair. Consistent with that interpretation, these test results simply illustrate the resin affinity for sodium ion.

6) <u>A measurement was made to evaluate the impact of varying the competing anions chloride and hydroxide on the pertechnetate K_d. In Section 3.6, the pertechnetate distribution value was measured as the chloride and hydroxide ratios were changed while keeping the solution's sodium concentration constant. The results indicate that hydroxide competes more effectively than chloride with pertechnetate for binding to SuperLig[®] 639.</u>

For each set of test results, the distribution values are presented both in a table and graphically.

Quality Requirements

PNWD implemented the RPP-WTP quality requirements in a quality assurance project plan (QAPjP) as approved by the RPP-WTP QA organization. This work was conducted to the quality requirements in NQA-1-1989 Part I, Basic and Supplementary Requirements, and NQA-2a-1990, Subpart 2.7, as instituted through PNWD's Waste Treatment Plant Support Project Quality Assurance Requirements and Description Manual (WTPSP).

PNWD addressed data-verification activities by conducting an independent technical review of the final data report in accordance with Procedure QA-RPP-WTP-604. This review verified that the reported results were traceable, that inferences and conclusions were soundly based, and that the reported work satisfied the Test Plan objectives.

Issues

No WTP design or operational issues have been identified.

References

Barnes S, R Roosa, and R Peterson. 2002. *Research Technology Plan*, 24590-WTP-PL-RT-01-002, Rev. 1. River Protection Project, Richland, Washington.

Rapko BM. 2001. "Equilibrium Batch Contact Testing for CH2MHill Inc." CHG-TP-41500-014, Pacific Northwest National Laboratory, Richland, Washington.

Acronyms

DI	deionized water
HLW	high-level waste
ICP-MS	inductively-coupled plasma mass spectroscopy
LAW	low-activity waste
LSC	liquid scintillation counting
PNWD	Battelle Pacific Northwest Division
QAPjP	quality assurance project plan
RPP-WTP	River Protection Project – Waste Treatment Plant
SRTC	Savannah River Technology Center
WTPSP	Waste Treatment Plant Support Project Quality Assurance Requirements and Description Manual

Contents

Sun	ımary	/	iii
Acr	onyn	18	vii
1.0	Intro	oduction	1.1
	1.1	Background	1.1
	1.2	Objectives	1.1
	1.3	Purpose	1.2
	1.4	Quality Assurance	1.2
2.0	Exp	erimental	2.1
	2.1	Preparation of Non-Radioactive Stock Solutions	2.1
	2.2	Preparation of Sodium Perrhenate Stock Solutions	2.3
	2.3	Preparation of Pertechnetate Stock Solutions	2.3
	2.4	Pretreatment of SuperLig [®] 639	2.3
	2.5	F-Factor Measurement for Pretreated SuperLig [®] 639	2.4
	2.6	Batch Contact Measurements – General Procedure	2.4
3.0	Res	ults and Discussion	3.1
	3.1	Pertechnetate 25°C Kinetic Measurements	3.2
	3.2	Pertechnetate Kinetics Tests at 65°C Under Loading Conditions	3.4
	3.3	Pertechnetate Kinetics Tests at 65°C Under Stripping Conditions	3.5
	3.4	Effect of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on SuperLig [®] 639 Distribution Values at 25°C	3.6
	3.5	Effect of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on SuperLig [®] 639 Distribution Values at 65°C	3.8
	3.6	Effect of Varying Chloride Versus Hydroxide as the Competing Anion on SuperLig [®] 639 Pertechnetate Distribution Values at 25°C	3.10

	3.7 Impact of the Sodium Concentration on SuperLig [®] 639 Pertechnetate Distribution Values at 25°C.	
4.0	Conclusions	4.1
5.0	References	5.1

Figures

Figure 3.1.	Plot of 25°C Pertechnetate Kinetic Tests with SuperLig [®] 639	3.3
Figure 3.2.	Plot of 65°C Pertechnetate Kinetic Tests with SuperLig [®] 639 at 5 M Total Sodium	3.5
Figure 3.3.	Plot of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on Metal K _d at 25°C	3.7
Figure 3.4.	Plot of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on Metal K _d at 65°C	3.9
Figure 3.5.	Plot of Effect of Varying Hydroxide Versus Chloride at 5 M Total Sodium, 0.018 M Nitrate, 25°C.	. 3.10
Figure 3.6.	Plot of the Impact of Varying Sodium Concentration on Pertechnetate K _d Values at 0.018 M Nitrate/0.01 M Hydroxide, 25°C	. 3.11
Figure 3.7.	Plot of the Impact of Varying Solution Ionic Strength on Pertechnetate Distribution Values at 0.018 M Nitrate/0.01 M Hydroxide, 25°C	. 3.12

Tables

Table 2.1a. Reagents Added to Simulant	2.1
Table 2.1b. Solution Prepared in Separate Container	2.2
Table 2.1c. Compound Added to Volumetric Flask	
Table 2.1d. More Compounds Added to Volumetric Flask	
Table 2.2. Results from F-Factor Experiment	2.4
Table 3.1. Results of 25°C Pertechnetate Kinetic Tests with SuperLig [®] 639	
Table 3.2. Results of 65°C Pertechnetate Kinetic Tests with SuperLig [®] 639 at 5 M Total Sodium	
Table 3.3. Impact of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on Metal K _d at 25°C	
Table 3.4. Impact of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on Metal K _d at 65°C	
Table 3.5. Effect of Varying Hydroxide Versus Chloride at 5 M Total Sodium, 0.018 M Nitrate, 25°C	
Table 3.6. Impact of Varying Sodium Concentration on Pertechnetate K _d Values at0.018 M Nitrate/0.01 M Hydroxide, 25°C	
Table 3.7. Impact of Varying Ionic Strength on Pertechnetate Distribution Values at0.018 M Nitrate/0.01 M Hydroxide, 25°C.	

1.0 Introduction

1.1 Background

The U.S. Department of Energy plans to vitrify the waste from the 177 underground storage tanks at the Hanford Site. Vitrification will immobilize the tank waste for permanent disposal. In the proposed facility for immobilizing tank waste, the incoming tank waste will be initially split into a low-activity waste (LAW) solution stream and a high-level waste (HLW) solids steam for separate vitrification. To render the solution stream suitable for LAW vitrification, additional processing to remove radioactive cesium and technetium will be required (Barnes et al. 2002). Much recent work has been performed investigating the use of two ion exchange resins developed by IBC Advanced Technologies, Inc. for use in removing selected radionuclides from Hanford tank waste supernatants. Superlig[®] 639 has been and is being investigated for removing technetium (as pertechnetate) from alkaline, high sodium solutions, including actual Hanford tank supernatants (Hamm et al. 2000; Blanchard et al. 2000). Existing data to date using both simulants and actual tank wastes have been evaluated and included in an ion exchange process model under continuing development at Savannah River Technology Center (SRTC) (Hamm et al. 2000).

It has been shown that batch-contact distribution data collected from simple binary systems can be incorporated in such a process model for use in more complex systems (Mehablia et al. 1994). Incorporating such information from previous data is difficult because of changing conditions amongst prior testing with SuperLig[®] 639, such as differing resin batches and varying experimental designs (Hamm et al. 2000). A need for additional, equilibrium-batch-contact data has been identified in order to continue to develop and extend the modeling for use under likely process conditions (Hamm et al. 2000; Barnes et al. 2002). The work covered in this report measures a subset of the desired binary equilibrium-batch-contact data together with the appropriate controls (such as the batch-distribution kinetics) required to interpret the batch equilibrium data for Superlig[®] 639.

1.2 Objectives

Battelle, Pacific Northwest Division (PNWD) is contracted to Bechtel National Inc. (BNI) on the River Protection Project – Waste Treatment Plant (RPP-WTP) project to perform research and development activities. Unit operations of the WTP process include the separation of ⁹⁹Tc by ion exchange from the liquid portion of the waste. The SuperLig[®] 639 (SL-639) ion exchange resin was selected by the project to perform ⁹⁹Tc separations.

The RPP-WTP is evaluating the SL-639 resin to determine its behavior under various potential processing conditions. Under test scoping statements S-142 and S-143, a model is being developed at the Savannah River Technical Center (SRTC) that will be able to predict the response of SL-639 under various processing conditions. This investigation was conducted according to the test plan prepared by Rapko (2001) in response to the test requirements to investigate ion exchange resin degradation delineated by Barnes et al. (2002) in Section 3.7.2.1 of the Research and Technology Plan and test scoping statement B-50. The results from these tests will be incorporated into the afore-mentioned model.

Objectives as noted in test scoping statement B-50 were to:

- evaluate the impact of the solution's nitrate to pertechnetate ratio on the SL-639 distribution ratio
- evaluate the impact of the solution's chloride to pertechnetate ration on the SL-639 distribution ratio
- evaluate the impact of the solution's ionic strength on the SL-639 distribution ratio
- evaluate the impact of temperature and time on the SL-639 distribution ratio

1.3 Purpose

This report documents testing, results, and analysis associated with the measurement of kinetic and equilibrium batch contacts involving SL-639. The report is intended to aid the RPP-WTP project in developing the computer model to be used to predict performance of the Tc ion exchange system in the WTP over a wide variety of conditions.

1.4 Quality Assurance

PNWD implemented the RPP-WTP quality requirements in a quality assurance project plan (QAPjP) as approved by the RPP-WTP QA organization. This work was conducted to the quality requirements in NQA-1-1989 Part I, Basic and Supplementary Requirements, and NQA-2a-1990, Subpart 2.7 as instituted through PNWD's Waste Treatment Plant Support Project Quality Assurance Requirements and Description Manual (WTPSP).

PNWD addressed data-verification activities by conducting an independent technical review of the final data report in accordance with Procedure QA-RPP-WTP-604. This review verified that the reported results were traceable, that inferences and conclusions were soundly based, and that the reported work satisfied the Test Plan objectives.

2.0 Experimental

SuperLig[®] 639 was obtained from IBC Advanced Technologies, Inc., American Fork, Utah. The resin batch used for all testing in this report was # 010227 CTC-9-23. The material appears visually as beige beads of varying sizes. No attempt was made to sieve the material to a uniform particle size or to measure the particle size distribution of the resin.

2.1 Preparation of Non-Radioactive Stock Solutions

Chemicals were obtained from standard commercial sources unless indicated otherwise. Deionized (DI) water was purified by passing distilled water through a commercial water purifier and was stored in plastic containers until used. The hydroxide concentrations of the simple sodium hydroxide/sodium nitrate/sodium chloride and Hanford Tank 241-AN-105 simulant solutions used in this work were verified by titration by Analytical Chemistry Laboratory personnel in the 325 Building.

The AN-105 simulant (2 L) was prepared as follows:

- 1) 200 g of water were placed in a tared 2-L volumetric flask.
- 2) The following reagents (to a precision of at least ± 1 mg) were added as indicated in Table 2.1a:

		Target	Measured	Simulant
Compound	Compound Formula	Mass (g)	Mass (g)	Target M
Boric Acid	H ₃ BO ₃	0.292	0.292	2.36E-03
Cadmium Nitrate	$Cd(NO_3)_2-4H_2O$	0.009	0.009	1.47E-05
Calcium Nitrate	$Ca(NO_3)_2-4H_2O$	0.236	0.236	4.99E-04
Lead Nitrate	Pb(NO ₃) ₂	0.085	0.086	2.18E-04
Potassium Nitrate	KNO ₃	19.221	19.222	9.51E-02
Magnesium Nitrate	$Mg(NO_3)_2$ -6H ₂ O	0.057	0.057	1.11E-04
Silver Nitrate	AgNO ₃	0.026	0.026	7.56E-05
Zinc Nitrate	$Zn(NO_3)_2-6H_2O$	0.046	0.047	7.72E-05
Glycolic Acid	HOCH ₂ COOH, 70 wt. %	1.665	1.666	1.09E-02
Sodium Chloride	NaCl	14.984	14.985	1.28E-01
Sodium Fluoride	NaF	0.420	0.421	5.00E-03
Sodium Chromate	Na ₂ CrO ₄ -4H ₂ O	6.086	6.088	1.30E-02
Sodium Sulfate	Na ₂ SO ₄	1.140	1.140	4.01E-03
Potassium Molydate	K ₂ MoO ₄	0.204	0.206	4.27E-04
Ammonium Acetate	CH ₃ COONH ₄	0.513	0.514	3.33E-03

 Table 2.1a.
 Reagents Added to Simulant

3) In a separate container the following was prepared (Table 2.1b).

		Target	Measured	Simulant
Compound	Compound Formula	Mass (g)	Mass (g)	Target M
Sodium Aluminate	NaAlO ₂	120.61	120.60	7.36E-01
Sodium Hydroxide	NaOH	137.83	137.84	1.72E+00
Selenium Dioxide	SeO ₂	0.001	0.001	6.27E-06
Sodium meta-	Na ₂ SiO ₃ -9H ₂ O	2.135	2.135	3.76E-03
Silicate				
Sodium Acetate	CH ₃ COONa	2.330	2.330	1.42E-02
Sodium Formate	HCOONa	4.351	4.354	3.20E-02
Sodium Oxalate	Na ₂ C ₂ O ₄	0.929	0.929	3.47E-03
Sodium Phosphate	Na ₂ HPO ₄ -7H ₂ O	1.608	1.608	3.00E-03

Table 2.1b. Solution Prepared in Separate Container

4) An additional 300 (\pm 1) g of water was added to the separate container, the solution was mixed thoroughly, and the contents of the separate container were added to the volumetric flask.

5) The following (Table 2.1c) was then added to the volumetric flask:

Table 2.1c.	Compound Added to Volumetric Flask
-------------	------------------------------------

		Target	Measured	Simulant
Compound	Compound Formula	Mass (g)	Mass (g)	Target M
Sodium Carbonate	Na ₂ CO ₃	22.149	22.15	1.04E-01

6) The added material was mixed, and the following (Table 2.1d) was next added to the volumetric flask:

		Target	Measured	Simulant
Compound	Compound Formula	Mass (g)	Mass (g)	Target M
Sodium Nitrate	NaNO ₃	209.70	209.71	1.23E+00
Sodium Nitrite	NaNO ₂	166.48	166.49	1.21E+00

7) The solution was again mixed thoroughly and then diluted to the mark with DI water. The final weight was measured and the density was calculated as 1.24 g/mL.

Once prepared the simulant was visually examined for precipitates; none were observed.

2.2 Preparation of Sodium Perrhenate Stock Solutions

To a 10-mL volumetric flask, 4.9204 g (18.0 mmol) of sodium perrhenate was added. The solution was diluted to 10 mL and agitated until all solids dissolved. A 100-fold diluted (by volume) sample, submitted in duplicate for analysis by inductively-coupled plasma mass spectroscopy (ICP-MS), gave Re concentrations in the stock solution of 0.0180 M and 0.0182 M, respectively, making for a stock-solution concentration of 1.8 M in Re. A second stock solution, 1.8 mM in Re, was generated by a 1000-fold dilution by volume of the initial stock solution.

2.3 Preparation of Pertechnetate Stock Solutions

(Procedure based on the information reported in Kolthoff and Elving [1964], p. 427)

A 2.3 g quantity of solid TcO₂ (obtained from in-house stores) was suspended in ca. 10 mL of concentrated ammonium hydroxide. Hydrogen peroxide (30% in water) was added until the bulk of the solids dissolved. The solution was evaporated using gentle heating to dryness; this procedure was repeated twice more. The final residue was taken up in ca. 35 mL of DI water and filtered through a 0.45-micron Nylon® syringe filter. This solution was diluted 1:1000 by volume with DI water by weight to generate a second stock solution. Assays of each solution were submitted to the Analytical Chemistry Laboratory at Battelle Pacific Northwest Division (PNWD) to measure the ⁹⁹Tc concentration. The results indicated a concentration of 0.0411 g Tc/mL or 0.415 M pertechnetate (1.55E+09 dpm/mL) for the first stock solution and 0.0000401 g Tc/mL or 0.405 mM pertechnetate (1.51E+06 dpm/mL) for the second stock solution.

2.4 Pretreatment of SuperLig[®] 639

The SuperLig[®] resin was pre-equilibrated starting with an initial contact with 5 M NaNO₃/0.1 M NaOH in approximately a 10:1 (mL liquid/g resin) ratio performed in a polypropylene bottle. For each contact, the suspension was agitated in a rotary shaker sufficient to achieve a vortex for at least 2 h. At the conclusion of each pre-equilibration contact, the shaking was stopped and the solids isolated by filtration through a 0.45-micron Nylon® filter. The solids were then sluiced back into the bottle with the next contact solution. Following the initial 5 M NaNO₃/0.1 M NaOH pre-equilibration contact, three further 5 M NaNO₃/0.1 M NaOH contacts were performed, followed by three contacts with DI water. Using broad-range pH paper as an indicator, the filtrate from the final DI water contact appeared identical to DI water itself, so further DI water washings were deemed unnecessary. The resin was then air dried for several days and placed in a plastic bottle until needed.

2.5 F-Factor Measurement for Pretreated SuperLig[®] 639

In duplicate, approximately 0.2-g samples of the pre-equilibrated SuperLig[®] 639 were placed in tared, 20-mL glass vials and reweighed. These open vials were placed in a vacuum oven and heated to $50 \pm 2^{\circ}$ C. The samples were dried until the observed weight change was less than 5% of the resin weight after about 24 h of drying. The F-factor is simply the ratio of the final 50°C/vacuum-dried resin weight to the air-dried resin weight. Table 2.2 shows the results of the F-factor experiment, which yielded a calculated average F-factor of 0.7643 ± 0.0041.

	1 st sample	2 nd sample
Tare wt. (g)	17.1494	17.1947
Tare wt. + resin (g)	17.3478	17.3963
Initial wt. resin (g)	0.1984	0.2016
Wt. after 24 hours drying (g)	17.3017	17.3485
Wt. after 48 hours drying (g)	17.3016	17.3482
Final wt. resin (g)	0.1522	0.1535
F-factor	0.7671	0.7614

Table 2.2.	Results	from	F -Factor	Experiment
1 4010 -12.	results	110111	1 1 40001	Emperation

2.6 Batch Contact Measurements – General Procedure

Step 1. Approximately 0.1 g of pre-treated SuperLig[®] 639 resin was placed in a tared 20-mL glass liquid scintillation counting (LSC) vial and reweighed.

Step 2. 10.1 mL of the test solution were placed in a second vial that was spiked with the appropriate Tc or Re stock solution. The spiked solution was agitated for at least 1 min, and a 0.1-mL aliquot was removed and added to a tared LSC vial containing 10 mL of Ultima Gold® LSC cocktail (Tc) or a tared 2-dram vial (Re), and reweighed.

Step 3. 10 mL of the spiked test solution was added to the vial containing the SuperLig[®] 639 resin, taking care not to disturb the resin so as to splash resin above the liquid. The vial was then sealed, placed in an orbital shaker, set to $25 \pm 5^{\circ}$ C unless indicated otherwise, and stirred at 225 rpm. The sample temperature was monitored using a thermocouple placed in a 20-mL LSC vial containing 10 mL DI water.

Step 4. At the conclusion of the shaking (generally 72 h unless indicated otherwise), the vial was removed, and the liquid was separated from the resin by filtration through a 0.2-micron Nylon® syringe filter.

Step 5. In the case of technetium, a 0.1-mL aliquot of the filtered solution was removed, added to a tared vial containing 10 mL of Ultima Gold® LSC cocktail, and reweighed. For the rhenium-spiked solution, the aliquot was placed in a tared 2-dram vial and reweighed.

Step 6. In the case of technetium, the sample's beta activities were measured on a Packard Instruments liquid scintillation counter using an 18-nanosecond coincidence time from the region of 200 to 800 KeV. In the case of rhenium, the concentration was determined by ICP-MS.

Step 7. K_d measurements were obtained according to the standard formula shown below (Brown et al. 1995):

$$K_{d} = \frac{C_{0} - C_{i}}{C_{i}} * \frac{V}{(M * F)}$$
(1)

where:

 K_d = distribution coefficient (in mL solution/g dried resin)

- C_0 = initial metal concentration (Re) or activity (Tc)
- C_i = final metal concentration (Re) or activity (Tc)
- M = mass of resin (in grams) used in the batch contact experiment
- V = volume of test solution (in mL) used in the batch contact experiment

F = F-factor.

Each experimental condition was examined in duplicate. Uncertainties presented in the tables and plots are presented as one standard deviation of the average K_d .

3.0 Results and Discussion

As noted earlier, both column and batch contact studies with SuperLig[®] 639 have been incorporated into a model (Hamm 2000). Because of either the importance of the data or because of conflicting results, a need for additional equilibrium data was noted. The goal of this study was to provide a large subset of the needed data. The set of binary measurements originally proposed (Test Plan CHG-TP-41500-014) were:

- 1) Room temperature kinetics under the experimental conditions used for subsequent batch contacts. This assures that later measurements are made under equilibrium conditions.
- Elevated (65°C) kinetics under the experimental conditions used for subsequent batch contacts. This elevated temperature is the current choice for elution for column tests with both actual wastes and simulants.
- 3) Pertechnetate loading isotherm
- 4) Pertechnetate K_d measurements as a function of $[NO_3]/[TcO_4]$ at room temperature
- 5) Pertechnetate K_d measurements as a function of $[NO_3^-]/[TcO_4^-]$ at elevated temperature (65°C)
- 6) Pertechnetate K_d measurements as a function of changing the solution's ionic strength
- 7) Measurement of the impact of varying the competing anions (chloride and hydroxide) on the pertechnetate K_d
- 8) Measurement of pertechnetate capacity.

Several studies using SuperLig[®] 639 have used perrhenate as a substitute for pertechnetate. However, no study to date has done a side-by-side equilibrium batch contact comparison of perrhenate versus pertechnetate K_ds . For this reason, intermittent measurements of perrhenate K_ds were included. For each type of measurement, the general experimental conditions, a table providing the experimental results, an accompanying graph of the experimental results, and any needed commentary are provided. In general, aspects of the experimental design such as $[NO_3^-]/[MO_4^-]$ ratio, the solution ionic strength, and the solution sodium concentration have been kept constant to the extent practical to facilitate comparisons between sets of experiments.

3.1 Pertechnetate 25°C Kinetic Measurements

Samples of SuperLig[®] 639 were contacted with pertechnetate-spiked solutions that were 1.8 M in sodium nitrate, 0.1 M in sodium hydroxide, and 3.1 M in sodium chloride (for a total sodium concentration of 5 M) at $25 \pm 0.5^{\circ}$ C. The nitrate/pertechnetate ratio for these contacts was approximately 3400 (a 35 microliter spike of the 0.415 M pertechnetate stock solution into 10.1 mL of the 1.8 M nitrate test solution) in this experiment, and the volume of solution (mL) to grams resin was 100. Duplicate samples were agitated in a rotary shaker at 225 rpm and removed from the shaker at varying intervals out to almost 1 week in time, and the activity of each filtered solution was assayed. The results of this experiment are summarized in Table 3.1 and in Figure 3.1.

Time (h)	K _d (Test 1)	K _d (Test 2)	Ave. K _d	SD Ave. K _d
2	289	298	293	6
4	399	425	412	18
21	580	632	606	37
28	597	658	627	43
47	656	643	649	9
72	629	673	651	31
94	645	632	638	9
166	602	475	538	90
SD = standard	deviation			

Table 3.1. Results of 25°C Pertechnetate Kinetic Tests with SuperLig[®] 639

These test results clearly show that contact times of 48 to 72 h are sufficient to achieve a steady and maximum K_d value. There is some suggestion of decreasing K_ds after extended contact times beyond 72 h, but it should be noted that such a conclusion is based primarily on the final data point that possesses a substantially larger experimental uncertainty than the other data points. This larger experimental uncertainty is because of the low K_d value measured in Test 2.

Figure 3.1. Plot of 25°C Pertechnetate Kinetic Tests with SuperLig[®] 639

3.2 Pertechnetate Kinetics Tests at 65°C Under Loading Conditions

The experimental procedure described in Part A was repeated except that the rotary shaker was heated such that the sample solution remained at 64.4 ± 0.5 °C during shaking. This elevated temperature is expected during elution of the SuperLig[®] 639 resin. The results are shown in Table 3.2 and plotted in Figure 3.2.

A comparison of the 65°C data with the room-temperature data reveals several notable features. First, increasing the temperature causes a marked decrease in the pertechnetate K_d , with a decrease in these otherwise identical K_d measurements from about 650 at room temperature to approximately 140 at 65°C. Second, the system reaches a steady K_d value much more quickly than at room temperature, with essentially no change in the measured K_d from the initial 4-h measurement out to 168 h. Indeed, the average of all the average K_d s measured over the course of the experiment agree well, with an average K_d over all times of 142 ± 7 .

Time (h)	K _d (Test 1)	K _d (Test 2)	Ave. K _d	SD Ave. K _d
4	162	136	149	19
7	155	151	153	3
24	137	136	137	1
48	142	139	141	2
72	134	141	137	5
96	144	136	140	6
120	139	129	134	7
168	135	156	146	15
SD = standar	d deviation			

Table 3.2 .	Results of 65	°C Pertechnetate	Kinetic Tests	s with SuperLig [®]	® 639 at 5 N	1 Total Sodium
--------------------	---------------	------------------	---------------	------------------------------	--------------	----------------

3.3 Pertechnetate Kinetics Tests at 65°C Under Stripping Conditions

The experimental approach described in Part B was repeated, but with two changes to the experimental conditions. First, the contact solution was composed of 0.005 M sodium nitrate and 0.001 M sodium hydroxide for a total [Na] = 0.006 M, instead of the total [Na] = 5M used in Part B. Second, the initial aqueous nitrate/pertechnetate ratio for these contacts was only about 15 (a 10-microliter spike of the 0.415 M pertechnetate stock solution into 10.1 mL of the 0.005 M nitrate test solution) in this experiment instead of the approximately 3400 in Part B. Contact temperatures were at $64.9 \pm 1^{\circ}$ C. Despite the lower initial nitrate-to-pertechnetate ratio in these test solutions, there was no detectable decrease in the aqueous pertechnetate activity in any of the solutions following contact with SuperLig[®] 639. This behavior, which implies a K_d of effectively zero, is desirable during elution.

Figure 3.2. Plot of 65°C Pertechnetate Kinetic Tests with SuperLig[®] 639 at 5 M Total Sodium

3.4 Effect of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on SuperLig[®] 639 Distribution Values at 25°C

These experiments examined the impact of changing the nitrate to pertechnetate or perrhenate ratios at a constant sodium concentration of 5 M. The shaker temperature bath was held at 25.8 ± 0.3 °C over the course of the experiment. Two general types of test solutions were examined. The first test solution contained only sodium hydroxide (0.1 M), sodium chloride, and sodium nitrate. The second test solution was the AN-105 (Envelope A) simulant. The AN-105 simulant possesses a [Na⁺] of 5.34 M, a [NO₃⁻] of 1.33 M, a [Cl⁻] of 0.128 M, and a [OH⁻] of 1.72 M.

For the AN-105 simulant, the nitrate concentration is fixed, so the nitrate to perhenate or pertechnetate ratios were varied only through changing the amount of added metal. For the simpler nitrate/hydroxide/chloride test solution, both the pertechnetate or perhenate concentrations and the nitrate concentrations in the test solution were varied. With these test solutions, as the nitrate concentration was varied, the sodium concentration was maintained at 5 M by appropriately varying the sodium chloride concentrations. The results from this set of experiments are listed in Table 3.3 and illustrated in Figure 3.3.

Equilibrium	M in	Solution				SD of Ave.		
[NO ₃ ⁻]/[MO ₄ ⁻]	[MO ₄ ⁻]	Туре	K _d (Test 1)	K _d (Test 2)	Ave. K _d	K _d		
2.40E+01	Tc	А	2187	2138	2163	35		
2.20E+03	Tc	А	2099	1972	2036	90		
7.34E+03	Tc	А	636	608	622	19		
1.03E+05	Tc	А	898	890	894	6		
7.60E+03	Tc	В	881	898	889	12		
1.06E+05	Tc	В	1288	1292	1290	2		
4.92E+03	Re	А	254	251	253	3		
5.18E+03	Re	В	380	339	360	29		
6.30E+05	Re	В	490	522	506	23		
1.71E+07	Re	В	476	469	473	5		
Solution $A = simpl$	Solution A = simple nitrate/chloride/hydroxide at 5 M total Na.							
Solution $B = AN-1$	05 simulant							

Table 3.3. Impact of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on Metal K_d at 25°C

Several points are apparent from the data listed in Table 3.3 and plotted in Figure 3.3. First, the AN-105 simulant gives consistently higher K_{ds} for both Re and Tc than is found with the simple 0.1 M sodium hydroxide/sodium nitrate/sodium chloride test solution. The reason for these higher K_{ds} is unclear and may be difficult to say with certainty, especially given the unknown structure of the complexing agent in SuperLig[®] 639. All anions should be at least in competition with pertechnetate and perrhenate; it is difficult to imagine how an anion could be acting as a synergist. With respect to the relative type and concentration of cation in the AN-105 simulant versus the simple sodium hydroxide/sodium nitrate, sodium chloride simulant, if an ion-pair extraction mechanism were involved, the slightly higher sodium concentration (5.3 M versus 5 M in the simple simulant) and/or the presence of potassium (0.1 M versus 0.0 M in the simple simulant) in the AN-105 simulant may be in part responsible for the observed enhanced K_{ds} .

Two other features of note include the consistently lower K_ds observed for perthenate when compared to pertechnetate and the trend in K_ds as the nitrate/perrhenate or pertechnetate ratio increases. Although the number of comparable data points are few, the perrhenate K_d appears to be consistently about half of the pertechnetate K_d under similar conditions. This is comparable to the approximately 70% higher values for pertechnetate versus perrhenate previously reported (Hamm 2000). The trend in Kds for both perrhenate and pertechnetate as the nitrate/metal ratio is varied appear similar. At low nitrate/metal ratios, the K_ds are at their highest. Between a ratio of 1000 and 10000, a marked drop in K_d is observed. It is unfortunate that more data were not collected in this region to better map these sharp changes in K_d . As the nitrate/metal ratio increases from 10^4 to 10^5 , the K_d again increases. Data are only available for perrhenate above a ratio of 10^5 , but it appears that little change in K_d occurs as the nitrate/metal ratios increase above 10^5 . A simple model would have predicted decreasing K_ds as the ratio of a competing anion, nitrate, to the metal increases. The chemical behavior underlying the more complex behavior observed here is unknown.

Filled Circles= 0.1 M Sodium Hydroxide/Sodium Nitrate/Sodium Chloride Test Solution; M = TcFilled Square= 0.1 M Sodium Hydroxide/Sodium Nitrate/Sodium Chloride Test Solution; M = ReOpen Circles= AN-105 Simulant; M = TcOpen Squares= AN-105 Simulant; M = Re

Figure 3.3. Plot of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on Metal K_d at 25°C

3.5 Effect of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on SuperLig[®] 639 Distribution Values at 65°C

A set of batch contacts analogous to those reported in Section D was performed, only here the shaker temperature was maintained at the elution temperature of 65.2°C. The results are listed in Table 3.4 and illustrated in Figure 3.4.

The trends observed in these 65°C batch contacts parallel the trends observed in the analogous room-temperature set of batch contacts.

- A sharp decrease in K_d is seen as the nitrate/pertechnetate ratio increases from approximately 10^3 to 10^4 .
- The AN-105 simulant yields markedly higher K_ds than does the simple 5 M sodium, 0.1 M hydroxide nitrate/chloride test solution.
- In general, the perrhenate Kd appears to be about one-half the pertechnetate K_d .
- At approximately 10^4 to 10^5 nitrate/pertechnetate ratios, the pertechnetate K_ds increase.
- At very high $(>10^5)$ nitrate/perrhenate ratios, little change in K_d is observed.

Equilibrium	M in	Solution				SD of Ave.
$[NO_{3}^{-}]/[MO_{4}^{-}]$	[MO ₄ ⁻]	Туре	K _d (Test 1)	K _d (Test 2)	Ave. K _d	K _d
3.90E+00	Tc	Α	247	220	234	19
3.42E+02	Tc	А	228	213	221	11
2.64E+03	Tc	Α	150	135	143	11
2.84E+04	Tc	А	171	165	168	5
2.29E+03	Tc	В	176	195	186	13
2.48E+04	Tc	В	212	210	211	1
4.50E+03	Re	А	83	62	72	15
2.09E+03	Re	В	172	117	144	39
3.34E+05	Re	В	85	98	91	9
9.97E+06	Re	В	83	62	72	15
Solution $A = simple A$	ple nitrate/ch	loride/hydro	kide at 5 M tot	al Na.		
Solution $B = AN$.	-105 simular	ıt.				

Table 3.4. Impact of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on Metal K_d at 65°C

Similar to the results seen in the batch-contact kinetics tests, increasing the temperature from 25°C to 65°C substantially decreases in K_d . The only unexpected feature is observed during the measurement at a ca. 10³ nitrate/perrhenate ratio when contacted with the AN-105 simulant, which appears to have an unexpectedly high K_d . However, this point also exhibits poor reproducibility, which suggests that some problem is associated with the results of this particular batch contact. If the $K_d(1)$ point is ignored, then the results fall more in line with the trends seen in the 25°C data set.

Filled Square = Compared Solution: Tc Filled Square = Simple 0.1 M Solium Hydroxide/Solium Nitrate/Solium Chloride Test Solution: M = Re Open Circles = AN-105 Simulant; M = Tc

Open Squares = AN-105 Simulant; M = Re

Figure 3.4. Plot of Varying Nitrate/(Pertechnetate or Perrhenate) Ratios on Metal K_d at 65°C

3.6 Effect of Varying Chloride Versus Hydroxide as the Competing Anion on SuperLig[®] 639 Pertechnetate Distribution Values at 25°C

In this set of batch-contact experiments, with the shaker temperature maintained at 25.8 ± 0.3 °C, the relative proportions of sodium hydroxide and sodium chloride were varied while keeping a constant initial nitrate to pertechnetate ratio (approximately 40) and a constant total sodium concentration of 5 M. The results of this set of batch contacts are listed in Table 3.5 and are illustrated in Figure 3.5. They indicate that hydroxide is a more effective competitor than chloride for pertechnetate.

		Equilibrium				
[Cl ⁻], M	[OH ⁻], M	[NO ₃ ⁻]/[TcO ₄ ⁻]	K _d (Test 1)	K _d (Test 2)	Ave. K _d	SD of Ave. K _d
4.9	0.1	1.1E+03	2789	2864	2826	53
4	1	1.1E+03	2903	2970	2937	48
2.5	2.5	9.4E+02	2585	2672	2629	61
1	4	9.0E+02	2531	2250	2391	199
0.1	4.9	6.4E+02	1753	1508	1630	174

Figure 3.5. Plot of Effect of Varying Hydroxide Versus Chloride at 5 M Total Sodium, 0.018 M Nitrate, 25°C

3.7 Impact of the Sodium Concentration on SuperLig[®] 639 Pertechnetate Distribution Values at 25°C

In this set of batch-contact experiments, the hydroxide concentration was fixed at 0.01 M, the total sodium was adjusted from approximately 0.02 to 5 M sodium with sodium chloride, and the initial nitrate/pertechnetate ratio was kept constant at about 12. During these batch contacts, the shaker temperature was kept at $25.5 \pm 0.2^{\circ}$ C. The results of this set of batch contacts are listed in Table 3.6 and are illustrated in Figure 3.6.

Total [Na⁺], M	Equilibrium [NO ₃ ⁻]/[TcO ₄ ⁻]	K _d (Test 1)	K _d (Test 2)	Ave. K _d	SD of Ave. K _d
5.028	2.23E+02	2069	1924	1997	103
1.028	4.94E+01	360	342	351	13
0.528	3.15E+01	217	188	203	20
0.128	1.92E+01	69	73	71	3
0.028	1.38E+01	15	10	12	3

Table 3.6. Impact of Varying Sodium Concentration on Pertechnetate K_d Values at0.018 M Nitrate/0.01 M Hydroxide, 25°C

Figure 3.6. Plot of the Impact of Varying Sodium Concentration on Pertechnetate K_d Values at 0.018 M Nitrate/0.01 M Hydroxide, 25°C

These results show a striking linear correlation between the solution's sodium concentration and the pertechnetate K_d , and they are consistent with the previous statements that pertechnetate and the cation are extracted as an ion pair (Kurath et al. 1999, King et al. 2000). However, as shown in Table 3.7 and Figure 3.7, the agreement with solution molality, which for the 1:1 salts used in this test is equivalent to the test solution's ionic strength, is also excellent. In conclusion, it is impossible to eliminate either interpretation based on the experiments performed here.

Table 3.7.	Impact of Varying Ionic Strength on Pertechnetate Distribution Values at 0.018 M
	Nitrate/0.01 M Hydroxide, 25°C

Total Ionic Strength, m	Equilibrium [NO ₃ ⁻]/[TcO ₄ ⁻]	K _d (Test 1)	K _d (Test 2)	Ave. K _d	SD of Ave. K _d
5.62E+00	2.23E+02	2069	1924	1997	103
1.04E+00	4.94E+01	360	342	351	13
5.34E-01	3.15E+01	217	188	203	20
1.29E-01	1.92E+01	69	73	71	3
2.80E-02	1.38E+01	15	10	12	3

Figure 3.7. Plot of the Impact of Varying Solution Ionic Strength on Pertechnetate Distribution Values at 0.018 M Nitrate/0.01 M Hydroxide, 25°C

4.0 Conclusions

This report summarizes a series of batch contacts with SuperLig[®] 639 that was used to measure how various system perturbations alter pertechnetate and perrhenate distribution values. Several goals were described in the introduction. For the sake of convenience, they are repeated here along with the main conclusions from each set of tests.

- <u>Room-temperature kinetic measurements under the experimental conditions used for subsequent</u> <u>batch contacts.</u> The primary purpose behind this measurement was to verify that subsequent room-temperature batch contacts were performed under equilibrium conditions. It was determined from the results reported in Section A that under the experimental conditions employed for these batch contacts, in particular the speed (225 rpm) used with this rotary shaker, that 48 h would be sufficient to achieve equilibrium. Contact times of 72 h were used in subsequent measurements to assure that these measurements were made under equilibrium conditions.
- 2) Elevated (65°C) kinetic measurements under the experimental conditions used for subsequent batch contacts. At high (5 M) sodium concentrations, the targeted concentration for treated Hanford tank solutions by the SuperLig[®] 639 resin, the results reported in Section B indicate that the system reaches equilibrium at 65°C much more rapidly than at room temperature, with the system achieving a distribution value within 4 h that remained unchanged even if contacted for several additional days. For consistency's sake with the room-temperature measurements, 72 h was used for subsequent measurements made at 65°C. In Part C, at 65°C and low, approximately 2 mM, sodium concentrations, the pertechnetate distribution values were so low that no decrease in pertechnetate concentration was observed (a K_d of effectively zero).
- 3) Pertechnetate K_d measurements as a function of [NO₃⁻]/[TcO₄⁻] at room temperature. In Part D, the pertechnetate K_d is reported as a function of the equilibrium nitrate/pertechnetate ratio over a range of 10⁶. In addition, pertechnetate measurements on a Envelope A supernatant, AN-105, simulant, as well as selected perrhenate K_d measurements, were reported. The most striking features are: 1) the enhanced K_ds for perrhenate and pertechnetate observed in the AN-105 simulant versus the simple, 5 M [Na⁺] simulant and 2) the approximately 50% lower perrhenate K_d as compared to the pertechnetate K_d. The cause of the enhanced K_ds is unclear, but extraction of pertechnetate as an ion-pair coupled with the presence of a more tightly binding cation (such as potassium) in the AN-105 simulant or a slightly higher sodium concentration in the AN-105 simulant are possible explanations.
- 4) Pertechnetate K_d measurements as a function of $[NO_3^-]/[TcO_4^-]$ at elevated temperature (65°C). In Part E, the same scope of measurements performed in Part D are repeated, but with the test samples at 65°C. The same trends noted above are also found at 65°C, but the distribution values are substantially decreased.

- 5) Pertechnetate K_d measurements as a function of changing the solution's ionic strength. In Part G, the impact of changing the salt concentration on the pertechnetate distribution value was examined. A strong linear correlation of the pertechnetate distribution value to both the total sodium concentration and to the solution's ionic strength was found. In this test, those two factors are so closely related that it cannot be said with certainty which solution property is impacting the pertechnetate distribution value. If the ionic strength effect is indeed the controlling factor, the magnitude of the response is remarkable. Alternatively, if the resin operates by extracting a sodium pertechnetate ion pair, the test results may be simply reflecting the resin affinity for sodium ion.
- 6) <u>Measurement of the impact of varying the competing anions chloride and hydroxide on the pertechnetate K_d. In Part F, the pertechnetate distribution value was measured as the chloride and hydroxide ratios were changed while keeping the solution's sodium concentration constant. The results indicate that hydroxide competes more effectively than chloride with pertechnetate for binding to SuperLig[®] 639.</u>

5.0 References

Barnes S, R Roosa, and R Peterson. 2002. *Research Technology Plan*, 24590-WTP-PL-RT-01-002, Rev. 1. River Protection Project, Richland, Washington.

Blanchard DL Jr., DE Kurath, and BM Rapko. 2000. *Small Column Testing of SuperLig*[®] 639 for *Removing* ⁹⁹*Tc from Hanford Waste Envelope C (Tank 241-AN-107),* PNWD-3028, Rev. 0, Battelle Pacific Northwest Division, Richland, Washington.

Brown GN, SR Adami, LA Bray, SA Bryan, CD Carlson, KJ Carson, JR DesChane, RJ Elovich, SJ Forbes, JA Franz, JC Linehan, WJ Shaw, PK Tanaka, and MR Telander. 1995. *Chemical and Radiation Stability of SuperLig*[®] 644, *Resorcinol-Formaldehyde and Cs-100 Cesium Ion Exchange Materials*, PNL-10772, Pacific Northwest Laboratory, Richland Washington.

Hamm LL., FG Smith III, and DJ McCabe. 2000. *Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig*[®] 639 Resin, WSRC-TR-2000-00305, Westinghouse Savannah River Company, Aiken, South Carolina.

King WD, DJ McCabe, and NM Hassan. 2000. *Evaluation of SuperLig*[®] 639 Ion Exchange Resin for the *Removal of Rhenium from Hanford Envelope A Simulant*, BNF-003-98-0140, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, South Carolina.

Kurath, DE, DL Blanchard, and JR Bontha. 1999. Ion Exchange Distribution Coefficients for ¹³⁷Cs and ⁹⁹Tc Removal from Hanford Tank Supernatants AW-101 (Envelope A) and AN-107 (Envelope C). PNWD-2467, Battelle Pacific Northwest Division, Richland, Washington.

Kolthoff IM, and PJ Elving, eds. 1964. *Treatise on Analytical Chemistry*, Volume 6. John Wiley and Sons, Inc. New York-London-Syndey.

Mehablia MA, DC Shallcross, and GW Stevens. 1994. "Prediction of Multicomponent Ion Exchange Equilibria." *Chem. Eng. Sci.* Vol. 49, pp. 2277-2286.

Rapko BM. 2001. "Equilibrium Batch Contact Testing for CH2MHill Inc." CHG-TP-41500-014, Pacific Northwest National Laboratory, Richland, Washington.
Appendix A

Test Plan

CONTROLLED DOCUMENT

PNNL Test Plan

2

Document No.: CHG-TP-41500-014 Rev. No.: 0

1

Title: Equilibrium Batch Contact Testing for CH2MHill Inc.

Work Location: SAL, lab 410, 507, 511, 516	Page 1 of 14			
Author: BM Rapko	Effective Date: 1/22/01			
Use Category Identification: Reference	Supersedes Date: (New)			
Identified Hazards: <u>X</u> Radiological <u>X</u> Hazardous Materials Physical Hazards Hazardous Environment Other:	Required Reviewers: <u>X</u> Author <u>X</u> Technical Reviewer <u>X</u> RPL Manager <u>X</u> Project Manager <u>X</u> RPG Quality Engineer X CHG			

Are One-Time Modifications Allowed to this Procedure? X Yes No

NOTE: If Yes, then modifications are not anticipated to impact safety. For documentation requirements of a modification see SBMS or the controlling Project QA Plan as appropriate.

On-The Job Training Required? Yes	or	<u>X</u> No
FOR REVISIONS: Is retraining to this procedure required?	_Yes	<u>X</u> No
Does the OJT package associated with this p YesNoXN	procedure re /A	quire revision to reflect procedure changes?

CHG-TP-41500-014 2 of 14

PNNL Test Plan	Document No.: CHG-TP-41500-014 Rev. No.: 0
Title: Equilibrium Batch Contact Testing Approval Sign	for CH2MHill Inc. ature Date
Author Brian Raph	1-19-01 1-19-06
Technical Reviewer Samelance	1-19-01
RPL Manager Dace E. Komitson	1/29/01
Project Manager DE Kurach	1/201/01
RPG Quality Engineer 75 Almeida	> 1/24/01
CHG_Millie Johnson	1/3/01
U	7

ŕ

Applicability

This test plan governs the measurement of distribution values (Kd) through batch contacts for technetium (as pertechnetate), cesium, and uranium (as uranyl ion) with various ion exchange materials in contact with a variety of solutions. Radioactive cesium, technetium and uranium tracers may be used in the solutions for measuring concentration changes and so allow Kd calculation. The ion exchange materials to be tested include Superlig[®] 644 (cesium and uranyl ion removal), and Superlig 639[®] (Tc removal). The tests will be conducted in fume hoods in lab 410, 507, 510, 511 and 516 of the 325 building as needed. The test plan applies to staff working on this task in the Radiological Processing Laboratory (RPL) and includes laboratory technicians, scientists and engineers.

DRD Reference

The work described in this test plan will be performed in partial fulfillment of task 8.2.12, Mathematical Modeling, of the River Protection Project Waste Treatment Plant (RPP-WTP) Development Requirements Document. The RPP-WTP Research and Technology schedule for fiscal year 2001 identifies this activity as R20500, Eluant Equilibrium Behavior PNNL. The corresponding activity on the PNNL schedule for fiscal year 2001 is BN.02.08.03.

Justification/Test Objectives/Success Criteria

The proposed facility for immobilization of Hanford underground storage tank waste will pretreat the waste to split it into a Low Activity Waste (LAW) and a high level waste (HLW) for separate vitrification. Unit processes are planned to remove radiocesium and radioactive technetium (in the pertechnetate form) by ion exchange from these strongly alkaline solutions. Currently, Savannah River Technology Center (SRTC) is attempting to develop a model for these ion exchange processes. Batch distribution coefficients with each ion exchange material are needed both to supply information about the behavior of these ion exchange resins under various processing conditions and to validate the developed model. The RPP-WTP contractor will then incorporate this SRTC process model into the process flow sheet.

The equilibrium batch data for technetium (Superlig $639^{\text{\$}}$), cesium and uranyl (Superlig $644^{\text{\$}}$) generated by this study will be incorporated by SRTC personnel into their ion exchange process models. Therefore, the RPP-WTP contractor success criteria for these tests are to accurately measure batch distribution coefficients (±10%) and understand the influences of contact duration and equilibrium concentrations on the batch distribution coefficients.

Background

Much recent work has been performed investigating the use of two ion exchange resins developed by IBC Advanced Technologies, Inc. for use in removing selected radionuclides from Hanford tank waste supernatants. Superlig 639[®] is being investigated for removal of technetium (as pertechnetate) and Superlig 644[®] (cesium) from alkaline, high sodium solutions including actual Hanford tank supernatants (Hamm 2000a, Hamm 2000b and Blanchard 2000). The existing data have been evaluated and included in an ion exchange process model currently under development at SRTC. However, a need for additional, equilibrium -batch -contact data has been identified in order to continue to develop and extend the modeling for use under likely process conditions. It has been shown that such batch contact distribution data collected from binary systems can be incorporated in such a model for use in more complex systems (Mehablia et. al. 1994). The work covered in this test plan will measure such binary equilibrium batch

contact data together with the appropriate controls (such as the batch distribution kinetics) required to interpret the batch equilibrium data for both Superlig[®] 644 and Superlig[®] 639.

Previous work in this area has generated information that impacts the experimental design described in this test plan. For instance, the capacity of SuperLig[®] 639 resin has been reported (Hamm 2000b) as 0.88 meq/g resin) and the capacity of SuperLig[®] 644 resin is uncertain but best estimates (Hamm, private communication) indicate a value around 0.6 meq/g resin. In general, batch distribution contacts should be designed so that the resin will not be fully loaded even under conditions that will generate very high Kds, i.e., effectively all of the binding species reports to the resin under the experimental conditions. A target of no more than 20% loading has been used in similar, prior, PNNL equilibrium batch contact tests. With a solution volume/resin mass ratio of 100 this would indicate that a solution should not be more concentrated than ca. 1.2 mM in the binding species for batch contacts with SuperLig[®] 644 and not more than ca. 1.8 mM in the binding species for contacts with SuperLig[®] 639.

Emergency Response

Spill containment will be provided where practical. In the event of a leak from the recirculating heating bath, the heater should be turned off or unplugged immediately.

Equipment Description

The test equipment required for the batch distribution tests are as follows:

- Aqueous test solutions prepared as required in accordance with test instructions.
- Ion Exchange Materials purchased as required or else obtained from existing stocks as needed.
- Appropriate tracers (⁹⁹Tc, ^{99m}Tc, ^{95m}Tc, ¹³⁷Cs) the radiotracers may be obtained either through commercial sources (i.e., Brookhaven National Laboratory, Brookhaven NY; New England Nuclear, Boston, MA; or Amersham, Arlington, IL; or from stock solutions already in the laboratory). Technical data sheets accompanying the commercial shipments should list the assay of the isotope (i.e., chemical form, purity, assay date, specific activity, concentration, and volume). Because comparative measurements of tracers will be made, nominal activity concentrations of tracers may be used.
- Counting Equipment gamma counting is performed by the use of a multichannel analyzer and suitable detector, such as a high purity germanium detector or NaI well detector. The equipment is user calibrated. Alpha and beta scintillation activities will be obtained by liquid scintillation counting using commercial instrumentation.
- Shaker/Temperature Control Systems the shaker table will include a test chamber that holds the sample container. A calibrated thermocouple or other temperature measuring device is inserted in the shaker package along with the samples.
- Calibrated thermometer or thermocouple.
- Filters, 0.2µ pore size disposable.
- Syringe, 5 mL, plastic, Luer-Loc or equivalent.
- Vials, 20 mL glass scintillation type.
- Bottles, 20 to 4000 mL polyethylene or polypropylene.

Pipets, adjustable, 10 to 10000 μL maximum capacity.

Safety Considerations

All activities conducted under this test plan will be performed in accordance with approved safety procedures, including but not limited to proper radiological control procedures. Personnel involved in the testing in the 325 Building will be familiar with specific safety procedures for that facility. All personnel performing work to this test plan shall be qualified to work in fume hood and to work with acids and bases.

Special safety considerations for these procedures include:

 Ion exchange materials are not to come in contact with nitric acid solutions of greater than 3 molar concentration.

Outline of test scope and work instructions

Note: The work covered in this test plan is governed by the RPL Work Practices document, RPL-OP-001, rev. 0, Routine Research Operations as well as those additional work practices described in the Radiochemical Processing Laboratory's Laboratory Handbook.

- The ion exchange materials to be used in this test are SuperLig[®] 644 (Cs) and SuperLig[®] 639 (Tc) manufactured by IBC Advanced Technologies, Inc. The production lot number for each resin is to be recorded.
- 2. Preconditioning of the ion exchange materials is required before batch contacts will be performed for both SuperLig[®] 644 and SuperLig[®] 639.
- (a) SuperLig[®] 644: a weighed portion of the resin will be contacted once with 5 M NaNO₃/0.1 M NaOH followed by 4 times with 0.5 M nitric acid at a V/m (mL to grams) ratio of 100. The solution and resin will remain in contact with agitation for at least 1 hour during each pre-equilibration. After each contact, the solid and liquid will be separated, either by centrifugation or settling, with the liquid removed and discarded. The resin will then be washed with DI water at a V/m (mL to grams) of 100 until the pH of the liquid is 5 or above, air dried, reweighed, and stored.
- (b) SuperLig[®] 639: a weighed portion of this resin will be contacted 4 times with 5 M NaNO₃/0.1 M NaOH at a V/m (mL to grams) ratio of 100. The solution and resin will remain in contact for at least 1 hour during each pre-equilibration. After each contact, the solid and liquid will be separated either by centrifugation or settling, with the liquid removed and discarded. The resin will then be washed with DI water at a V/m (mL to grams) of 100 until the pH of the liquid is 8 or below, air dried, reweighed, and stored.
- 3. A portion of both the as-received and the conditioned materials will be dried to determine an F factor (relative water content of the resin).
- (a) SuperLig[®] 644: the resin will be dried under reduced pressure at a temperature no greater than 50°C until the resin reaches a constant weight. A constant weight is assumed to be reached if there is no greater than a 5% change in the system weight after 24 hours of drying or at the discretion of the cognizant scientist. The temperature and duration of the drying will be recorded. A second portion will be similarly dried at 85°C under vacuum to allow for a comparison to earlier work.

- (b) Superlig[®] 639: the resin will be dried under reduced pressure at no greater than 50°C until the resin reaches a constant weight. A constant weight is to be assumed if there is no greater than a 5% change in the system weight after 24 hours of drying or at the discretion of the cognizant scientist. The temperature and duration of the drying will be recorded. A second portion will be similarly dried at 85°C under vacuum to allow for a comparison to earlier work.
- All batch contacts will be performed in duplicate.
- 5. Unless otherwise specified, the minimum equilibrium batch contact duration will be 72 hours.
- 6. The concentrations of the targeted elements will be measured for each batch contact before and after each batch contact. Either the solution activity for specific radionuclides used as tracers or the total solution activity are considered as an acceptable substitute for an actual elemental concentration measurement.
 - (a) SuperLig[®] 644: cesium concentrations will be determined through gamma counting of a Cs-137 tracer using either a NaI or Ge detector.
 - (b) SuperLig[®] 644: uranium concentrations will be determined by counting of the total alpha activity of a U-233 tracer using liquid scintillation counting or by a laser fluorimetric determination of the solution's total uranium concentration.
 - (c) SuperLig[®] 639: technetium concentrations will be determined either by total beta activity of Tc-99 using liquid scintillation counting or by gamma counting of a Tc-95m tracer using either a NaI or Ge detector.
 - (d) SuperLig[®] 639: rhenium concentrations in solutions will be determined by ICP-MS.
- 7. The batch contacts will be conducted at a specific recorded temperature or at ambient temperature as specified in the test instructions. The temperature of the temperature bath (or the surrounding air temperature) will be recorded during each batch contact test.
- 8. Two Tc-99 stock solutions will be prepared. The first, ca. 1.8 M Tc in water, will be prepared by taking 2.3 g of ⁹⁹TcO₂ and dissolving it in ammonium hydroxide/hydrogen peroxide, evaporating to dryness at low temperature/atmospheric pressure and redissolving the solid to a total volume of 10 mL with DI water. The second Tc-99 stock solution will be ca. 1.8 mM in water and prepared by a 1:1000 volumetric dilution from the first Tc-99 stock solution. The specific activity will be measured by beta scintillation counting and the radiochemical purity of the material will be verified by ICP-MS before use.
- 9. A rhenium stock solution ca. 1.8 M Re in water, will be prepared by dissolving 4.92 grams of sodium perrhenate to a total volume of 10 mL with DI water.
- 10. To verify that the kinetics of the Superlig[®] 639 with pertechnetate are such that a 72 hr contact time will yield an equilibrium distribution value, a series of contacts will be performed at room temperature (25 ± 5°C) under the conditions described in Table 1. The temperature will be recorded during these batch contact tests. The sample's agitation will be stopped after 2, 4, 8, 24, 48, 72, 96 and 168 hr (1 week), respectively and the final solution activity measured.

Table 1. Room temperature kinetics under loading conditions. Contact conditions: ambient temperature, $[Na]_T = 5 M$

[Tc] stock solution.M	Stock sol. aliquot, μL	Test [Tc], M	NaNO ₃ , M	NaOH, M	NaCl, M	[NO ₃]/[TcO ₄]
1.8	10	1.8E-03	1.8 M	0.1	3.1	1E03

11. Chloride and hydroxide are believed to be spectator ions in pertechnetate absorption by SuperLig® 639. To test this, batch contacts at a constant [NO₃]/[TcO₄] ratio and total [Na] will be performed with varying ratios of hydroxide and chloride as described in Table 2. The temperature will be recorded during these batch contact tests. If chloride is determined to have a significant impact on the pertechnetate distribution constant, then sodium nitrite will be used instead of sodium chloride for the technetium measurements indicated below.

Table 2. Tc loading isotherm. Contact conditions: room temperature $(25 \pm 5^{\circ}C)$, 72 hours contact time, $[NO_3]/[TcO_4] = 1E03$, $[Na]_T = 5 M$

[Tc] stock solution.M	Stock sol. aliquot, μL	Test [Tc], M	NaNO ₃ , M	NaOH, M	NaCl, M	[NO ₃]/[TcO ₄]
0.0018	10	1.8E-06	0.018	0.1	4.9	1E04
0.0018	10	1.8E-06	0.018	1	4	1E04
0.0018	10	1.8E-06	0.018	2.5	2.5	1E04
0.0018	10	1.8E-06	0.018	4	1	1E04
0.0018	10	1.8E-06	0.018	4.9	0.1	1E04

- 12. To verify that the kinetics of the Superlig[®] 639 with pertechnetate are such that a 72 hr contact time will yield an equilibrium distribution value at the elevated temperatures proposed for elution, a series of contacts will be performed at 65°C under the conditions described in Table 3. The measured temperature will be recorded during these batch contact tests. The sample's agitation will be stopped after 2, 4, 8, 24, 48, 72, 96 and 168 hr (1 week), respectively and the final solution activity measured.
- Table 3.Elevated temperature kinetics under stripping conditions. Contact conditions: $65 \pm 5^{\circ}C$ $[Na]_T = 0.006 \text{ M}, [NO_3]/[TcO_4] = 3E00$

[Tc] stock solution.M	Stock sol. aliquot, μL	Test [Tc], M	NaNO ₃ , M	NaOH, M	NaCl, M	[NO ₃]/[TcO ₄]
1.8	10	1.8E-03	0.005 M	0.001	0	3E0

13. The impact of the NO₃/TcO₄ ratio under loading conditions will be investigated. Additionally, the adsorption of Re and Tc by SL-639 resin will be compared to verify the suitability of Re as a surrogate for Tc. The batch contact will be performed at a V/m (mL/grams) of 100 unless otherwise specified. An initial aliquot will be removed for activity assay and a weighed amount of resin added. The sample will be agitated at ambient temperature ($25 \pm 5^{\circ}$ C) for at least 72 hours, the resin removed by filtration through a 0.2 micron syringe filter, and another aliquot removed to

determine the final solution activity. The range of experimental conditions to be tested is outlined in Table 4 and the temperature will be recorded during these batch contact tests

Table 4:	Contact conditions for the NO ₃ /TcO ₄ ratio variations under loading conditions: $[Na]_{T} = 5$
	M, ambient temperature $(25 \pm 5^{\circ}C)$, 72 hour contact time

[Tc] stock solution.M	Stock sol. aliquot, µL	Initial [Tc], M	NaNO ₃ , M	NaOH, M	NaCl, M	Initial [NO ₃]/[TcO ₄]
1.8 M	10	0.0018	0.0018	0.1	4.9	1E00
1.8 M	10	0.0018	0.180	0.1	4.7	1E02
1.8 M	10	0.0018	1.80	0.1	3.1	1E03
1.8 M	1	1.8E-04	1.80	0.1	3.1	1E04
0.0018	100	1.8E-05	1.80	0.1	3.1	1E05
0.0018	10	1.8E-06	1.80	0.1	3.1	1E06
1.8 M	7	0.00125	Envelope A	1E03		
1.8 M (Re)	7	0.00125 (Re)	Envelope A	1E03		
0.0018 M	70	1.25E-05	Envelope A	1E05		
0.0018 M (Re)	70	1.25E-05 (Re)	Envelope A	1E05		
0.0018 M	7	1.25E-06	Envelope A	A (AN-105) sin	mulant(a)	1E06
0.0018 M (Re)	7	1.25E-06 (Re)	Envelope A (AN-105) simulant(a)			1E06
1.8 M (Re)	10	0.0018 (Re)	1.80	0.1	3.1	1E03 (Re)

(a) Note that the 241-AN-105 simulant is approximately 1.25 M in nitrate.

- 14. The impact of temperature will be investigated by repeating the equilibrium batch contact experiments outlined in part 13 but the samples will be agitated while being kept in a 65°C± 5°C temperature bath for at least 72 hours. The temperature will be recorded during these batch contact tests. An aliquot will be removed and rapidly filtered through a 0.2 micron syringe filter to remove the SuperLig[®] 639 resin. An aliquot will then be removed to determine the final solution activity.
- 15. The effect of total ionic strength changes at a constant NO₃ /TcO₄ ratio of 1E04 will be evaluated as shown in Table 5. The temperature will be recorded during these batch contact tests. The density of each solution in the absence of added technetium or rhenium stock solution will be determined by three independent measurements of the weight of a 1 mL aliquot. The precision of the balance must be at least ± 1 mg or better.

[Tc] stock solution.M	Stock sol. aliquot, μL	Test [Tc], M	NaNO ₃ , M	NaOH, M	NaCl, M	App. Ionic strength
0.0018	10	1.8E-06	0.018	0.01	5	5
0.0018	10	1.8E-06	0.018	0.01	1	1
0.0018	10	1.8E-06	0.018	0.01	0.5	0.5
0.0018	10	1.8E-06	0.018	0.01	0.1	0.1
0.0018	10	1.8E-06	0.018	0.01	0	0.03
0.0018 (Re)	10	1.8E-06 (Re)	0.018	0.01	1	1

Table 5. Evaluating the effect of total ionic strength with a constant NO₃ /TcO₄ ratio. Contact conditions: $[NO_3]/[TcO_4] = 1E04$, 72 hr contact time, ambient temperature (25 ± 5°C).

- 16. To verify the capacity of the SuperLig[®] 639 under the testing conditions, a Tc loading isotherm will be generated under high [Na] loading conditions. The temperature will be recorded during these batch contact tests. The conditions for these batch contacts are summarized in Table 6.
- Table 6.Tc loading isotherm. Contact conditions: room temperature $(25 \pm 5^{\circ}C)$, 72 hours contacttime, $[NO_3]/[TcO_4] = 1E02$, $[Na]_T = 5 M$

[Tc] stock solution.M	Stock sol. aliquot, μL	Test [Tc], M	NaNO ₃ , M	NaOH, M	NaCl, M	% Theor. capacity
1.8	100	0.018	1.80	0.1	3.1	200
1.8	50	0.009	0.9	0.1	4	100
1.8	10	0.0018	0.18	0.1	4.7	20
0.0018	100	1.8E-05	0.0018	0.1	4.9	0.2
0.0018	10	1.8E-06	0.00018	0.1	4.9	0.02

- 17. Two Cs containing stock solutions will be prepared. The first, ca. 1 M in total cesium, will be prepared by dissolving 1.95 grams of cesium nitrate in water to a total volume of 10 mL followed by spiking of the solution with a small amount of ¹³⁷Cs. The second cesium stock solution will be 10 mM in total cesium and will be prepared by a 1:100 volumetric dilution from the first cesium stock solution. The specific activity and radiochemical purity will be evaluated by gamma counting and the radiochemical purity of the material will be verified by ICP-MS or graphite furnace AA before use.
- 18. Two uranyl ion-containing stock solutions will be prepared. For the uranyl ion batch contacts, a stock solution ca. 1 M in uranium will be prepared by dissolving 5.02 grams of uranyl nitrate hexahydrate in water to a total volume of 10 mL, followed by spiking of the solution with a small amount of ²³³U. The specific activity and radiochemical purity of the stock solution will be determined by alpha energy analysis of a sample aliquot before use. The total uranium content will be determined by laser fluorimetry before use.
- 19. To verify that the kinetics of the Superlig[®] 644 with cesium ion are such that a 72 hr contact time will yield an equilibrium distribution value, a series of contacts will be performed at room temperature (25 ± 5°C) under the conditions described in Table 7. The temperature will be

recorded during these batch contact tests. The sample's agitation will be stopped after 2, 4, 8, 24, 48, 72, 96 and 168 hr (1 week), respectively and the final solution activity measured.

Table 7.Cs kinetics under loading conditions. Contact conditions: ambient temperature $(25 \pm 5^{\circ}C)$, [Na]/[Cs] = 1E04

[Cs] stock solution.M	Stock sol. aliquot, µL	Test [Cs], M	NaOH, M	NaNO ₃ , M	Na/Cs
1	5	0.0005	0.25	4.75	1.0E04

20. Two methods will be employed to verify the capacity of the SuperLig[®] 644. First, a Cs loading isotherm will be generated under high [Na]_T loading conditions. The conditions for these batch contacts are summarized in Table 8. Each batch contact will be conducted at 25 ± 5°C, with the actual temperature being recorded.

Table 8. Cs isotherm under loading conditions. Contact conditions: ambient temperature, 72 hours contact time, [Na]/[Cs] = 100

[Cs] stock solution.M	Stock sol. aliquot, µL	Test [Cs], M	NaOH, M	NaNO ₃ , M	Na/Cs	% Theor. capacity
1	500	0.05	0.25	4.75	100	830
1	250	0.025	0.25	2.25	100	415
1	100	0.01	0.25	0.75	100	166
1	50	0.005	0.25	0.25	100	83
1	25	0.0025	0.25	0	100	42

The second approach involves a pH titration of a solution containing 0.1 grams of SuperLig 644 in the acid form with a standardized CsOH solution.

21. Since the pH conditions change substantially from loading (high pH) to stripping (0.5 M nitric acid) the effect on changing pH on the equilibrium distribution values of Cs with SuperLig[®] 644 at a constant [Na]/[Cs] ratio will be measured as described in Table 9.

Table 9.	Effect of changing pH. Contact conditions: ambient temperature $(25 \pm 5^{\circ}C)$, 72 hours contact time, [Na]/[Cs] = 5000
	conduct time, [14]/[C3] = 5000

[Cs] stock solution.M	Stock sol. aliquot, µL	Test [Cs], M	pH or NaOH, M or HNO3, M	NaNO3, M	Na/Cs
1	10	0.001	2.5 (NaOH)	2.5	5000
1	10	0.001	1 (NaOH)	4	5000
1	10	0.001	0.1 (NaOH)	4.9	5000
1	10	0.001	0.01 (NaOH)	5	5000
1	10	0.001	9	5	5000
1	10	0.001	7	5	5000
1	10	0.001	5	5	5000
1	10	0.001	2	5	5000
1	9	0.001	0.5 (HNO ₃)	4.5	5000

22. The effect of total ionic strength with a constant [Na]/[Cs] ratio of 5000 will be evaluated over the conditions described in Table 10. The density of the cesium stock solution will be determined by three independent measurements of the weight of a 1 mL aliquot. The precision of the balance must be at least \pm 1 mg or better.

Table 10.Effect of changing ionic strength. Contact conditions: ambient temperature $(25 \pm 5^{\circ}C)$, 72hours contact time

[Cs] stock solution.M	Stock sol. aliquot, μL	Test [Cs], M	NaOH, M	NaNO3, M	Na/Cs	Appr. Ionic Strength
1	10	0.001	0.25	4.75	5000	5
1	5	0.0005	0.25	2.25	5000	2.5
1	2	0.0002	0.25	0.75	5000	1
0.01	50	5E-05	0.25	0.00	5000	0.25

23. The effect of changing [Na]/[Cs] ratios on the cesium equilibrium distribution value will be evaluated over the conditions outlined in Table 11.

[Cs] stock solution.M	Stock sol. aliquot, µL	Test [Cs], M	NaOH, M	NaNO ₃ , M	Na/Cs	Appr. Ionic Strength	
1	10	0.001	0.25	4.75	5000	5	
1	5	0.0005	0.25	4.75	10000	5	
1	1	1E-04	0.25	4.75	50000	5	
0.01	50	5E-05	0.25	4.75	100000	5	
0.01	10 1E-05	1E-05	1E-05	10 1E-05 0.25 4.75	1E-05 0.25 4.75 50	0.25 4.75 500000	5
0.01	5	5E-06	0.25	4.75	1000000	5	

.

Table 11.Effect of changing [Na]/[Cs]. Contact conditions: ambient temperature $(25 \pm 5^{\circ}C)$, 72hours contact time

- 24. The effect of changing [K]/[Cs] ratios on the cesium equilibrium distribution value will be evaluated over the conditions outlined in Table 12.
- Table 12. Effect of changing [K]/[Cs]. Contact conditions: ambient temperature $(25 \pm 5^{\circ}C)$, 72 hours contact time

[Cs] stock solution.M	Stock sol. aliquot, µL	Test [Cs], M	КОН, М	KNO3, M	K/Cs	Appr. Ionic Strength
1	10	0.001	0.25	0.75	1000	1
1	2	0.0002	0.25	0.75	5000	1
1	1	1E-04	0.25	0.75	10000	1
0.01	20	5E-05	0.25	0.75	50000	1
0.01	10	1E-05	0.25	0.75	100000	1
0.01	2	5E-06	0.25	0.75	500000	1

- 25. To verify that the kinetics of the Superlig[®] 644 with uranyl ion are such that a 72 hr contact time will yield an equilibrium distribution value, a series of contacts will be performed at room temperature under the conditions described in Table 13. The sample's agitation will be stopped after 2, 4, 8, 24, 48, 72, 96 and 168 hr (1 week), respectively and the final solution activity measured.
- Table 13. $UO_2^{2^+}$ kinetics. Contact conditions: ambient temperature (25 ± 5°C), [Na]/[UO_2^{2^+}] = 1E03

[UO ₂ ²⁺] stock solution.M	Stock sol. aliquot, μL	Test $[UO_2^{2^+}]$, M	NaOH, M	NaNO ₃ , M	[Na]/[UO ₂ ²⁺]
1	10	0.001	0.25	0.75	1000

- 26. The effect of changing the sodium to uranyl molar ratio on the uranyl distribution value with SuperLig[®] 644 will be investigated over the conditions described in Table 14.
- Table 14.Effect of changing $[Na]/[UO_2^{2+}]$. Contact conditions: ambient temperature (25 ± 5°C), 72hours contact time

[UO ₂ ²⁺] stock soln. M	Stock sol. aliquot, μL	Test $[UO_2^{2^+}]$, M	NaOH, M	NaNO3, M	[Na]/[UO ₂ ²⁺]	Appr. Ionic Strength
1	10	0.001	0.25	0.75	1000	1
1	2	0.0002	0.25	0.75	5000	1
1	1	1E-04	0.25	0.75	10000	1
0.01	20	5E-05	0.25	0.75	50000	1
0.01	10	1E-05	0.25	0.75	100000	1
0.01	2	5E-06	0.25	0.75	500000	1

Quality Control

Personnel shall conduct this activity in accordance with the CH2MHill approved quality assurance plan that implements the applicable requirements of 10 CFR 830.120, "Technical Support to CHG for Phase 1B2 Quality Assurance Project Plan", CHG-QAPjP, Rev.0.

References

Blanchard, DL Jr., DE Kurath, and BM Rapko. 2000. "Small Column Testing of SuperLig 639 for Removing ⁹⁹Tc from Hanford Waste Envelope C (Tank 241-AN-107)." PNWD-3028, BMFL-RPT-022, Rev. 0), Pacific Northwest National Laboratory, Richland, WA.

Brown, GN, SR Adami, LA Bray, SA Bryan, CD Carlson, KJ Carson, JR DesChane, RJ Elovich, SJ Forbes, JA Franz, JC Linehan, WJ Shaw, PK Tanaka, and MR Telander. 1995. "Chemical and Radiation Stability of SuperLig[®] 644, Resorcinol-Formaldehyde, and CS-100 Cesium Ion Exchange Materials." PNL-10772, Pacific Northwest Laboratory, Richland, WA.

Hamm LL, FG Smith III, and DJ McCabe. 2000a. "Preliminaray Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig[®] 644 Resin." BNF-003-98-0220, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken SC.

Hamm LL, FG Smith III, and DJ McCabe. 2000b. "Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig[®] 639 Resin." WSRC-TR-2000-00305, Westinghouse Savannah River Company, Aiken SC.

Mehablia, MA, DC Shallcross, and GW Stevens. 1994. "Prediction of Multicomponent Ion Exchange Equilibria." *Chemical Engineering Science*, Vol. 49, pp. 2277-2286.

Appendix **B**

Test Instruction and Data Sheets

「「「「「「「「」」」」

THIS BOOK IS INTEDNDED TO BE USED FOR RECORDING RESEARCH PERFORMED FOR THE U.S. DEPARTMENT OF ENERGY UNDER BNW'S OPERATING CONTRACT EY-76-C-06-1830	CARD AND AND AND AND AND AND AND AND AND AN
	ł

				/ / / / /
	LABORA BOOK N	TORY RECO	RD	s document consists of
	BNW- C	- 740-	,	pages, copy no.
	TITLE (IN	NDICATE SUB	JECT CONTENT)
	1 L			а
AUTHOR - DIVISION AND I	DEPARTMENT			57
			•	
PERIOD COVERED FROM		то	*	
PERIOD COVERED FROM Route To	P. R. No.	TO	Route Date	Signature & Date
Route To BM Rapko	P. R. No.	TO Location P7-25	Route Date	Signature & Date
Route TO BM Rapko	P. R. No. 36639	TO Location P7-25	Route Date 10/19/00	Signature & Date
Route To BM RapKo	P. R. No. 36639	TO Location P7-25	Route Date 10/19/00	Signature & Date
Route TO BM Rapko	P. R. NO. 36639	TO Location P7-25	Route Date 10/19/00	Signature & Date
Route To BM RapKo	P. R. No. 36639	TO Location P7-25	Route Date 10/19/00	Signature & Date

NUME FIN	100	w.l	FOR	BATCH	CONTRACT
MARE OF	100	M C	1. 101-00		TESTING.

Supernatant Decontamination Subtask 2.1:Silico-Titanate Tests Revision 0 Issue Date: 6/95 Page 21 of 37

Attachment A: Test Instructions for NCAW Waste Preparation

Starting Date_	12/15/00	<u> </u>	Balance	check 10	5 = 1	0,0000	ĵ,
LRB # 5765	2, p. 1	-		L	weight sev	ial # 99-	150603-4
367 Balance No Balance No	2-06-01-04	Next Cali Next Cali	bration 1 bration 1	Date_02/20	101		
Objective: 1) FILTER SOLUTIO This solution	to prepar NS IF NECE was used f	e a standa SSARY. or tests:_	rd stock	solution of	NCAW Wa	ste (5 <u>M</u>	Na ⁺).
1. Test Solut	ion Make-U	P, NCAW S	tock Sol	ution (Date)	1	
Component F	W,q	м	_g/L_	40 11ters,	g We	ighed,q	Date
NaNO ₂	85	0.258	21.9	2.193877	2	, 19335,	12/15/00
NasSOA	142.05	0.15	21.3	Z.1308852	2	:13085.	-+
KNO ₂	101.11	0.14	14.3	1.4155580	_1	. 415ZG.	
NacOs	105.99	0.23	24.7	2,4378989		2,43779	_
NaNO ₂	69.0	0.43	29.9	2,9670 1196	2	.9670 <u>G</u>	
Na ₂ HPO ₄ • 7H ₂ O	268.07	0.025	6.7	0.6702 268	5	1.67049.	
A1(NO3)3.9H20	375.15	0.43	162.6	16.13156503	1(0,13449	
NaF	42.0	0.089	3.75	0.3738 150	0	1.3741 4	
NaOH	40.0	3.4	136	13.6000 5440	1	3,565 3g	. <u> </u>
CsNO3	194.9 _						
Species	NCAW, M				10		
Na K Al SO4 OH(free) CO3 F NO2 NO3 PO4 SO4	5.0 0.14 0.43 0.15 ~1.6 0.23 0.089 0.43 1.69 0.025 0.15			By Laborato Balance Reviewed Date	No	511	 <u>-</u>

Cesium nitrate will be added in different amounts to give various sodium:cesium mole ratios.

Project_No	Date_of_Work
Entered By Routing - Citra	Date12(1900
Disclosed-To-and-Understood/By-	
Signed-1	Date Date
2	DateDate

BNW 57652 Make-up of Rhenium Stock Solution 12/18/00 Dissolve 4.92 g. sodium perrhenate to a total volume of 10 mL with DI water. raf Cim Balance check 362-06-01-043 Balance: 10 g = 10,0000 g Calibration expires: 02/2001 Weight sevial # 99-150603-4 NaReO4 4.9204 g. Prepare dilution for Re analysis by ICP-MS Calibra # 0253029 set at 100.0 ul Pipet T= 21.4°C 0,0975 9. 0.0993 9 0.0994 5 0.0997 5 0.0994 5 Re-1 10.0678 g. 1720 + 100 ml Re = 10.2055 g. Re-2 10.0535 g, H20 + 100 ul Re = 10.1912 g. for reportion Re-1 and Re-Z submitted for analysis by ICP-MS 12/18/00. Date of Work-Project-No 12/19/00 Date Entered-By Disclosed To and Understood By

Signed 1

Chem Rec_61	Prep date: 12/18/2000	
Preparation	of Standardized 5M, 0.1 M, and 0.01M NaOH	57652
WP# F17605	Requester: K. Carson	Bruc p. s
Request: Brain Rapko has given me th CH2MHill. In order to make up the soluti 0.01 M NaOH, 2 liters: 0.1 M NaOH, 2 lit Charge to F17605. Thanks!Katharine Preparation: Use 50% NaOH (19.0 0.1M NaOH from this stock and stan	e job of making up jillions of stock solutions for batch contact ions, I need some different NaOH solutions made up and val ters: 5.0 M NaOH, 250 ml Carson I6N) Fisher stock solution (CMS # 52456) to prepare t indardize this solution and adjust 5M NaOH accordingly X dilution	t tests he is going to do for lidated by titration. Please make up: the 5M NaOH then prepare y. Then prepare the 0.01M
Calculations : <u>250 mL * 5M NaOH</u> 19.06M NaOH	= 65.6 mL conc NaOH to 250 mL with DI w	vater.
2000mL * 0.1M Na(5 M NaOH	<u>OH</u> = 40.0 mL of ~ 5M NaOH to 2000 mL with	DI water.
Standardization : Use NIST SRM 8 Technique used will be via hand-titra	34j, Potassium Acid Phthalate KHC8H4O4 (KAP)CM ation to the phenopthalein endpint. A good titration v 8H404 = 204 23 g/mole, or mg/meg	MS# 52232 would use about 20-25 mL of a

20 mL * 0.1M NaOH = 2 meq. and 2 meq of KAP = 204.22 mg/meq * 2 = ~ 408 mg weigh on 5-place balance Target wt for KAP to titrate 0.01M NaOH will be about 40 mg.

NaOH Molarity verification performed on ~ 0.1 M NaOH prep.

	(target = .41g)	Vol. Of ~ 0.1M NaOH	NaOH Molarity =a *	Molarity Error	4.1.0
Verification Test #	Wt. of KAP	to neutralize	1000 / b * 204.23	+/- @ 1 s	141 1013
1	0.40351	20.95	0.09431		9.48351
2	0.39661	20.62	0.09418		
3	0.41712	21.65	0.09434		7. <u>3</u> 9551
		Ave=	0.09428	0.0001	0.11710
		£	certified value		419-12-12-2

40.0mL and:

2000mL * 0.01M NaOH = 212. 1 mL of 0.0943M to 2L with DI H2O 0.09428

NaOH Molarity verification performed on 0.01 M NaOH dilution

	(target = .41g)	Vol. Of ~ 0.01M	NaOH Molarity =a *	Molarity Error
Verification Test #	Wt. of KAP	NaOH to neutralize	1000 / b * 204.23	+/- @ 1 s
1	0.04822	23.78	0.00993	
· 2	0.03937	17.82	0.01082	
3	0.02939	14.55	0.00989	
		Ave=	0.01021	0.0005
			certified value	1

2 84<mark>822 q</mark> 0.93937 g

8.83572 9

Analyst/Date

Poorlia 12/18/00

C-rec 61.XLS

12/15/2000

Page 1 of 1

ADVANCED INORGANIC ANALYSIS GROUP, NATIONAL SECURITY DIVISION BATTELLE, PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND, WA

RESULTS

Name:	
Work Package #:	
Report Date:	

Brian Rapko F17605 1/4/01 Reviewed By: S. O. Slate (date) 1-5-01 Reference: on file 329/114, ICP Printout 01-03-01 Analyst: LMP Thomas D.

Concentration:

as noted

Sample			Re		
Sample	Sample ID	μg/ml	M NaReO ₄	% RPD	
Log-III #					
01-12-14	RE-1	3350	0.0180	0.27% RPD	
01-12-14	RE-1 duplicate	3360	0.0180	0.2170 101 0	1
01-12-14	RE-1 MS	101% spik	e recovery		
		1 X 1 1			
01-12-15	RE-2	3390	0.018 ₂	0.020% BPD	
01-12-15	RE-2 duplicate	3390	0.0182	0.020701110	1.11
01-12-13					11
				0	
	the stand of the state	18-18-18-18-18-18-18-18-18-18-18-18-18-1	Market a		
	and the second s	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A	「「「ない」」の行手です。	
Participation of		1 1 1 1 A	194 M 10 10 10	BLA LA	1
			1		
	7				
					1
				_	
				-	
	the second se				
				_	
				10	

Analytical Equipment:

Inductively Coupled Argon Plasma Spectrometer (ICP), IRIS/AP Jarrell-Ash (WD25801) Mettler AK160 balance (366-06-01-005), "S" class Troemner weights (22549-523)

Procedure(s):

AIAL-01 Rev. 0

2% HNO3

Sample Matrix:

Make-up of Technetium-99 Stock Solution BNW 57652 Dissolve 2.3 g. technetium oxide in ammonium hydroxide/hydrogen perexide and evaporate to dryness at room temperature. - due 12/18/00 x.1Cm Redissolve the solid ammonium pertechnetate to a total volume of 10 mL with DI water. NHYOH/ HZOZ step repeated ZX. 384-06-01-008 Balance: Calibration expires: 08/2001 Dissolve pertechnetic in ~ 35 ml Hz 3:30 pm - appens cloudy. Z, 30 3 g. TcO₂ # 0831412 T= 22,5°C 1/12/01 Mape Pipet 10,05629, used for prepring dilutions 10,085851 of TC-stock. 10.06829, 10 0542 Prepare 1:1000 dilution for second To 99 stock solution used to make up dilutions #033120 Pipet and construg samples chark TE-99 stock Filter with 0.45 4 filter (stock dilution) 100 x +7 10,1ml (DI water) => (dilution #2)100 x +7 10.1ml (DI water) > 100) -7 15 mul (Ultima Gold) $\left(\frac{10.1 \text{ m}^{1}}{0.1 \text{ m}^{1}}\right)\left(\frac{10.1 \text{ m}^{1}}{0.1 \text{ m}^{1}}\right)\left(\frac{15.0 \text{ m}^{1}}{0.1 \text{ m}^{1}}\right) \xrightarrow{\text{count3}}$ 13/4uk 100 x DI H20 -7 15 ml (UITMA Gold) Filtered all TC-99 stock vsing 0.45 1 filter, some solid material still undiss 1/15/01 nge. Date Signed 1/19/01 Date

12 Jan 2001 16:16 ALPHA Protocol #:21 PTC25	<u>/BETA - 1.09</u> 50 Tc-99	User : BM
lime: 1.00 Data Mode: CPM Background Subtract: None	Nuclide: MANUAL	(vough check) -
LL UL LCR Region A: 0.0 - 40.0 0 Region B: 40.0 - 400 0 Region C: 2.0 - 2000 0	2S% BKG 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00	1 minute count
Quench Indicator: tSIE/AEC Ext Std Terminator: Count Coincidence Time(ns): 18 Delay Before Burst(ns): Normal Protocol Data Filename: A:\AENO Count Data Filename: A:\AENO9\S Spectrum Data Drive & Path: A:\	D9\PROT.DAT SDATA21.DAT \AENO9	0.1 ml +7 10.1 ml -7 (DI Water) 0.1 ml -7 15 ml (Ultim bold) 1344 0.1 ml 1+20 -7 15 ml (Ultims 6010)
S# TIME CPMA A:25% CI 14mK 1 1.00 41.00 31.23 12 vLCH 2 1.00 3715.22 3.28 1075 jb K*3 1.00 3832.05 3.23 1061	PMB B:2S% CPMC .00 57.74 52.37 9.8 1.93 14445.8 5.0 1.94 14412.4	C:2S% SIS tSIE FLAG 27.64 83.398 538.13 1.66 180.65 543.67 1.67 178.26 541.54

Date

12/01

BNW 57652 p.6

Disclosed To and Understood By

Signed 1.

-

۰.

Carson, Katharine J

From: Sent: To: Subject: Rapko, Brian M Sunday, January 14, 2001 5:28 PM Carson, Katharine J RE: Rough cut Tc-99 counting data

BNW 576527

Katharine: I would go ahead and filter and use as is - the current activity is plenty. Using the numbers you gave (and taking 1.07E04 cpm for the measured activity) and since the specific activi of Tc-99 is 0.017 Ci/g, the activity of the stock solution comes out to 4.8E-04 Ci/mL. This translate to about 2.8E-02g/mL in the stock solution or about 1 gram total Tc (35 mLs of stock solution). We that about the amount of Tc you weighed out?

- Brian

From:Carson, Katharine JSent:Friday, January 12, 2001 4:42 PMTo:Rapko, Brian MSubject:Rough cut Tc-99 counting data

I got some numbers for you - at least enough to give you an idea.

The Tc stock is in about 35 mL water, no large chunks visible but it is still cloudy.

I filtered a small portion using a 0.45 micron filter, then made two successive 0.1 mL to 10 mL dilutions.

I took 0.1 mL of the second dilution into 15 ml Ultima Gold for counting. I also made up a blank of 0.1 mL water ir cocktail.

I did a one minute count of each sample.

 Blank
 12 CPM

 Tc stock #1
 10760 CPM

 Tc stock #2
 10615 CPM

Whipping out my calculator. . . I get 1.09E+09 counts/mL.

I can repeat all this with longer count times, and making dilutions by weight to give you something "official" for the records. Since the Tc stock hasn't cleared up yet, I thought you might want to have me dilute it out a little more, c else filter all of it to get a uniform solution.

Katharine Carson

katharine.carson@pnl.gov 509-376-4299

Date of Work Project No. 910 Date Entered By_ Disclosed To and Understood By Date Signed Date

17 Jan 2001 14:4	13 AL	<u>РНА/ВЕТА -</u> 22550 Тс-9	1.09	Page #
Time: 10.00 Data Mode: CPM Background Subtra	ct: None	Nuclid	e: MANUAL	0521
LL Region A: 0.0 Region B: 40.0 Region C: 2.0	UL L(- 40.0 - 400 - 2000	CR 25% 0 0.0 0 0.0 0 0.0	BKG 0.00 0.00 0.00	BNW 57652
Quench Indicator: Ext Std Termin Coincidence Time(Delay Before Burs Protocol Data Fil Count Data Filena Spectrum Data Dri	tSIE/AEC ator: Count ns): 18 t(ns): Norma ename: A:\AE me: A:\AENO9 ve & Path: A	al ENO9\PROT.D ?\SDATA21.D }:\AENO9	AT AT	

S#	TIME	CPMA	A:25%	CPMB	B:25%	CPMC	C:25%	SIS	tSIE	FLAG
BIK 1	10.00	22.90	13.22	12.80	17.68	41.75	9.79	130.70	537.27	
HE IA2	10.00	3611.99	1.05	10391.5	0.62	13973.4	0.54	177.97	537.12	
stk 1133	10.00	3667.18	1.04	10417.8	0.62	14053.5	0.53	177.56	539.93	
512274	10.00	36373.5	0.33	106442	0.19	142451	0.17	180.21	541.54	
44285	10.00	37490.5	0.33	108336	0.19	145446	0.17	180.71	549.16	

•

٠,

Carlo Sala

Signed 1.		0	Date	
 2.	1 Killtun 4	Chult	Date LIS	0(

For Tc Stock 2

counts/mL =

counts/mL = Average =

1.086E+06 1.073E+06 1.079E+06

Entered By_

Signed 1

2

Disclosed To and Understood By

.

sample A sample B

Nath

Date

Date

Date

Page 2

1/19/01

Assay of Tc-99 Stock Solutions for Equilibrium Batch Contact Testing Balance 362-06-01-056 BNUN 57652

Mettler PM400 calibration expires 8/2001

Make up a Tc Stock 2 by dilution of original Tc stock 1:1000 in water.

Tare weight,		Vial,			Dilution
ĝ	Vial & Water	water, Tc	Water, g	<u>Tc, g</u>	factor
13.209	23.372	23.38	10.163	0.008	1270.375

Make up two successive 100X dilutions of the original Tc stock.

<u>Tare weight,</u> g	Vial & Water	<u>Vial.</u> water, Tc	Water, g	Tc.g	Dilution_ factor
13.438	23.577	23.679	10.139	0.102	99.40196 dilution #1
13.432	23.612	23.711	10.18	0.099	102.8283 dilution #2
				(used to pre	epare counting samples

Preparation of samples for LSC

Tare weight,		Vial, Tc,	10			Dilution		
ĝ	Vial & Tc	<u>cocktail</u>	<u>Ic, g</u>		<u>Cocktail, g</u>	factor		
13.367	13.467	28.438		0.1	14.971	149.71	Tc stock #1 sample A	4
13.251	13.351	28.373		0.1	15.022	. 150.22	Tc stock #1 sample E	3
13.296	13.394	28.43	0	.098	15.036	153.4286	Tc stock #2 sample /	Ą
13.11	13.211	28.228	0	.101	15.017	148.6832	Tc stock #2 sample B	3

Blank counting sample made up with 0.1 mL DI water in 15 mL cocktail

Counting data

Sample	CPM
Blank	12.8
Stock 1 A	10391.5
Stock 1 B	10417.8
Stock 2 A	106442
Stock 2 B	108336

For Tc Stock 1

counts/mL =	1.061E+09	sample A
counts/mL =	1.064E+09	sample B
Average =	1.062E+09	

Prepared by Katharine Carson 1/18/01

Page 1

Disclosed To and Understood By .6 Signed 1. Date 2. Date

KALO CUP) BNW 57656 p. 8 Viul Usul - water Tave Weight Vial water + TC 23, 380 g. 23,37Zg 13.209 g. 1 stock usul str bar) 11 #1 wh 23.577g. 13.438 g. 23,679 5. stiv Sw) 11. #2 UTal 23.711g. 23.612g, 13.432 g. 1 Stir 645) 10 ml pipet 0831428 Calibia 14 10 ul pipet 028369 100 ul pipet 053.081 Vigit + entry TL V:41, codetail, TC Take Wt. 28,438 g. 13.467 g. STOCKIA 13.367 g. 28.373 g. 13.351 9 13.251 g stock & B 28,430 9. 13.394 9, 13.296 g. Stock ZA 28,228 g - storle 2 B 13.211 g, 13.110 9. 1/16/01 referm Las 516 Balline 362-06-01-056 Metter PM400 calibration expires 8/2001 Date Entered By Disclosed To and Understood By Fully 191 01 Signed 1._ Date_ Date

Stock Solutions: Total Vol. Actual Mucl. Actual Mucl. Actual Mucl. Actual Mucl. Actual Mucl. Mucl. Mucl. Mucl. Mucl. </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>P.</th> <th>14</th> <th>S.</th> <th>5</th> <th>16 Р</th> <th>57</th> <th>-</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>345</th> <th>Semi-micro combo</th> <th></th> <th></th> <th>217 Pri 10/6/1</th>						P.	14	S.	5	16 Р	57	-																-						345	Semi-micro combo			217 Pri 10/6/1
Nacl. Total Vol. Actual Mach. Mut. J. gm Wt.1, gm Wt.3, gm 8.4 8.49 0.01 5500 90.5877 5.6012 0.0943 M Wt.2, gm Wt.3, gm 3.1 0.01 550 90.5877 5.6012 0.0943 M Wt.2, gm Wt.3, gm 3.1 0.01 550 9.52877 0.0943 M Mon.H Mt.1, gm Wt.3, gm 3.1 0.01 50 9.527755 1.5272 0.0943 M Mt.1, gm Wt.3, gm 4.1 0.011 50 14,45106 0.0775 0.0943 M Mt.1, gm Wt.3, gm 0.1 50 14,48106 0.0765 0.0102 M 1.0106 1.0016 0.1 50 14,4810 0.0102 M 1.0136 1.0169 1.1 0.011 50 14,4810 0.0102 M 1.0169 1.1 0.01 50 14,3210 0.0102 M 1.0136 1.0169 1.1 0.018 0.11 50 <th>Average A</th> <th>Density, g/mL</th> <th></th> <th></th> <th>日本市西京市市地区の日本市</th> <th></th> <th>の一部の行動になったので、「ないない」の</th> <th></th> <th>1.1835</th> <th>1.03/3</th> <th>1.0148</th> <th>1.0048</th> <th>「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」</th> <th>Litration of the second s</th> <th></th> <th>「日本のない」の「日本のない」の「日本のない」の「日本のない」の「日本のない」の「日本のない」のです。</th> <th></th> <th></th> <th>「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」</th> <th></th> <th>「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」</th> <th></th> <th></th> <th></th> <th>Final pH = 9.4</th> <th>Final pH = 7.18</th> <th>Final pH = 5.2</th> <th>Final pH = 2.14</th> <th></th> <th>「「「「「「「「「」」」」」</th> <th>「「「「「「「」」」」</th> <th></th> <th></th> <th>pH Meter: Corning</th> <th>Electrode: Corning</th> <th></th> <th></th> <th></th>	Average A	Density, g/mL			日本市西京市市地区の日本市		の一部の行動になったので、「ないない」の		1.1835	1.03/3	1.0148	1.0048	「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」	Litration of the second s		「日本のない」の「日本のない」の「日本のない」の「日本のない」の「日本のない」の「日本のない」のです。			「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」		「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」				Final pH = 9.4	Final pH = 7.18	Final pH = 5.2	Final pH = 2.14		「「「「「「「「「」」」」」	「「「「「「「」」」」			pH Meter: Corning	Electrode: Corning			
Stock Solutions: Instanty Instant Instanty Instant Instant Instanty Instant Instant Instanty Instant Instant		Wt 3, gm		「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	「「「「「「「」」」」	「「「「「「「」」」	「日本になるのなくのない		1.1845	1.0383	1.0169	5C00.1 4	のないでは、「「「「」」」			「「「「「「「」」」」」	建築からないの時間のでの		のないであるというのであった。			「日本のないでは、ないのではないです。	「日本の一日本の一日本の一日本の一日本の一日本の一日本の一日本の一日本の一日本の一	And the second s	aOH/HNO3	aOH/HNO3	aOH/HNO3	aOH/HNO3			「日本のないのである」	「「「「「「「」」」」						
Stock Solutions: Density, 6 Macl, M Macl, M Macl, M Actual M Actual M Density, 6 58.44 84.39 40 500 90.5877 76.5012 0.0943 M Wr1, gm 58.44 84.39 0.01 500 90.5877 76.5012 0.0943 M Wr1, gm 58.44 84.39 0.01 250 45.2918 0.3827 0.0102 M 1.1016 4.7 0.18 0.01 250 45.2918 0.3827 0.0102 M 1.1035 6 0.018 0.01 250 14.6106 0.0773 0.0102 M 1.1035 0.1 0.018 0.01 50 1.46106 0.0773 0.1022 M 1.0016 4.9 0.018 0.01 50 1.46106 0.0775 0.0943 M 1.0016 4.7 0.18 0.01 50 1.43010 0.012 M 1.1035 0.1 0.018 0.1 50 0.13.7280 0.0943 M 1.016		Wt 2, gm	A DESCRIPTION OF A DESC	「大学のない」の	の時間のないので、「「「「」」	の一方の	へ、彼を生む湯	solve	1.184	1.038	1.014	1.00/1	の一般のないのないである	のないないで、ないないないの		Statistical Sources	があるなななない	「日本の		の一般のないのである	(+) ye	(1) IOI (1)	ml of (†)	ml of (t)	adj with N	adj with N	adj with N	adj with N		m of (t)	m of (t)	t ml of (t)		ton Date	1/01	00/6	1/01	
Stock Solutions: Total Vol, MaX, MaCI, Stock Solutions: Total Vol, MaCI, Stata 5844 84.99 3.1 Total Vol, MaCH, MaCH, Stata 58.44 5.3 Total Vol, MaCH, MaCH, MaCH, Stata 5.3 Total Vol, MaCH, MaCH, MaCH, Stata 5.3 Actual MaCH, MaCH, MaCH, MaCH, Stata 5.3 Actual MaCH, MaCH, MaCH, MaCH, Stata 5.3 Actual MaCH, MaCH, MaCH, Stata 5.3 Actual MaCH, MaCH, MaCH, Stata 5.3 Actual MaCH, MaCH, MaCH, Stata 5.3 Actual MaCH, MaCH, Stata 5.3 Actual MaCH, MaCH, Stata 5.3 Actual MaCH, Stata 5.3 Actual MaCH, Stata 5.3 Actual MaCH, Stata 5.3 <td>הכווסויאי מ</td> <td>Wt 1, gm</td> <td>Contraction of the second s</td> <td>語をいまれたの</td> <td>「ないないないの</td> <td>調査が設定する</td> <td>語の言語の意思</td> <td>will not diss</td> <td>1.1818</td> <td>1.0356</td> <td>1.0130</td> <td>1.0016</td> <td>のないというないのないのない</td> <td>A SUMPLY ADDRESS OF SUMPLY STATES</td> <td>「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」</td> <td>「「「「「「「「「」」」」」</td> <td>「「ない」の</td> <td></td> <td>日本市内和にない</td> <td>のうたいのの時代の</td> <td></td> <td></td> <td></td> <td>0.01</td> <td>9 Hg</td> <td>7 Hq</td> <td>pH 5</td> <td>pH 2</td> <td>の記録とき</td> <td>56</td> <td></td> <td>0.4</td> <td></td> <td>Calibra</td> <td>2/</td> <td>2/</td> <td>8/</td> <td></td>	הכווסויאי מ	Wt 1, gm	Contraction of the second s	語をいまれたの	「ないないないの	調査が設定する	語の言語の意思	will not diss	1.1818	1.0356	1.0130	1.0016	のないというないのないのない	A SUMPLY ADDRESS OF SUMPLY STATES	「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	「「「「「「「「「」」」」」	「「ない」の		日本市内和にない	のうたいのの時代の				0.01	9 Hg	7 Hq	pH 5	pH 2	の記録とき	56		0.4		Calibra	2/	2/	8/	
Stock Solutions: Total Vol, MaCl, MaCl, MaCl, MaCl, MaCl, MaCl, MaCl, S8.44 NaNOs, B8.439 Total Vol, MaCl, MaCl, MaCl, MaCl, MaCl, MaCl, MaCl, 3:1 Actual MaNOs, 0:1 Actual S60 Actual S0:5877 Actual S6:5012 3:1 0.018 0.1 100 2560 45.2918 0.3827 3:1 0.018 0.1 100 27.4735 1.5272 4.7 0.018 0.01 50 14.6106 0.0753 5 0.018 0.01 50 14.6106 0.0753 0.5 0.018 0.01 50 14.6106 0.0756 0.5 0.018 0.01 50 14.6106 0.0756 4.9 0.01 50 14.6106 0.0756 4.9 0.018 0.1 50 14.3403 0.0766 4.9 0.018 0.1 50 14.3403 0.0766 4.9 0.018 0.1 50 14.3403 0.0766 7.5 0.018 0.1 50 14.7022 0.3376 </td <td></td> <td>Actual NaOH</td> <td></td> <td>0.0943 M</td> <td>0.0102 M</td> <td>0.0943 M</td> <td>0.0943 M</td> <td>0.0102 M</td> <td>0.0102 M</td> <td>0.0102 M</td> <td>0.0102 M</td> <td>0.0102 M</td> <td>0.0943 M</td> <td>0.0043 M</td> <td>0.0943 M</td> <td>2.0604 g</td> <td>4.9981 g</td> <td>7.9850 g</td> <td>9.8709 g</td> <td>0.0943 g</td> <td>M 2010.0</td> <td>NaOH -</td> <td>- LION</td> <td>- HORN</td> <td>XX</td> <td>XX</td> <td>· XX</td> <td>XX</td> <td>XX</td> <td>NaOH -</td> <td>NaOH -</td> <td>NaOH -</td> <td></td> <td>ances</td> <td>3-01-035</td> <td>120467</td> <td>5-01-009</td> <td></td>		Actual NaOH		0.0943 M	0.0102 M	0.0943 M	0.0943 M	0.0102 M	0.0102 M	0.0102 M	0.0102 M	0.0102 M	0.0943 M	0.0043 M	0.0943 M	2.0604 g	4.9981 g	7.9850 g	9.8709 g	0.0943 g	M 2010.0	NaOH -	- LION	- HORN	XX	XX	· XX	XX	XX	NaOH -	NaOH -	NaOH -		ances	3-01-035	120467	5-01-009	
Stock Solutions: Foto Solutio: Foto Solutions: Foto Solut		Actual NaNO ₃ , g		76.5012	0.3827	1.5272	0.0157	0.0762	0.0773	0.0779	0.0763	0.0766	0.0008	0./624	0.0756	0.3376	0.0765	0.0756	0.0768	212.47	212.48	with 0.01 M	MILLI U.U.I M	with 0.01 M	21.26	21.26	21.26	21.26	21.26	with 0.01 M	with 0.01 M	with 0.01 M	調整に設定する	Bala	360-06	1113	360-06	
Stock Solutions: AnNO3, M NaNO3, M NaO1, M Total Vol, mL 58.44 84.99 40 500 3.1 1.8 0.1 500 3.1 1.8 0.1 500 3.1 0.018 0.1 100 4.7 0.018 0.1 100 4.9 0.0018 0.1 100 5 0.018 0.01 50 1 0.018 0.01 50 0.5 0.018 0.01 50 0.1 0.018 0.1 50 4.9 0.018 0.1 50 4.9 0.018 0.1 50 4.9 0.018 0.1 50 5.5 0.018 0.1 50 5.6 0.1 0.01 50 5.7 0.18 0.1 50 5.5 0.1 0.1 50 5.7 0.18 50 50		Actual NaCl, g		90.5877	45.2918	27.4735	28.6408	17.0766	14.6106	2.9201	1.4683	0.2889	14.3403	13./286	4/2011	11.7022	7.3115	2.9244	0.2926	x	XX	dilute (t) v		dilute (t)		XX	XX	XX	XX	dilute (t)	dilute (t)	dilute (t)	「「「「「「」」」	_				いない
Stock Solutions: Macl, M MaNO ₃ , M NaOH, M S8.44 84.99 40 3.1 1.8 0.1 3.1 0.018 0.01 3.1 0.018 0.1 3.1 0.018 0.1 3.1 0.018 0.1 4.9 0.018 0.1 5 0.018 0.1 1 0.018 0.1 1 0.018 0.1 1 0.018 0.1 1 0.018 0.1 1 0.018 0.1 1 0.018 0.1 2.5 0.018 0.1 2.5 0.018 0.1 2.5 0.018 0.1 2.5 0.018 0.1 2.5 0.01 0.1 2.5 0.01 0.1 2.5 0.01 0.01 2.5 0.5 0.01 2.5 2.5 <trr< td=""><td></td><td>Total Vol, mL</td><td></td><td>500</td><td>250</td><td>100</td><td>100</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>09</td><td>50</td><td>50</td><td>50</td><td>50</td><td>500</td><td>500</td><td>50</td><td>202</td><td>00</td><td>202</td><td>202</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>250</td><td>Actual</td><td>1.585 ml</td><td>25.2910 g</td><td>0.1565</td><td></td></trr<>		Total Vol, mL		500	250	100	100	50	50	50	50	50	50	50	09	50	50	50	50	500	500	50	202	00	202	202	50	50	50	50	50	50	250	Actual	1.585 ml	25.2910 g	0.1565	
Nacl, M NaNO3, M Macl, 58.44 NaNO3, M 58.44 84.99 3.1 1.8 3.1 1.8 3.1 0.018 4.7 0.018 4.9 0.0018 6 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 2 0.018 1 0.018 2 0.018 1 0.018 1 0.018 1 0.018 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1		NaOH, M	40	0.1	0.01	0.1	0.1	0.01	0.01	0.01	0.01	0.01	0.1	0.1	1.0		2.5	4	4.9	0.1	0.01	0.01	10.0	10.0	10.0	~~~~	××	xx	0.5M HNO ₃	0.01	0.01	0.01	0.01 <u>M</u> KOH	Value	15.77	101.11	56.11	
Stock: NaCl, MaCl, MaCl, 58:44 53:1 3.1 4.7 4.9 6 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Solutions:	NaNO ₃ , M	84.99	1.8	0.018	0.18	0.0018	0.018	0.018	0.018	0.018	0.018	0.00018	0.18	0.9	0.08	0.018	0.018	0.018	5	£	0.5	0.1	0.01	0.001	о ч	2 10	5	5	2.5	. 0.5	0.04	5M KNO3	Other	NO3 M	NO3	HO	
	Stock	NaCl, M	58.44	3.1	3.1	4.7	4.9	9	5	-	0.5	0.1	4.9	4.7	4	4.3	2.5	-	0.1	xx	XX	x	XX	XX	X	× >	XX	X	XX	XX	XX	XX	XX		Con H	FWK	FWK	

Contraction of the second s			#** D										15	New	5 . •	1.17	
Desc	hane,	Jaque	ita H	Banko	Brian	M											
From Sent: To: Subje	: ect:		T C F	Thursd Descha RE: KN	ay, De ane, J 103-K	ecemb aquetta OH Sc	er 28, a R olution	2000 9):27 A	М							
Char	nge it fr	om 5 N)3/0.0	01 M	KOH	to 1	M KN	03/0).01	MKO	H. I	l just	chec / in ro	ked t	he KN(empera	D3 atu
solul Oop	oility an s.	d inde	ed we	are a	adou	1 30%	over	uie i	Παλιί	Indin	i noi						
- Bri	an																
-						-			3	2							
F	rom: Sent:	Desc Thurs	:hane, sday, [Jaqu Decen	nber :	28, 200	00 7:48	3 AM									
1	o: Subject:	Rapl KNO	ko, Bric)3-KOH	an M I Soluti	ion												
				Ċ,													
				1	1.1	Ĩ	1 1	Ĩ	1 1	T	1-			$\uparrow \uparrow$			1
観日		++			+												
		++												+			-
											_	$\left \right $		+		++	+
	_						1 1	- 1 C	1 1					+		+-+-	-
							+	+	11								
							+				_			+			

Notes on solution make-up 12/21/00 Date Balance 362-06-01-043 K. J. Cours By Calibration expires 02/2001 Balance chark 10g = 10.00005, weight sevial # 29-150603-4 BHW 5765 Pipet# . Eypenderf N32671 Pipet # Weight checks Weight checks 0.9980 9. 0,9981 4, 0,99736 0,9961 4, 0.99629 T= 21.4°C Pipet # Pipet # Weight checks Weight checks Balance 360-06-01-009 Did not use ! expires 8/2001 Balance check. 1009 - 100, 001 g. weight sonial # 99-150658-24 used for solution "t" - NIGNLO3 362-06-01-023 (Las 570) expires 8/2001 Balance Disclosed To and Understood By-

Pipet weight checks

ł

Balance 360 - 06 - 01 - 035Calibration expires 20

Pipet # <u>H30973</u> Weight checks 9.99914 10.00425

4710 Pipet # Weight checks 0.00947

0	201	
1), (91	1472	2
0.00	1 de	2

Pipet # <u>H30213</u> Weight checks 0,40045

Pipet #	H30213	
Weight o	checks ,	
A110201	1.00246	
0.1-1	1.00202	
	1.00162	

Disclosed-To-and-Understood-By

Nillen

Entered-By_

Signed-1

Date 12/25/00 By Or DesChare

Pipet #
Weight checks
1.00011
0.99305
0,99991

Pipet # _ H30213	
Weight checks	
0.09832	
0,10234	
0,10200	

Pipet #	H30213
Weight ch	necks
_	1.00183
	1.00063
-	OLITISA

Pipet # Weight checks

Date

Date Date 1/19/01

BNW 57652 p.15

т	RACEABLE	8	*
Certificate of C	alibration for Temp	erature Probe	
Certificate Number	Model Number	Serial Number	X88
C374352 This Temperature Probe was calibrated Instrumentation. This calibration comp in accordance with ITS-90 (International	NEW 61220-604 l against National Institute of Star plies with the requirements of ISC Temperature Scale of 1990).	20108266 ndards and Technology Traceable 9 9000 Certification. All values are	
Calibration Test Information Test Equipment	Serial Number	Calibration Due Date	R
HART PRECISION BATH, 7011	56063	06/23/00	
NIST Traceable Test Number(s)			
256495, ITS-90			188
Accuracy			
I esting was performed on the unit as show	ing °C Standard	S: I °F Reading °F	1788
Stanuaru C Keau	Standard	A Reading F	**
25.00 25	.1 77	.00 77.2	100
	2		**
			(0)
			**
12.			
765.16	18 ^{19.}		**
alw 5 . 1	62		
ber			
		,	
The maximum arrow of this Temperatur	a Probe at the time of calibration	did not exceed the specified	
accuracy of +	e probe at the time of calibration	and not exceed the specified	
accuracy on 2 0.1°C			
Test Conditions: Temperature °C	C Relative Humidity %	Barometric Pressure (inHg)	KOX I
23.00	41.00	29.91	XX
Maintaining Accuracy			
Once measured and calibrated your Temp determine how long calibration will be m aging, temperature, and shock.	perature Probe should maintain it's a aintained. Electronics change little,	ccuracy. There is no exact way to if any at all, but can be affected by	Ő
Calibration Dates			XXX
Factory Calibration	Date Next Ca	alibration Due Date	2
• 06/05/00 We recommend that the unit's accuracy b accreditation demands, government speci	e recertified on an annual basis for t fications, or ISO 9000 requirements	06/05/02 those users with critical needs such as	Ő
Tester's Initials	Met	rology Manager	1998
PUL	Wo	Mare Borry	888
Recalibration		0	1993
For factory calibration and recertification	of this Temperature Probe contact:	m	
Control Company • 308 Phon	8 West Edgewood • Friendswood, e 281 482-1714 • Fax 281 482-94	1exas 77546 • USA 448	1998
Control Comp	any is an ISO 9001 Quality Certifie	d Company.	
© 1997 [©] Control Company Rev. 1/99	0001 Certificate No. 98-HOU-AQ-1 Traceable®	805 is a registered trademark of © Control Compan	· / / / /
	010000		
205-205-205-205-205			and

1 1

1

16

Ļ

+-

> --

-0	TRA		
Certif	icate of Calibr	ation for Digital T	hermometer
Certificate N	umber	Model Number	Serial Number
C373297 This Electronic Digital Traceable Instrumentat are in accordance with	Thermometer was calibra ion. This calibration com ITS-90 (International Ter	NBW 61220-601 ated against National Institute of 1 pplies with the requirements of IS nperature Scale of 1990).	20207313 Standards and Technology O 9000 Certification. All values
Calibration Test In Test Equipment	formation	Serial Number	Calibration Due Date
THERMISTOR CA	LIBRATION STD	98179306	08/25/00
NIST Traceable Test N 811/256331	umber(s)		
Accuracy		Test and the set of Colleman	
Testing was performed Stan	dard °C Reading °C	<u>Standard *F</u>	Reading 'F
	5.00 5.	0 41.	00 41.0
	25.00 25.	0 77.	00 77.0
	45.00 45.	0 113.	00 113.0
	100.00 100.	0 212.	
		a 8	
	1.527		
GNW5	P.II		
U.		s	
The maximum error o	f this Electronic Digital T	hermometer at the time of calibra	tion did not exceed the specified
accuracy of: \pm 0.	2°C		
			D
Test Conditions:	Temperature °C	Relative Humidity %	Barometric Pressure (InHg
	25.00	41.00	27.03
Maintaining Accur Once measured and ca	alibrated your Electronic	Digital Thermometer should main	tain it's accuracy. There is no nge little, if any at all, but can be
affected by aging, ten	pperature, and shock.		
Calibration Dates	a		
Fa	actory Calibration Date	Next Calib	
We recommend that t	06/05/00 he unit's accuracy be rece	Ut rtified on an annual basis for thos	e users with critical needs such a
accreditation demand	s, government specificatio	ons, or ISO 9000 requirements.	
	Tester's Initials	Metrole	ogy Manager
	PUL	Wall	an Borry
Recalibration			0
For factory calibratio	n and recertification of th	is thermometer contact:	xas 77546 • USA
Contr	Phone 281	482-1714 • Fax 281 482-9448.	
0e (Control Company i	s an ISO 9001 Quality Certified C	Company.
© 1995 ⓒ Control Compan	y Rev. 4/98	Traceable® is	a registered trademark of ③ Control Comp
***	0**0**0		

+

Make-up of Cesium-137 Stock Solutions	
make up of oconamination of otom optimione	
Obtain vial of nominally 5 mCi Cs-137 in dilute HCl. Evaporate	to dryness.
Dissolve Cs-137 residue in minimal amount of DI water.	
	1P:
1 M Cs solution	120 United OI
Weigh out 0.975 g. cesium nitrate into a 5 ml. volumetric flask	V 1144
Dissolve using Cs-137 - DI water. Rinse Cs-137 residue with D	OI water, transfer washes to flask.
362-06-01-043	10 0 10 0 000 0
Calibration expires: 2/0/	in the set to replaced
	Weight x1.79 - 350003 7
09750	
<u>у.</u> у.	
0.01 M Cs solution	
Weigh out 9.75 mg cesium nitrate into a 5 mL volumetric flask.	DI water, transfer washes to flask.
Balance:	100 mc = 0.09999 9.
Calibration expires:	
A AD977	weight set 812-86-02-026
00, <u>00 11 1</u> g.	
Remove a 0.1 mL aliquot of each stock for gamma counting.	152
	5763
	Brun all
	Ŷ
┼╌┠╍┠╍┠╼╎╌╎╌╎╌╎╌╎╌╎╌╎╌╎╌╎╌╎╌╎╴┼╴┼╴┤╴	
	Date of Work
Project No.	1/3/01
Project No Entered By	Date 1/30/01
Project_No Entered_By Disclosed_To_and_Understood_By	Date 1/30/01

Instructions for the preparation of 137-Cs stock solutions.

1) Background.

BNW 57652 19

We need two solutions. The first is 1 M in Cs and contains substantial activity so that counting of a 1 mL solution is straightforward, even if up to 99% of the total activity is removed. The second is 0.01 M in Cs and contains the same activity. Given that a 1 mL aliquot can be used, the assumption of a 100,000 dpm activity seem plenty. So a stock solution capable of delivering a 10 mL of a 100,000 dpm/mL 137Cs solution is needed. The typical spike solution is 10 microliters into 10 mL or a 1E03 dilution. This makes the required activity of the stock solution 1E06 dpm/mL multiplied by 1E03 or a 1E09 dpm/mL solution. Given that 1 Ci is about 1E12 dpm a ca. 1 mCi/mL concentration of Cs-137 is required.

The current estimate is that about 2.5 mL of each stock solution is needed. To be safe, prepare 5 mL of stock solution. Note that the specific activity of 5 mCi of 137Cs is only 5.76E-05 grams. To prepare 5 mL of each stock solution, ca. 5 mCi source of 137Cs should be evaporated to dryness at room temperature to minimize any aerosols that might spread 137Cs contamination.

Stock solution preparation:

To generate the 1 M total Cs stock solution, place 5 mmol (194.91 g/mol * 0.005 = 0.975 grams) of CsNO₃ or 5 mmol (168.36 grams/mol * 0.005 = 0.842 grams) of CsCl into a 5 mL volumetric flask. Rinse the ca. 5 mCi 137-Cs residue repeatedly with small (0.5-1mL) portions of DI water, transferring each wash into the 5 mL volumetric flask. Cap and agitate the volumetric flask, remove a 0.1 mL aliquot into a 2 dram vial containing 1 mL DI water, and measure the sample activity on a gamma counter.

Repeat the process for the 0.01 M Cs stock solution, only here the 5 mL volumetric flask will containing 9.75 mg of CsNO₃ or 8.42 mg of CsCl.

Bal. 384-66-01-008 cal. typ 5/21 first country sumples! + Take weight viril 8.074 9. 9.086 g. Urul, 1+20, C3 9, 2039, 121001 9.199 9 9.0989 stale 8.083 g. picke up more dilute samples for counting. Too hot for ditatu Date Entered By Disclosed-To-and-Understood-By 30/01 Date Signed-1 Date
1/29/01 x/ Cm BNW57652 p.20 Make-up Vial bart Take W. USAL, SAL, HZO Vial + stir Sar + C5 1+20 CS STOCKH 23,737g. 13.435g. 23,620 g. Dilutron 1 (0.1 ml -7 10 ml) struck Cs stolel 13.409 5. 23.464 g. 23,5659, Dilutronz (0.1 ml -7 10 ml) dil #1 Cs stole 1 8.045 g. 9.053 g. too dilute', 9,063g. country (10 x -7 1 mT) d:1+2 Cs stadtz Dilutra 1 23,248 g, 23.350 5. 13.154 9, (0.1m1-710m1) stock 23.658 g. 13,4859. 23.554 g Co state Z Dilutan Z (0.1 m1-710 mi) di1 #1 9.135 g. too diluta! 9.151 5-8.122 g. CS Stall Z contry Sample (10x -71 ml) d:1 #2 Balance 38-1-06-01-008 exp. 8/2001 of both stocks for counting.

1/ 25/01 Alf Cum BNW 57652 p. 21 Take wt. Vial + CS CS Stock 1 8.196 9. Dilution # 1 9.194 9, Cs stock 1 8.146 9. 9.1569 Dilutron # 2 8.073 g. (5 stock 2 9.084 9, Dilutron #1 CS STORK 2 8.145 g. 9.155 g. Dilutin + 2 ۶., Balance 384-06-01-008 cal. expires 8/2001 (1 ml each dilution for country shapple) Project No. Date of Work 1 On 1/30/01 Entered By_ Date Disclosed To and Understood By Signed Date Date

BNW 57652 22 1/29/01 ngflen 2 75 stock (ID) \rightarrow 10 ml total count I ml of Iom dilution Balance 362-06-01-043 V-a1 + 1+20 Take weight cal typ. 2/01 Cs struk ! 13,44719, 23,6539 5. +101 stock 1 contry dil. (101-710ml) 23,5093 9. + 10 1 stock 2 13,5100 9. Ls stick 2 country dil. (101-7 10ml) Balance 384-06-01-008 Vial + CS solution The weight Cul. exp. 8/01 Counting suples 9.096 g, (s stode 8.074 9, 9.182 9. 8.167 9. CS stoll 2 Project No. Date of Work_ 1/30/01 AU Entered By Date Disclosed To and Understood By Signed 1. Date

Assay of Cs-137 Stock Solutions for Equilibrium Batch Contact Testing

Balance 384-06-01-008 calibration expires 8/2001

BNW 57652

Make up two successive 100X dilutions of the original Cs stocks.

Tare	weight, g	Vial & Water	<u>Vial.</u> water, Cs	Water, g	<u>Cs. g</u>	Dilution_ factor	
	13.435	23.62	23.737	10.185	0.117	87.1 dilution #1 (Cs stoc
	13.409	23.464	23.565	10.055	0.101	99.6 dilution #2 (Cs stoc
	13.154	23.248	23.35	10.094	0.102	99.0 dilution #1 (Cs stoc
	13.485	23.554	23.658	10.069	0.104	96.8 dilution #2 (Cs stoc

Take 1 mL of each dilution for gamma counting

Tare	weight, g	<u>Vial & Cs</u> solution	<u>Cs</u> solution, g		ц.,	
	8.196 8.146	9.194 9.156	0.998 dilution #1 1.01 dilution #2	Cs stock 1 Cs stock 1		
	8.073 8.145	9.084 9.155	1.011 dilution #1 1.01 dilution #2	Cs stock 2 Cs stock 2		

Gamma counting data

Signed

2

All counts we All spectrum files are located on c:\mca\data\cesium

Sample ID	Net counts	Activity, Cs-137	nel Centra file
IPL source	168	0.0396 uCi	130stnd.spc
Cs stock 1 dilution #2	316	0.1186 uCi	sk1dil2.spc
Cs stock 2 dilution #2	72	0.0309 uCi	sk2dil2.spc

Dilution #1 samples have too much activity to count.

Take 10 lambda of each stock solution, dilute into 10 mL, take 1 mL for gamma counting

<u>Tare weight, g</u>	Vial & water	Water, g	Stock, g.		Dilution factor		
13.4471 13.51	23.6539 23.5093	10.2068 9.9993	0.01 0.01		1021 1000	Cs stock 1 Cs stock 2	
<u>Tare weight, g</u>	Vial & Cs solution			<u>Cs</u> solution, g			
8.074 8.167	9.096 9.182			1.022	Cs stock 1		

1.015 Cs stock 2

Date

2

Ó

Prepared by Katharine Carson 1/31/01

Pag

Gamma counting data

All spectrum files are located on c:\mca\data\cesium

Sample ID	Net counts	Activity, Cs-137	Data file
IPL source Cs stock 1 Cs stock 2	168 698 270	0.0396 uCi 0.6597 uCi 0.4161 uCi	130stnd.spc 10lsk1.spc 10lsk2.spc

All courts are the minut. Nefern Brew 57652 p. 24

Date

Disclosed To and Understood By

Signed 1

	日間の			1	N	ster.	-	Ae	tui	F	Con	c.	0	4	-	Te		stal	c		solo	bin		1		0			T	T	1	1
		and a second		ALC: N	A	di	ity												-			1	-	01	Dec	e_	an				+-	+-
							1										-	1	1	1		-			+-		+					+
					99	Te		1	na	- 10	= 9	78,9	106	2		XA	+IF	lit	2 -		2/1	30	10	+	-	-	\$		-	17	1	-
	T		Constant of	A CONTRACTOR													1	1	1	-			1	-9	ear	5	+		-C'	1207	or	th
and and	10.21				# 0	lision	lean	abi	1/	1-	-	1	10	>)	1		m	11	7			+	+	-		+	+	1	nu	510	es,	19
			STATES.			T	nin		1g			t	Con	1	-4		To	all.	H	C		-	9 1			FI	4=	INC	2)		-	-
								Y	7			1	T	1	1	1	1	1	Ť	-	-	+	mol	10	+-	+	2.	136	54	365	25	a
	100		時に							1	1	1	1		T	1	+		+	+		-	+		-		0-6	2.02	35.	23_	-	-
	120	No.	No.									1	1	1	1	1	+	1-	1	+	+-	+		+		+	-	98.	906	·+	-	+-
					1				1			T	1	1.	+	+	+	1	-	+	+-	+	+	+	+=	3	16	1/2	:10	d	m	+
	39	ない	C.	re.	1-	22	E	12	Jan	1	1		1	19	50	1	h	1-	1		+	+	-	-	+	-	-	+-	+	-9	Ta	-
			Tom	T	1	1		1-	-	-	7	1	1-	61	10	-0	T	T	-		+		-	+	+		-	-	-		-	-
			T		1		1		1	1	-	1	-	-	9		C	-	-		-	-	-		-		-			-	-	-
	調	100 M	T	1	Sec			1-	1,	-		11	-	1	+-	+-				-	-	-	-	-	-		-	-	-		1	1
	1200		T		1	TP	1	T	1	1	10	TOCK	1-0	SON	-	PL-	1-	-	1.0	26.	E	09	-9	m		12	4	1.0	62	50	9-0	pm
			T		1	1	1	1-	1	1	-	1	1-	1			-			-	-	-	m	C	-	-	-		-		i	nL
	朝		1	-	1	1	1	+	\vdash	+	-	5700	K	SOIN	1, 11	2	-	-	1.0	22	60	6	cpa	7		2	1	07	191	206	d	m
	100		1	-		1.1	1	1		1	1-	\vdash		-	+-	-			-	-	-	-	in	4		-	_	-	1_	-	in	2
10	19		-		15	DUK		SOLA		1	-		-		-				-			-	-		-			-	1	-		_
	14	SALE SALE	-		1	1.1	=	1	1		1-				+-	-	-			-		-	-				-	-	1	-		_
No. of State	-	R.			1	100	12	1	dp.A	<u>n</u>	i-	2.0	125	12	de	ή	+		4.7	84	12 -	04	Ci		1.6	97	5-0	2C	-	Fá	81	9E
	-		-			11	-	+	m		-			-	CI	-	-				-		mL			-	77	ic				
	-		-		0	DUK	1	sola) #	2		-			-	-				-			_									
民間	-	-			1.	279	E	06	pm		J .	2.23	EI	12 9	len		4	86	E	07	Ci	- 1-	1.0	697	5-00	2Ci	-	2	86	E-	05	4
	-		-		-	-	-	<u> </u> -i	me	-				C	<u>;</u>		-		1.	-	mL			- 3	To						-	nL
	-	-						-	-		-					-	-															
1	-				+	-						-																				
-	-		-	5	solu	#1		2.8	196	<u>z-0</u>	29	Te			2.8	19 E	=1	To		4	98	,90	69	Te		_	0	28	51	1		
+	-											nL						2					mol	TC								
+	-	-				-					-								_													
+	-	-		S	blu	#2	6	2.86	YE	-05	91	2	5	2.	864	E-0	29	Tc	<u></u>	98.	906	g-To		ā	6	2.8	96	XID	4 N.	1 =	0.	28%
+	-	-									n						L		_		m	TI	C									
-	-	_			-			-																								
+			_					-																								
-	-						_																					ŀ				
		-	_	-														_														
]																							
_	-	_	_																													
1	-				Proje	ect N	0		2-1	2-1	_		-						Dat	e of	Work						7			T		
-	-				Ente	red E	By	B	R	pla	3										Date	- 4	2-1	-0	ø	0.4)					
					Disc	losed	То	and	Unde	rstoo	d By										1		1	1						\uparrow		
					Sign	ed 1															Date								1	-		
						2			1					1		1			1		Date		1	1	1					1	-	
												1		1							1	-	1	1	-	1						-
	1	ł		7	1	1	1		- i	1																			(1	1	

Chem Rec_61 BHW 5760 76 Prep date: 12/18/2000
Preparation of Standardized 5M, 0.1 M, and 0.01M NaOH
WP# F17605 Requester: K. Carson
CH2MHill. In order to make up the solutions, I need some dimerent NaOH solutions made up the relations of the energy of

NaOH Molarity verification performed on ~ 0.1 M NaOH prep.

On Molarity vo.	(target = .41g)	Vol. Of ~ 0.1M NaOH to neutralize	NaOH Molarity =a 1000 / b * 204.23	+/- @ 1 s
Verification Test #	0.40251	20.95	0.09431	
1	0.40351	20.62	0.09418	-
2	0.39001	21.65	0.09434	
3	0.41712	Ave=	0.09428	0.0001
	5		certified value	

5M NaOH is revised as follows based on standardized 0.09428M NaOH 2000 mL * 0.09428 M NaOH = 4.71M NaOH 40.0mL 2000mL * 0.01M NaOH = 212. 1 mL of 0.0943M to 2L with DI H2O 0.09428

ation performed on 0.01 M NaOH dilution

NaOH Molarity ver	(target = .41g)	Vol. Of ~ 0.01M	NaOH Molarity =a * 1000 / b * 204.23	+/- @ 1 s
Verification Test #	VVt. OF KAP	02.78	0.00993	
1	0.04822	23.70	0.01082	
2	0.03937	17.82	0.01002	
2	0.02939	14.55	0.00969	0.0005
3	0.02000	Ave=	0.01021	0.0005
			certified value	

12/18/01

Analyst/Date

6

C-rec_61.XLS

2.

Page 1 of 1

Date Date 02/26/2

7					·
-	. *				
	Chem Rec 62		Pren date	02/19/2001	152
			i top duto.	02/10/2001	1576,27
		Preparation of	Standardized 0 25M	NaOH	BNW Y.
		· · · · · · · · · · · · · · · · · · ·	oturiduzed 0.20m	Naon	
	WP#	F22698	Requester:	K. Carson	
	Request: I need some	e more NaOH solutio	on made up and validated by	titration. Please make up	
	0.25 M NaOH, 250 ml	Charge to F2269	8. Thanks! Katharine Cars	on	
	Preparation: Prepare	e ~ 10M NaOH fro	m reagent grade solid N	aOH then prepare 50	0 mL of 025M NaOH from thi
	stock and standardize	e this solution and	adjust 10M NaOH accor	dingly. Then aliquot 250) mL for use and keep 250 for
	backup.				
	Calculations : 40g	NaOH/mole *10N	1*.25L = 100g NaOH	pellets dissolved to 250	mL with DI water.
	5 <u>00n</u>	nL * 0.25M NaOH	_ = 12.5 mL (use 13mL) of ~ 10M NaOH to	500 mL with DI water.
	10 Ctondendination + 14	U M NAOH			
	Standardization : Us	se NIST SRM 84j,	Potassium Acid Phthalai	te KHC8H4O4 (KAP)C	MS# 52232
	50 ml burrette Hen		in to the phenopthalein er	apint. A good titration	would use about 20-25 mL of
	20 mL * 0.25 M NaOH	$d = 5 \mod and$	5 meg of KAP = 204.23 g/mole of m	ng/meq * 5 = ~ 1021mg	(-1a) weighed on 5 place
	balance	1 = 0 meq. and	5 meg 01 10 1 - 204.22	ing/med 5 - ~ 102 mg	(~ rg) weighed on 5-place
	Hence Target wt for	KAP to titrate 0.01	IM NaOH will be about 1	a	
	,,			3.	
*	NaOH Molarity veri	fication perform	ned on ~ 0.25 M NaOl	I prep.	
		(target = 1g)	Vol. Of ~ 0.25M	NaOH Molarity =a *	Molarity Error
	Verification Test #	Wt. of KAP	NaOH to neutralize	1000 / b * 204.23	+/- @ 1 s
	1 .	0.90624	17.55	0.25284	
	2	0.80848	15.60	0.25376	
	3	0.88187	17.08	0.25281	
			Ave=	0.25314	0.0005
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	certified value	
				Certified value	1
	~10M NaOH is revised a	s follows based on s	tandardized 0.09428M NaC	H	
	500 mL * 0.25314 M NaC	$_{\rm OH} = 9.73 \rm M$	NaOH		
	13 mL				
	27				
		~		- 1	
	Analyst/Date	Y 2	Julade	- 2/16/2001	
	Haven nam förstellta 🗮 nära förstanda söka söka första		>	/ /	
	ų.	$(\rightarrow$			

C-rec_62.XLS Page 1 of 1 02/16/2001 Signed 1 Date Date 01 2 Mammed Mamm

Make-up of test solutions for Test H and Test J.
Test H refer 2/12/01 BNW 57652
make up 175 ml of 4.75 M NIGNO3 + 0.25 M NIGOH
166 ml 5 14 NGNOZ + 0.1 14 NGOH
+ 3.2 ml DI water
175 ml
Test J Kjern 2/10/01
solution A make up 30 ml of 2.5 M NIGNO37 2.5 M NIGOT
15 ml 5 M NGN03 +0.01 M NG0H + 15 ml 5 M NG0H
30 ml
solution 13 make up 30 ml 4 14 NIGNO3+ 1 14 NIGOH
ZU mi 5 M NGNO3 + 0.01 M NGOH
30 ml
solution C make up 30 ml 4.9 M NGN103 + 0.1 M NGOH
29.4 ml 5 M NGNOZ + 0.1 M NGOH
30 ml
Solution D make up 30 ml 4.9 M NIGALO3 - 0.01 M NIGOH
29.4 ml 5 M NGNOZ + 0.01 M NGOH
30 ml
Solution I make up 30 ml 4.5 H MaNoz + 0.5 M HNOZ
27 ml 5 M NGNO3 - 0.5 M Ithog

1

Make-up of test solution for Test C. Test C 175 ml of 0.005 M NIGNOZ + 0.001 M NIGOH 17.2 ml 0.01 M NGOH 0,175 ml 5 M NANO3 + 0.1 M N40H 157.625 ml DI water 175 ml xf lim 3/2/01 BNW 57652 ÷ Project No. Date of Work Kath 3/6/01 P Date___ Entered_By__ Disclosed To and Understood By Signed_1 Date 2. Date

Radiochemical Processing Group

Client:

Carson

signed 1

Cognizant Scientist: <u>C. Soderque</u> <u>3-13-0</u> Concur: <u>INJeeured</u> <u>3-13-0</u>

	C-99 A5549	Results of I	F		
±1s	g/mL	Ci/mL	dpm/mL	Lab ID	Sampla
±1% ±1%	4.11E-2 4.01E-5	6.97E-4 6.80E-7	1.55E+9 1.51E+6	01-0544 01-0545	Tc Stock 1 Tc Stock 2
	oserved	dpm/mL ol dpm/mL ex spike yield	1.41E+5 1.39E+5 101%	Spike	e s
	4.01E-5	6.97E-4 6.80E-7 dpm/mL ol dpm/mL e: spike yield	1.55E+9 1.51E+6 1.41E+5 1.39E+5 101%	01-0544 01-0545 Spike	Tc Stock 1 Tc Stock 2

BNW 57652

11

and the same

For Test A BILLINS 7652 To make up 300 ml of 1.8 H NGN03 O.I M NGOH 3.1 14 NGCI start w/ 5 H MGNOZ + O, 1 M NGOH) (X m1) (5 M NIGNO3) = (300 m1) (1.8 14 NIGX103) 5 X = 540 5 5 x=108 108 ml of 5 14 Nanluz + Dil H NGOH Nach 58.44 FW 181.164 5/1 1:14 FW 3.1 14 need 54, 3492 g into 300 ml dilute to 300 mi w/ 0.1 14 NISOH Balance 362-06-01-0213 weighed 54.3515 g, Null Cal. expres 2/2002 neferm 4/5/01 Date_of_Work Project_No. alth. 4/8/01 Date-Entered-By-Disclosed-To-and-Understood-By Dat Signed-1 Date

BNW 5 7652 P. 32

Make-up of Rhenium Stock Solution, ca. 1.8 mM

Prepare 1:1000 dilution of initial Re stock, prepared 12/18/00, ca. 1.8 M Re.

for mital Ke stock milleup. 362-06-01-043 Balance: Feb-02 Calibration expires: Weight Weight vial, water, vial & Tare Re stock water weight 1. 26.7215 26.7077 16.7174 Dilution factor Re, g Water, g 0.0138 723.9348 9.9903

the second s	
	Chem Rec_64 Prep date: 12/18/2000
	Preparation of Standardized 5M, 0.1 M, and 0.01M NaOH
	WP# W58010 Requester: K. Carson
	Request: I need more NaOH solutions made up and validated by titration. Please make up: 0.01 M NaOH, 2 liters: 0.1 M NaOH, 2 Itters: Charge to W58010. Thanks!Katharine Carson Preparation: Restandardize some previous 0.1M NaOH from current stock and standardize this solution. Calculations: See Chem Rec_60 for prep information on the ~ 0.1M NaOH. 2000mL * 0.01M NaOH = 200.0 mL of ~ 0.1M NaOH to 2000 mL with DI water.
	0.1M NaOH Standardization : Use NIST SRM 84j, Potassium Acid Phthalate KHC8H4O4 (KAP)CMS# 52232 Technique used will be via hand-titration to the phenopthalein endpint. A good titration would use about 20-25 mL of a 50 mL burrette. Hence. since KHC8H4O4 = 204.23 g/mole or mg/meq 20 mL * 0.1M NaOH = 2 meq. and 2 meq of KAP = 204.22 mg/meq * 2 = ~ 408 mg weigh on 5-place balance Target wt for KAP to titrate 0.01M NaOH will be about 0.4 g.

NaOH Molarity verification performed on ~ 0.1 M NaOH prep.

	(target = .41g)	Vol. Of ~ 0.1M NaOH	NaOH Molarity =a *	Molarity Error
Verification Test #	Wt. of KAP	to neutralize	1000 / b * 204.23	+/-@1s
1	0.40071	19.5	0.10062	
2	0.43252	21.1	0.10037	
3	0.41742	20.35	0.10044	
		Ave=	0.10047	0.00013
			certified value	0.13%

10.0

NaOH Molarity verification performed on 0.01 M NaOH dilution

	(target = .41g)	Vol. Of ~ 0.01M	NaOH Molarity =a *	Molarity Erro
Verification Test #	Wt. of KAP	NaOH to neutralize	1000 / b * 204.23	+/- @ 1 s
1	0.06842	33.52	0.00999	
2	0.07756	38.00	0.00999	
3	0.07141	34.94	0.01001	
		Ave=	0.01000	0.00001
			certified value	0.08%

Analyst/Date

Parla 3/28/01

BNW 57652 p.34 3/28/01 reflim Balance 362-06-01-043 check wt 100 5 = 100,0000 5 make up 100 ml of 4.75 M NGNOZ in 0.25 M NGOH 40.3719 J. NGN03 - dissolve in 0.2531 M NHOH 3/25/01 reflum Balance 362-06-01-026 Cal. Expires 8/01 -Batance 360-06-01-009 check wt. 5 Kg = 5000.0 Kg <u>NGNO3</u> 425.0 G. 5 M NGNO3 in dissolve and bring to 1 liter volume vory 0.1005 M and 0.0943 M NGOT. Date of Work 4/3/01 NAU Date Disclosed-To-and-Understood-By Date Signed -1:

BATCH # (0

(AN-105 simulant

Envelope A Recipe						
Volume of Feed			2000 mL			
In a tared 2-L Volumet	ric Flask add			11 CI I	1 strizzor	-1120
	grams	Actual Wt, grams	Take We	ight thise	Sejjar	- 938.
Water	200	198.80	flue	k striviller +	usativ -	6377
Transition Metals and	Complexing agents		1.1.	-,,1		0.12
Compounds	Formula	Mass Needed	Mass Measured	MW	M	
Boric Acid	НЗВОЗ	0.292	0.2929	61.83	2.36E-3	
Cadmium Nitrate	Cd(NO3)2.4H2O	0.009	0.0096	308.47	1.47E-5	
Calcium Nitrate	Ca(NO3)2.4H2O	0.236	0.7366	236.15	4 99F-4	
Lead nitrate	Pb(NO3)2	0.085	0,0860.	331.2	1.28E-4	3 II.
Magnesium Nitrate	Mg(NO3)2.6H2O	0.057	0.0576	256.41	1.11E-4	
Potassium Nitrate	KNO3	19.221	19,2226	101.1	9.51E-2	
Silver Nitrate	AgNO3	0.026	0,0266	169.87	7.56E-5	
Zinc Nitrate	Zn(NO3)2.6H2O	0.046	0.0479	297.47	7.72E-5	
Glycolic Acid	HOCH2COOH, 70 wt%	1.665	1,6666	76.05	1.09E-2	
Sodium Chloride	NaCl	14.984	14.9855	58.44	1.28E-1	
Sodium Fluoride	NaF	0.420	0,4219	- 41.99	5.00E-3	
Sodium Chromate	Na2Cr04 . 4 H70	6.086 4.205	6.0880	234,00161.070	1.30E-2	
Sodium Sulfate	Na2SO4	1.140	1,1400	142.04	4.01E-3	
Potassium Molybdate	K2MoO4	0.204	0,2069	238.140	4.27E-4	
Ammonium Acetate	CH3COONH4	0.513	0,5146	77.080	3.33E-3	

In a separate container mix the following

Compounds	Formula	Mass Needed	Mass Measured	FW	M
Sodium Aluminate	NaAlO2	120.61	120.604	81.97	7.36E-1
Sodium Hydroxide	NaOH	137.83	137.844	40.00	1.72E+0
Selenium dioxide	SeO2	0.001	0,0019	110.960	6.27E-6
Sodium meta-silicate	Na2SiO3.9H2O	2.135	2,1354	284.200	3.76E-3
Sodium Acetate	NaCH3COO.3H2O	2.330 3.865	2.330%	\$2.0 136.080	1.42E-2
Sodium Formate	HCOONa	4.351	4.3549	68.010	3.20E-2
Sodium Oxalate	Na2C2O4	0.929	0,9299.	134.000	3.47E-3
Sodium Phosphate	Na3PO4.12H2O	1.2.281	1,6084	268,5 800.120	3.00E-3
	MELT PLY, 7HZC	1.608	J		
Add	grams	Actual Wt, grams			

301,5 9. Mix thoroughly. Then add this solution to the volumetric flask.

Add	Formula	Mass Needed	Mass Measured	FW	M
Sodium Carbonate	Na2CO3	22.149	22.156	105.990	1.04E-1
Mix thoroughly.)		

Add	Formula	Mass Needed	Mass Measured	FW	M
Sodium Nitrate	NaNO3	209.70	209.71 9	84.99	1.23E+0
Sodiurn Nitrite	NaNO2	166.48	168.495	69.00	1.21E+0
Mix thoroughly.					14

Mix thoroughly and dilute to the mark

Water

which thoroughly and dilute to the mark.				
Record Final Weight	2489,8	grams		
Record Final Density	1.24	gram/mL		
Preparation Date	10/31/02			

signed a flum flow

11/1/00 Black ppt. Formed in Batch #6 on sitting oranget.

300

Unique Numerical Designation: TI-PNNL-WTP-040 Revision number: 1 Effective Date: 04/11/01 Controlling Procedure No: CHG-TP-41500-014

Buch Reglo 4-4-4 Variel 2 March Author Approval: Technical Reviewer:

TITLE Instructions for SuperLig 639 and SuperLig 644 Batch Contacts.

Work Instructions

General Background: Pre-equilibration of SuperLig 639 and 644 resins

state solution preparation BMW 57652 BMW 57652 Materials: DI water (ca. 2000 mL) 5 M in NaNO₃/0.1 M NaOH solution (ca. 1000 mL) 0.2 micron Nylon filter and filter assembly 0.5 M HNO₃ (ca. 1000 mL) balance #: last calibration date: calibration exp. Date: ry of C of with with who Performance test: test weight found weight test weight found weight found weight test weight information test weight found weight test weight found weight GB.1 Pre-equilibration of SuperLig 639. Place 15 grams of SuperLig 639 in a 250 mL

polypropylene or polyethylene plastic bottle together with 150 mL of a solution 5 M in NaNO₃ and 0.1 M in NaOH. Place the bottle on a shaker and agitate for at least 1 hour. Decant off the supernatant and discard the liquid as waste. Repeat three more times for a total of 4 contacts with the alkaline solution. Contact the resin with 150 mL of deionized (DI) water as with the alkaline solution above. Measure the pH of the decanted liquid either with a pH meter or pH paper. Repeat the DI water treatment until the measured pH reads 8 or lower. Transfer the resin with a DI water slurry to a tared 0.2 micron Nylon filter system and pass air through the system until no weight change is observed over the time of at least 1 hour. Transfer the resin to a tared plastic bottle for storage.

SuperLig 639 production lot number:	
Tare wt. 250 mL bottle:	
Wt. 250 mL bottle + resin:	
Initial resin wt:	
pH of 1st DI water treatment:	
pH of 2nd DI water treatment:	
pH of 3rd DI water treatment:	
pH of final DI water treatment:	

Prep New book (3-24) of Superlig 644 9 639 Batch # 610227 CTC-9-23 (Superlig 639). (Superlig 644). Batch # 010319 5MC-10-73 Supalig 639. STRAET with 21.02 g in a 250 ml poly propylise bottle. Add 200 ml 5M NANO3 10.1 M NAOH START STURING 09:50 03-24-01 STOP STIRRING 12:40 03-24-01 Fit through 0.45 m Nylew Fitter, transfer back to both with its al OIMNAOH/SMNANG. STANT STIRRING 12:50 03-24-01 STOP STIRRAUL 18:00 03-24-01. Fitter, transter back with ~ 150 ml 5M Nonog/ alm North STANT STILLING 18:40 03-24-01 STOP STIRRING 09:00 03-25-01 Filter, Transfer boole to bottle with ~ 150ml 5m NANOS/0.1 M NAOLA START STIRRING DS:30 03-25-01 STUP STIRKING 13:30 03-25-01 Fifty Timotor back to bottle with ~ 150 and H20. START STIRRING 13:45 03-25-01 STOP STIRLING 15:40 03-25-01 Fifter, pt of titlet same as the by pt paper, air dy B. Raples 03-25-01 TOPS

GB2b. Determining the F factor for the as-received SuperLig (55) through drying at (50) under vacuum.

50

647

Transfer a ca. 0.25 gram sample of the as-received SuperLig 639 to a tared 20 mL glass LSC vial. Weigh the material and record the weight. Cover the open vial with a piece of paper and dry in a vacuum over at ca. 50°C for ca. 24 hours. Remove the sample from the oven, remove the paper and cap, allow the sample and vial to cool to room temperature, and weigh. Repeat until the resin mass changes by less than 5% after 24 hours of drying.

Tare wt. vial:	17.3187 0	17.2793
Wt. vial + resin:	17. 4244 0	17. 3882
Initial resin wt.:	g	
Temperature of oven (Heating 1):	# 48 °C	548°2
Start Heating 1	16:00 4-19-01	16:00 4-18-01
Stop Heating 1	10:00 4-25-01	12:00 4-25-01
Wt. vial + resin (Heating 1):	17.4125 g	17.3762
Temperature of oven (Heating 2): Start Heating 2 Stop Heating 2	°C	not needed for this
Wt. vial + resin (Heating 2):	g	ryor 03-07-02
Temperature of oven (Heating 3): Start Heating 3 Stop Heating 3	°C	BUL
Wt. vial + resin (Heating 3): Final resin wt.:	g g	

GB2c. Determining the F factor for the pre-equilibrated SuperLig 639 through drying at C under vacuum

50

In duplicate, transfer a ca. 0.25 gram sample of the pre-equilibrated SuperLig 639 to a tared 20 mL glass LSC vial. Weigh the material and record the weight. Cover the open vial with a piece of paper and dry in a vacuum over at ca. 85°C for ca. 24 hours. Remove the sample from the oven, remove the paper, cap, allow to vial and sample to cool to room temperature, and weigh. Repeat until the resin mass changes by less than 5% after 24 hours of drying. Dispose of this resin after completion of the experiment.

	P	10	
Tare wt. vial:	17.1494 17. 3478 g	17.3%3g	17.1987
Wt. vial + resin:	17. 3478 17. 1494 g	_/ 25 g	17, 3963
Initial resin wt .:	_0,1784 g	0.2016 g	1

Temperature of oven (Heating 1):	<u>49</u> °C	<u>49</u> °C	,
Start Heating 1	11AM 4-17	11am 4-17	, ,
Stop Heating 1	12.3)4-18	12:30 4-18	Note: somple
Wt. vial + resin (Heating 1):	17.2714 g	17.3485g	seins to
Temperature of oven (Heating 2):	°C	°C	be pictury ip
Start Heating 2	12:40 4-18	12:40 4-18	maishiz
Stop Heating 2	10:309-15	10:30 8-19	
Wt. vial + resin (Heating 2):	17.3:16 g	17. 3452 g	0.0
Temperature of oven (Heating 3):	°C	°C ^	or - needed
Start Heating 3		/	as sy procos
Stop Heating 3		1	daying "
Wt. vial + resin (Heating 3):	g	g	1 be
Final resin wt.:	g	g	to pletion
			(" P 03-07-02

GB3 Pre-equilibration of SuperLig 644. Sieve SuperLig 644. Collect fraction < 0.425 mm (40 mesh) and greater than 0.212 mm (70 mesh) for pre-equilibration. Place 25 or more grams of SuperLig 644 in a tared 250 mL polypropylene or polyethylene plastic bottle together with ca. 150 mL DI water. Place the bottle on a shaker and agitate for at least 1 hour. Decant off the supernatant and discard the liquid as waste. Carefully add 0.5 M nitric acid to a total volume of 250 mL. Place the bottle on a shaker and agitate for at least 1 hour. Decant off the supernatant and discard the liquid as waste. Repeat the 0.5 M nitric acid contact three more times for a total of 4 contacts with the acid solution. Next contact the resin with 150 mL of deionized (DI) water as with the acid solution. Measure the pH of the decanted liquid either with a pH meter (preferred) or pH paper. Repeat the DI water slurry to a tared 0.2 micron Nylon filter and pass air through the system until less than a 5% weight change is observed over the time of at least 1 hour. Transfer the resin to a tared plastic bottle for storage.

SuperLig 644 production lot number: Tare wt. 250 mL bottle: Wt. 250 mL bottle + resin: g Initial resin wt.: g pH of 1st DI water treatment: pH of 2nd DI water treatment: pH of 3rd DI water treatment: pH of final DI water treatment: Wt. filter: g Wt. filter + resin: g Wt. filter + resin: g Wt. filter + resin: g

010319 SMC-10-73

NOT Needed for this report B. Repto 03-07-02

4 of 82

Tc Distribution Measurements

A) Kinetics of SuperLig 639 with pertechnetate at ambient temperature.

A.1. Prepare sixteen, 20 mL sample vials. Label and tare the sample vials. Record the weights in Table A1 below.

A.2. Determine the density of the test solution (1.8 M sodium nitrate, 0.1 M sodium hydroxide and 3.1 M in sodium chloride) by weighing three, 1 mL aliquots.

Temperature: Temperature: Size of aliquot: Size of aliquot: Size of aliquot: Size of aliquot: Ave. density: $0,970I_{0}$ A.3. Place ca

0.9833

0,9590

0.9824

(-

pipet 1141172 22.3 °C 1.1810 Weight 1 mL aliquot: mL g Weight 1 mL aliquot: 1,2060 mL g mL Weight 1 mL aliquot: 1,1863 g g/mL (A3a)

A.3. Place ca. 0.100 grams of SuperLig 639 in each vial listed in part A.1. Record the new weight in Table A1 below.

A.4. Place 10.1 mL of the test solution (1.8 M sodium nitrate, 0.1 M sodium hydroxide and 3.1 M in sodium chloride) into a different set of 20 mL LSC vials using a pipette. Record the weight change in Table A1.

A.5. Place a 35 microliter aliquot from a ca. 0.3 M Tc stock solution into each solution-containing vial.

A.6. Agitate the solutions for 1 minute. Remove a 0.1 mL aliquot and place in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record this information (t = 0) in table A2.

A.7. Transfer each solution to the corresponding vial described in A1 containing the SuperLig 639. Take care not to disturb the resin so as to splash it on the vial's sides. Seal the cap to the vial with a piece of tape and place the vials in an orbital shaker set to $25^{\circ}C \pm 5^{\circ}C$. Record the vial's temperature. Stir the solutions at ca. 225 rpm for the times indicated in Table A1. Shaker speed:

A.8. At the indicated time remove the sample, filter the liquid through a 0.2 micron syringe filter, and place an 0.1 mL aliquot in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the sample in record the weight in Table A2.

A.9. Count the LSC samples and record this information in Table A.2.

A.10. Decant and discard the remaining liquids into a radioactive waste container and the resin into a solid "SuperLig 639" waste container containing DI water.

radie mi. re kineties concetton Da	Table A1	. Tc	Kinetics	Collection	Data
------------------------------------	----------	------	----------	------------	------

Vial	Tare	Tare Wt. +	Wt.	Stir	Start	Stop	Temp.
Label	wt. (g)	SuperLig (g)	Initial soln. (g)	Time	Time	Time	(°C)
A-1a	17.4360	17.5474	12,2803	2 hr	4-23-01	4-23-01	25.2°C
A-1b	17,3179	17.4112	12.2089	2 hr	1	1	
A-2a	17,4404	17.5496	12,1978	4 hr		4-23-01	25.2°C
A-2b	17,2272	17.3293	12,1826	4 hr			
A-3a	17,3165	17.4203	12.2003	8 hr		9-29-01	25.1C
A-3b	17,2158	17.3338	12,2064	8 hr		1	
A-4a	17.2570	17, 3635	12,2065	24 hr		4-24-01	25.1%
A-4b	17.1788	17.2953	12,1864	24 hr			
A-5a	17,1507	17.2571	12.1991	48 hr		4-25-01	25.12
A-5b	17,3024	17.4056	12,2029	48 hr			
A-6a	16,9912	17.0815	12,1975	72 hr		4-21-01	25.12
A-6b	17,3851	17.4975	12.2297	72 hr			
A-7a	17.3325	17,4328	12, 1373	96 hr		4-27-01 D:00	25.1%
A-7b	16,9815	17.0863	12.0850	96 hr			
A-8a	17.1013	17,1934	12,2403	168 hr		4-30-01	24,7
A-8b	17.2991	17.4162	12,2357	168 hr		V	V

7 of 76

(2-300) CPMB

Table A2. Tc kinetics: LSC data

.

4

Vial Label	Sample	Initial wt.	Initial wt. +	Activity (cpm)
	reaction time	(g)*	aliquot (g)	
A-1Ia	0 hr	27.1634	27.2844	499490
A-1Fa	2 hr	27.2108	27.3318	144381
A-1Ib	0 hr	27.2752	27.3958	503836
A-1Fb	2 hr	27.2392	27.3589	159942
A-2Ia	0 hr	27.3033	27.4240	500722
A-2Fa	4 hr	727.3042	26.8860	118865
A-2Ib	0 hr	27.2205	27.3416	493866
A-2Fb	4 hr	-26.7650 27.1680 ok	27.2889	114190
A-3Ia	0 hr	27.2520	27.3735	502507
A-3Fa	8 hr	27.2188	27.3402	896296
A-3Ib	0 hr	27.1993	27.3202	50 3097
A-3Fb	8 hr	27.1130	27.2331	74549.8
A-4Ia	0 hr	27.2530	27, 3737	500484
A-4Fa	24 hr	27.2780	\$27.4002	86189.5 497371
A-4Ib	0 hr	27.1217	27.2430	484104 501083
A-4Fb	24 hr	27.3096	27.4318	71100.4
A-5Ia	0 hr	27.2570	27.3776	499389
A-5Fa	48 hr	27. 1385	27,2622	808781
A-5Ib	0 hr	22.3134	27.4342	500087
A-5Fb	48 hr	27.2464	27,36,98	84159.6
Vial Label	Sample	Initial wt.	Initial wt. +	Activity (cpm)

_	reaction time		aliquot	
A-6Ia	0 hr	27.2644	27.3850	497271
A-6Fa	72 hr	27.3118	27.4346	94840.8
A-6Ib	0 hr	27.2161	27.3368	50 1083
A-6Fb	72 hr	27.2295	27.3528	75802.1
A-7Ia	0 hr	27.2340	27.3548	502 081
A-7Fa	96 hr	27.2431	27. 3656	856920
A-7Ib	0 hr	27.0964	27.2175	501122
A-7Fb	96 hr	27.3147	27.4330	80782.7
A-8Ia	9 hr	27.1661	27.2865	497580
A-8Fa SS	168 hr	27.3435	27.4643	953421
A-8Ib	0 hr	27.1923	27.3115	492360
A-8Fb	168 hr	27.2327	27.3542	95624.7
Blank a	0 hr			29
Blank b	0 hr	_		28

*Note: In the table above the initial wt. refers to the weight of the 20 mL scintillation vial plus 10 mL Ultima Gold. Blanks refer to simple Ultima Gold in the absence of a radioactive aliquot.

B) Effect of "Spectator Ions" on SuperLig 639 distribution measurements.

B.1. Prepare ten, 20 mL sample vials. Label and tare the sample vials. Record the weights in Table B1 below.

VB.2. Place ca. 0.100 grams of SuperLig 639 in each vial listed in B.1. Record the new weight in Table B1 below.

B.3. Place 10.1 mL of the test solution as indicated in Table B1 into a different set of 20 mL LSC vials using a pipette. Record the weight change in Table B1.

B.4. Place a 10 microliter aliquot from a ca. 0.3 M Tc stock solution into each solution-containing vial.

B.5. Agitate the solutions for 1 minute. Remove a 0.1 mL aliquot and place in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record this information in Table B2.

B.6. Transfer each solution to the corresponding vial described in B1 containing the SuperLig 639. Take care not to disturb the resin so as to splash it on the vial's sides. Seal the cap to the vial with a piece of tape and place the vials in an orbital shaker set to $25^{\circ}\pm 5^{\circ}$ C. Stir the solutions at ca. 225 rpm. Record the initial and final vial temperatures.

Initial temperature:	26,1	°C	5/14/01	1,58	pm
Final temperature:		°C			
Shaker speed	225				

B.7. After 72 hours, stop shaking and remove the sample vial. Filter the liquid through a 0.2 micron syringe filter, and place a 0.1 mL aliquot in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record the weight in Table B2.

B.8. Count the LSC samples and record this information in Table B2.

B.9. If needed, perform pipette performance checks on the pipettes used to transfer the 10 microliter stock solutions, the 0.1 mL LSC aliquots and the 10.1 mL test solution transfers. Record the data in attachment 1.

B.10. Decant and discard the remaining liquids into a radioactive waste container and the resin into a solid "SuperLig 639" waste container containing DI water.

Vial Label	Tare wt. (g)	Wt soln. (g)	Tare Wt. + SuperLig (g)	Solution Type
B-1a	17,2600	11.9953	17.3846	A ('n''
B-1b	17.2350	11.9364	17.3338	А
B-2a	17.2385	12.0354	17.3379	В
B-2b	17.1979	11,9518	17,3121	В
B-3a	17.2042	12.0177	17.3035	C Kpu
B-3b	17.4101	11,8572	17.5141	С
B-4a	17,3472	11,9924	17.4493	D
B-4b	17.3209	11,8812	17.4336	D
B-5a	17.2737	11.7977	17.3895	Е ", "
B-5b	17,3219	11.7655	17,4272	E

Table B1. Effect of "Spectator Ions" on SuperLig 639 - Collection Data

Table B1 code:

 $\begin{array}{l} \textbf{Botal} A = 0.018 \text{ M NaNO}_3, \ 0.1 \text{ M NaOH}, \ 4.9 \text{ M in NaCl} \\ \textbf{M} B = 0.018 \text{ M NaNO}_3, \ 1 \text{ M NaOH}, \ 4 \text{ M in NaCl} \\ \textbf{Do val} C = 0.018 \text{ M NaNO}_3, \ 2.5 \text{ M NaOH}, \ 2.5 \text{ M in NaCl} \\ \textbf{Jo val} D = 0.018 \text{ M NaNO}_3, \ 4 \text{ M NaOH}, \ 1 \text{ M in NaCl} \\ \textbf{Jo val} D = 0.018 \text{ M NaNO}_3, \ 4.9 \text{ M NaOH}, \ 0.1 \text{ M in NaCl} \\ \textbf{Jo val} E = 0.018 \text{ M NaNO}_3, \ 4.9 \text{ M NaOH}, \ 0.1 \text{ M in NaCl} \end{array}$

Start Time: Stop Time:	5/14/01 1:0	58 p.m.	2 7		
Initial Temperature:	26.1	°C	Final Temperature:	25.6	_°C

Vial Label	Initial wt. (g)	Initial wt. + aliquot (g)	Activity (cpm)
B-1Ia	27,4229	27.5402	149947
B-1Fa	27,5199	27.6293	5322.00
B-1Ib	27.4770	27,5939	150203
B-1Fb	27.5105	27.6179	6099.35
B-2Ia	27.6458	27,7576	145432
B-2Fa	27,4108	27,5207	6201.10
B-2Ib	27,4296	27.5436	149738
B-2Fb	27, 3347	27.4490	5575.66
B-3Ia	27.6280	27,7417	147377
B-3Fa	27,4099	27, 5138	6531.32
B-3Ib	27,4013	27.5140	151208
B-3Fb	27.5352	27.6489	6859.85
B-4Ia	27,3228	27,4342	147334
B-4Fa	27,4997	27.6121	7163.32
B-4Ib	27.5263	27.6425	149980
B-4Fb	27,4064	27.5098	6547.82
B-5Ia	27.3285	27.4430	149153
B-5Fa	27,5124	27.6241	8738.97
B-5Ib	27,4508	27.5663	154107
B-5Fb	27.5072	27.6133	10779.9
Blank a			28.05

Table B2. Effect of "Spectator Ions" on SuperLig 639 - LSC data

12 of 76

Blank b	28.95
Diame	

*Note: In the table above the initial wt. refers to the weight of the 20 mL scintillation vial plus 10 mL Ultima Gold. Blanks refer to simple Ultima Gold in the absence of a radioactive aliquot.

- C) Kinetics of SuperLig 639 with Pertechnetate at 65°C Under Stripping Conditions.
- C.1. Prepare sixteen, 20 mL sample vials. Label and tare the sample vials. Record the weights in Table C1 below.
- C.2. Place ca. 0.100 grams of SuperLig 639 in each vial listed in C.1. Record the new weight in Table C1 below.
- C.3. Place 10.1 mL of the test solution (0.005 M sodium nitrate, 0.001 M sodium hydroxide) into a different set of 20 mL LSC vials using a pipette. Record the weight change in Table C1.

5/4C.4. Place a 10 microliter aliquot from a ca. 0.3 M Tc stock solution into each solution-containing vial.

- 5/4C.5. Agitate the solutions for 1 minute. Remove a 0.1 mL aliquot and place in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record this information in Table C2.
- 5 C.6. Transfer each solution to the corresponding vial described in C1 containing the SuperLig 639. Take care not to disturb the resin so as to splash it on the vial's sides. Bring the shaker table temperature to ca. $65^{\circ}\pm 5^{\circ}$ C. Place the sample vials on the shaker table and stir the solutions at ca. 225 rpm for the times indicated in Table C1.

Initial temperature:	63.9	C
Final temperature:	64.8	C
Shaker speed	225	

C.7. At the indicated time remove the sample vial, filter the liquid through a 0.2 micron syringe filter, and place an 0.1 mL aliquot in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the sample and record the weight in Table C2.

C.8. Count the LSC samples and record this information in Table C.2.

C.9. Decant and discard the remaining liquids into a radioactive waste container and the resin into a solid "SuperLig 639" waste container containing DI water.

Vial	Tare	Tare Wt. +	Wt. soln.	Stir	Start	Stop	Temp.
Label	wt. (g)	SuperLig (g)	(g)	Time	Time	Time	(°C)
C-1a	17,2292	17, 3333	10,1509	2 hr	5/7/01 10:0 Z	5/7/01	65.5°C
C-1b	17,1905	17.3042	10.0962	2 hr		L	V
C-2a	17.2499	17.3620	10.1377	4 hr		5/7/01	65.5%
C-2b	17,3067	17,4162	10.1264	4 hr		L	J
C-3a	17,1635	17.2591	10.1262	8 hr		5/7/01	65,600
C-3b	17.2525	17.3597	10,1084	8 hr		L	J
C-4a	17.1107	17.2117	10,0891	24 hr	9	5/8/01	65.500
C-4b	17.1346	17.2410	10.0926	24 hr		J	V
C-5a	17.3370	17,4317	10.1118	48 hr		5/9/01	65.60
C-5b	i 7, 3086	17.4117	10,0831	48 hr		V	V
C-6a	17.2213	17.3133	10.1166	72 hr		5/10/01	65.30
C-6b	17,2302	17.3454	10.1242	72 hr		L	L
C-7a	17,1789	17.2862	10,1184	96 hr		5/11/01	65.302
C-7b	17.3004	17.4121	10.1048	96 hr		J	V
C-8a	17.2750	17.3776	10.0878	168 hr		5/14/01	64.8%
C-8b	17,4438	17,5515	10.1376	168 hr	V	V	J

Table C1. Tc Kinetics Under Stripping Conditions at 65°C Collection Data

$$5/3/2001 \quad reflemm
Balance $362 - 860 - 01 - 043$
calibration expires $2/2002$
 $10g = 10,0000 g$.
 $100g = 100,0001 g$.$$

Vial Label	Sample reaction time	Initial wt. (g)	Initial wt. + aliquot (g)	Activity (cpm)
C-1Ia	0 hr	27,3224	27.4183	145141
C-1Fa	2 hr	27.2929	27.3872	144426
C-1Ib	0 hr	27,2675	27, 3627	145473
C-1Fb	2 hr	27, 3951	27,4906	143305
C-2Ia	0 hr	27,3179	27.4136	150520
C-2Fa	4 hr	27,3553	27.4485	149718
C-2Ib	0 hr	27,3755	27,4705	142720
C-2Fb	4 hr	27.1842	27. 2757	139194
C-3Ia	0 hr	27, 3983	27.4947	151327
C-3Fa	8 hr	27,4085	27.4999	154072
C-3Ib	0 hr	27.4700	27,5659	146469
C-3Fb	8 hr	27,3807	27,4765	149631
C-4Ia	0 hr	27,1794	27.2751	146358
C-4Fa	24 hr	27,3378	27,4317	151182
C-4Ib	0 hr	27,2650	27.3614	145153
C-4Fb	24 hr	27,4152	27,5051	147455
C-5Ia	0 hr	27,2003	27, 2961	137996
C-5Fa	48 hr	27.3253	27.4179	149638
C-5Ib	0 hr	27,4145	27,5112	146515
C-5Fb	48 hr	27,4751	27.5653	159808
Vial Label	Sample	Initial wt.	Initial wt. +	Activity (cpm)

Table C2. Tc Kinetics Under Stripping Conditions at 65°C LSC data

		Thitid W.	+	Activity (cpm)
	reaction time		aliquot	
C-6Ia	0 hr	27.2259	27, 3219	146154
C-6Fa	72 hr	27, 3211	27.4094	158802
C-6Ib	0 hr	27.2316	27.3273	141817
C-6Fb	72 hr	27, 3167	27.4046	153902
C-7Ia	0 hr	27,3117	27,4074	144244
C-7Fa	96 hr	27,3981	27.4881	166090
C-7Ib	0 hr	27. 2185	27.3145	145905
C-7Fb	96 hr	27.2744	27.3621	165623
C-8Ia	9 hr	27,2366	27,3313	144939
C-8Fa	168 hr	27,3837	27.4726	179320
C-8Ib	0 hr	27, 3548	27.4513	140558
C-8Fb	168 hr	27,4856	27,5682	165253
Blank a	NA			41.00
Blank b	NA			34.60

Ň

*Note: In the table above the initial wt. refers to the weight of the 20 mL scintillation vial plus 10 mL Ultima Gold. Blanks refer to simple Ultima Gold in the absence of a radioactive aliquot.

- C*) Kinetics of SuperLig 639 with Pertechnetate at 65°C Under Loading Conditions.
- \sim C*.1. Prepare sixteen, 20 mL sample vials. Label and tare the sample vials. Record the weights in Table C*1 below.
- $C^{*.2.}$ Place ca. 0.100 grams of SuperLig 639 in each vial listed in C.1. Record the new weight in Table C*1 below.
- C*.3. Place 10.1 mL of the loading test solution used in part A (1.8 M sodium nitrate, 0.1 M sodium hydroxide and 3.1 M in sodium chloride) into a different set of 20 mLs LSC vials using a pipette. Record the weight change in table C*1.
- 5/4 C*.4. Place a 35 microliter aliquot from a ca. 0.3 M Tc stock solution into each solution-containing vial.
 - 5/4 C*.5. Agitate the solutions for 1 minute. Remove a 0.1 mL aliquot and place in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record this information in Table C*2.
- Sign C*.6. Transfer each solution to the corresponding vial described in C*1 containing the SuperLig 639. Take care not to disturb the resin so as to splash it on the vial's sides. Bring the shaker table temperature to ca. 65°± 5°C. Place the sample vials on the shaker table and stir the solutions at ca. 225 rpm for the times indicated in Table C*1.

Initial temperature:	63.9	°C
Final temperature:	64.8	°C
Shaker speed	225	

C*.7. At the indicated time remove the sample vial, filter the liquid through a 0.2 micron syringe filter, and place an 0.1 mL aliquot in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the sample and record the weight in Table C*2.

C*.8. Count the LSC samples and record this information in Table C*.2.

C*.9. Decant and discard the remaining liquids into a radioactive waste container and the resin into a solid "SuperLig 639" waste container containing DI water.

Vial	Tare	Tare Wt. +	Wt soln.	Stir	Start	Stop	Temp.
Label	wt. (g)	SuperLig (g)	(g)	Time	Time	Time	(°C)
C*-1a	17,1229	17.2.393	12,2325	2 hr	5/7/01 10:02	5/7/01	65.590
C*-1b	17.2194	17,3240	12.2453	2 hr		V	V
C*-2a	17.2403	17,3330	12,1925	4 hr		5/7/01	65.5%
C*-2b	17.2134	17.3241	12.2086	4 hr		J	V
C*-3a	17.3321	17,4424	12.2500	8 hr		5/7/01	65.6°C
C*-3b	17.3100	17,4140	12.2042	8 hr		1 de	1
C*-4a	17.3398	17.4455	12.2416	24 hr		5/8/01	65.5%
C*-4b	17.2628	17.3626	12,2541	24 hr			L
C*-5a	17,2298	17,3288	12,2269	48 hr		5/9/01	65.600
C*-5b	17,2064	17.3096	12.2328	48 hr		V	ıt
C*-6a	17.2450	17.3475	12,2300	72 hr		5/10/01	65.3%
C*-6b	17,3092	17.4273	12,2095	72 hr		V	V
C*-7a	17.2038	17.3041	12.1822	96 hr		5/11/01 10:02	65.30
C*-7b	17.0892	17, 2038	12,2247	96 hr [.]		V	L
C*-8a	17,4544	17,5523	12,2035	168 hr		5/14/01	64.8%
C*-8b	17,2220	17, 3144	12.2190	168 hr	V	V	V

Table C*1. Tc Kinetics Under Loading Conditions at 65°C Collection Data

 \sim

Vial Label	Sample reaction time	Initial wt. (g)	Initial wt. + aliquot (g)	Activity (cpm)	
C*-1Ia	0 hr	27,3393	27.4581	510125	
C*-1Fa	2 hr	27.3875	27,4990	202816	
C*-1Ib	0 hr	27,4075	27,5245	502809	
C*-1Fb	2 hr	27,2348	27.3460	228812	
C*-2Ia	0 hr	27,4153	27.5319	507093	
C*-2Fa	4 hr	27.3082	27.4255	243027	
C*-2Ib	0 hr	27.4680	27,5849	503582	
C*-2Fb	4 hr	27,3327	27,4460	214622	
C*-3Ia	0 hr	27,2052	27, 3216	501281	
C*-3Fa	8 hr	27, 4577	27,5721	228370	
C*-3Ib	0 hr	27.3993	27.5159	503779	
C-3Fb	8 hr	27,4905	27.6033	2 33795	
C*-4Ia	0 hr	27. 3899	27.5065	504713	
C*-4Fa	24 hr	27, 4129	27.5260	227719	
C*-4Ib	0 hr	27,3270	27,4423	495733	
C*-4Fb	24 hr	27.3729	27,4857	235540	
C*-5Ia	0 hr	27.4341	27.5519	506021	
C*-5Fa	48 hr	27.2415	27.3543	240810	
C*-5Ib	0 hr	27,3652	27.4820	502868	
C*-5Fb	48 hr	27.3631	27.4769	232235	
Vial Label	Sample	Initial wt.	Initial wt. +	Activity (cpm)	

Table C*2. Tc Kinetics Under Loading Conditions at 65°C - LSC data

•

		Initial wt.	4	Activity Copmi
	reaction time		aliquot	
C*-6Ia	0 hr	27.8246	27.9402	499674
C*-6Fa	72 hr	27,3505	27.4698	242 092
C*-6Ib	0 hr	27. 2915	27.4083	508631
C*-6Fb	72 hr	27,2835	27.3928	213162
C*-7Ia	0 hr	27,3093	27.4259	500407
C*-7Fa	96 hr	27.1855	27.2930	223675
C*-7Ib	0 hr	27.3092	27,4259	503992
C*-7Fb	96 hr	27,2522	27.3488	196174
C*-8Ia	9 hr	27,4607	27,5777	504768
C*-8Fa	168 hr	27.2225	27.3329	236747
C*-8Ib	0 hr	27.4035	27.5207	499669
C*-8Fb	168 hr	27,4353	27.5499	232388
Blank a	NA			41.00
Blank b	NA			34.60

1 3 <u>3</u>

*Note: In the table above the initial wt. refers to the weight of the 20 mL scintillation vial plus 10 mL Ultima Gold. Blanks refer to simple Ultima Gold in the absence of a radioactive aliquot.
D) The Effects of Varying Nitrate/Pertechnetate Ratios on SuperLig 639 Distribution Measurements at Room Temperature.

· · · ·

D.1. Prepare twenty, 20 mL sample vials. Label and tare the sample vials. Record the weights in Table D1 below.

D.2. Place ca. 0.100 grams of SuperLig 639 in each vial listed in D.1. Record the new weight in Table D1 below.

D.3. Place 10.1 mL of the test solution as indicated in Table D1 into a different set of 20 mL LSC vials using a pipette. Record the weight change in Table D1.

D.4. Place an aliquot from the appropriate stock solution as indicated in Table D1 into each solution-containing vial.

D.5. Agitate the solutions for 1 minute. Remove a 0.1 mL aliquot and place in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record this information in Table D2.

D.6. Transfer each solution to the corresponding vial described in D1 containing the SuperLig 639. Take care not to disturb the resin so as to splash it on the vial's sides. Seal the cap to the vial with a piece of tape and place the vials in an orbital shaker set to $25^{\circ}\pm 5^{\circ}$ C. Stir the solutions at ca. 225 rpm. Record the initial and final vial temperatures.

Initial temperature:	26,1	°C	5/14/01	1:58 pm.
Final temperature:	25.6	°C		
Shaker speed	225			

D.7. After 72 hours, stop shaking and remove the sample vials, filter the liquid through a 0.2 micron syringe filter, and place an 0.1 mL aliquot in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record the weight in Table D2.

D.8. Count the LSC samples and record this information in Table D.2.

D.9. Decant and discard the remaining liquids into a radioactive waste container and the resin into a solid "SuperLig 639" waste container containing DI water.

Table D1. Nitrate/Pertechnetate Ratio Room Temperature Collection Data

١,

*

Stock Soln. Type	Tcl	Tc1	Tc1	Tc1	Tc1	Tc1	Tc1	Tc1	Tc1	Tc1	Rel	Rel	
Size of Stock Solution (λ)	35	35	35	35	35	35	3.5	3.5	35	35	6	6	
Solution Type	A	A	В	В	C	C	C	С	D	D	D	D	
Wt. Soln. (g)	12.0172	11.9808	11.8491	11. 8544	12,4006	L12.21	12,2752	12.2636	12,7628	L17 L'21	12.7157	2612.21	
Tare Wt. + SuperLig (g)	17.3505	17.4319	17,3174	17,3282	17.2321	17.3233	0/13.176	17,2997	17.4240	17.4136	17. 3695	H8H2'L1	
Tare wt. (g)	17, 2380	17.3253	17.2116	17,2220	17.1252	17.2259	17,4083	17,1982	17,3057	17.3183	17,2636	8111.11	
Vial Label	D-1a	D-1b	D-2a	D-2b	D-3a	D-3b	D-4a	D-4b	D-5a	D-5b	D-6a	D-6b	

23 of 76

	Tcl	Tc1	Re2	Re2	Re2	Re2	Rel	Rel
	3.5	3.5	60	60	2	2	9	9
	D	D	D	D	D	D	C	С
WY. Soly	12.7163	1117,7111	12,6988	1757371	12.7103	12,7274	12.2643	12,1636
Finans +	17.3898	2622,11	1062.11	17, 2408	11,3928	1,3316	11.5107	17.2134
Tave w.H.	8612.171	17,1280	1212, Li	H561.11	17,2877	2422.121	17.4166	17.1113
	D-7a	D-7b	D-8a	D-8b	D-9a	D-9b	D-10a	D-10b

Table D1 code:

Tc1 = 0.3 M pertechnetate in DI water

Re1 = 1.8 M perrhenate in DI water

Tc2 = 0.3 mM pertechnetate in DI water

Re2 = 1.8 mM perrhenate in DI water

A = 0.0018 M NaNO3, 0.1 M NaOH, 4.9 M in NaCl - 100 m

B = 0.18 M NaNO₃, 0.1 M NaOH, 4.7 M in NaCl -75 w C = 1.8 M NaNO₃, 0.1 M NaOH, 3.1 M in NaCl -156 w

D = Envelope A (AN-105) simulant - 75 m¹

5/14/01 1:56 pm. 5/14/01 1:58 p.m. Initial Temperature: Start Time: Stop Time:

25.6 Final Temperature:

ç

Vial Label	Initial wt. (g)	Initial wt. + aliquot (g)	Activity (cpm)
D-1Ia	27, 3895	27.5046	503027
D-1Fa	27,5024	27,6158	25021.3
D-1Ib	27.5108	27.6254	562759
D-1Fb	27, 3577	27,4671	26061.0
D-2Ia	27.3974	27,5052	491589
D-2Fa	27,4184	27.5327	28998,0
D-2Ib	27.5541	27.6708	512631
D-2Fb	27, 4181	27,5280	28389.9
D-3Ia	27.4495	27,5692	501780
D-3Fa	27,4227	27.5398	79242.4
D-3Ib	27,4921	27.6109	561561
D-3Fb	27.4956	27.6064	84599.3
D-4Ia	27.4999	27.6183	52805.3
D-4Fa	27,5698	27.6841	5996,98
D-4Ib	27,4377	27.5552	51615.5
D-4Fb	27,4564	27,5727	6463.51
D-5Ia	27,4655	27,5858	497710
D-5Fa	27.5104	27,6038	43111.1
D-5Ib	27.5574	27.6778	494556
D-5Fb	27,4271	27,5462	64894.7
Vial Label	Initial wt.	Initial wt. +	Activity (cpm)

Table D2. Tc Nitrate/Pertechnetate Room Temperature LSC data

25 of 76

		Thitiel w	Initial Work +	Activity (cpm)
			aliquot	
(D-6Ia	6,1383	6.2630	
June)	D-6Fa	6.1367	6.2611	
1 Sint	D-6Ib	6.1207	6,2201	
Ĺ	D-6Fb	6.0523	6.1647	
	D-7Ia	27,4579	27,5805	50219.7
	D-7Fa	27, 4429	27,5628	4151.66
	D-7Ib	27.3826	27.5052	52818,0
	D-7Fb	27,4920	27.6083	4546.67
	D-8Ia	6,1445	6.2690	
	D-8Fa	6.1157	6.2326	
	D-8Ib	6,1550	6.2795	
	D-8Fb	6,1006	6.2198	
	D-9Ia	6.0823	6.2053	
	D-9Fa	6.0271	6.1468	
1 Ours	D-9Ib	6.1368	6.2595	
	D-9Fb	6.1229	6.2454	
. (D-10Ia	6.1201	6.2464	
	D-10Fa	6.0957	6.2162	
	D-10Ib	6.0936	6.2099	
	D-10Fb	6.1311	6.2498	
	Blank a			28.05
	Blank b			28.95

*Note: In the table above the initial wt. refers to the weight of the 20 mL scintillation vial plus 10 mL Ultima Gold. In addition, #8, 10, 12 and 13 are to be sampled into an

26 of 76

empty 1 dram vial. Blanks refer to simple Ultima Gold in the absence of a radioactive aliquot.

. . . .

- E) The Effects of Varying Nitrate/Pertechnetate Ratios on SuperLig 639 Distribution Measurements at 65°C.
- E.1. Prepare twenty, 20 mL sample vials. Label and tare the sample vials. Record the weights in Table E1 below.
- E.2. Place ca. 0.100 grams of SuperLig 639 in each vial listed in E.1. Record the new weight in Table E1 below.
- E.3. Place 10.1 mL of the test solution as indicated in Table E1 into a different set of 20 mL LSC vials using a pipette. Record the weight change in Table E1.
- *E.4. Place an aliquot from the appropriate stock solution as indicated in Table E1 into each solution-containing vial.
- -E.5. Agitate the solutions for 1 minute. Remove a 0.1 mL aliquot and place in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record this information in Table E2.

E.6. Transfer each solution to the corresponding vial described in E1 containing the SuperLig 639. Take care not to disturb the resin so as to splash it on the vial's sides. Bring the shaker table temperature to ca. $65^{\circ}\pm 5^{\circ}$ C. Place the sample vials on the shaker table and stir the solutions at ca. 225 rpm for the times indicated in Table E1.

Initial temperature:	65.2 °C
Final temperature:	65.2 °C
Shaker speed	225

E.7. After 72 hours, stop shaking and remove the sample vials, filter the liquids through a 0.2 micron syringe filter, and place an 0.1 mL aliquot in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record the weight in Table E2.

E.8. Count the LSC samples and record this information in table E.2.

E.9. Decant and discard the remaining liquids into a radioactive waste container and the resin into a solid "SuperLig 639" waste container containing DI water.

Stock Soln. Type	Tc1	Tc1	Tc1	Tc1	Tc1	Tc1	Tc1	Tc1	Tc1	Tc1	Rel	Re1	
Size of Stock Solution (λ)	35	35	35	35	35	35	3.5	3.5	35	35	6	9	
Solution Type	A	A	В	В	С	U	C	C	D	D	D	D	
Wt Soln. (g)	11,8951	11,9294	11.9713	12,0093	č1 97.21	12.2242	12.1578	12,1841	12,5985	12,5526	12.5476	12,5323	
Tare Wt. + SuperLig (g)	17.3365	17.2533	17.2947	17.3322	17.4036	17,3792	17.5250	17.4223	17.3738	17,5401	17,2849	17,3026	
Tare wt. (g)	17, 2184	17.1355	17.1856	17.2362	17.3050	17.2751	17.4345	17.3153	17.2659	17.4409	L181.L1	17. 2099	
Vial Label	E-1a	E-1b	E-2a	E-2b	E-3a	E-3b	E-4a	E-4b	E-5a	E-5b	E-6a	E-6b	

Table E1. Nitrate/Pertechnetate Ratio Collection Data at 65°C

•

•

29 of 76

		-	-					
	Tc1	Tc1	Re2	Re2	Re2	Re2	Re1	Rel
	3.5	3.5	60	60	2	2	9	6
	D	D	D	D	D	D	C	C
W1. 504	12.3379	12,5434	12.5746	12,5436	12.5030	12,4787	12,1331	12.1645
1 Superliz	17.2531	17.5049	11.3811	17.3568	17.2315	17.3670	17.1862	17.3375
Tare WH.	L941.171	17,4009	08L2 "LI	17, 2511	17.1248	17.2644	17.0773	12.21810
	E-7a	E-7b	E-8a	E-8b	E-9a	E-9b	E-10a	E-10b

Table E1 code:

Tc1 = 0.3 M pertechnetate in DI water

Re1 = 1.8 M perrhenate in DI water Tc2 = 0.3 mM pertechnetate in DI water

Re2 = 1.8 mM perrhenate in DI water

A = 0.0018 M NaNO₃, 0.1 M NaOH, 4.9 M in NaCl

B = 0.18 M NaNO₃, 0.1 M NaOH, 4.7 M in NaCl

C = 1.8 M NaNO₃, 0.1 M NaOH, 3.1 M in NaCl

D = Envelope A (AN-105) simulant

Final Temperature: S 6/7/01 6/4/0 14:57 65.2 13:00 Initial Temperature: Start Time: Stop Time:

° C 65.2

30 of 76

Vial Label	Initial wt. (g)	Initial wt. + aliquot (g)	Activity (cpm)
E-1Ia	27,4539	27,5710	507273
E-1Fa	27.4629	27.5809	158180
E-1Ib	27.4490	27,5656	507615
E-1Fb	27.4417	27.5597	172124
E-2Ia	27.3763	27.4943	509043
E-2Fa	z7.6057	27,7174	165919
E-2Ib	27,4715	27.5892	509424
E-2Fb	27,3994	27,5182	201151
E-3Ia	27.3127	27,4330	510725
E-3Fa	27,4016	27.5206	236794
E-3Ib	27,5277	27.6477	513367
E-3Fb	27.4568	27,5736	240590
E-4Ia	27.4345	27.5542	52936.3
E-4Fa	27,3741	27.4948	24433,1
E-4Ib	27,4641	27.5846	51149.7
E-4Fb	27,2222	27.3402	21330.2
E-5Ia	27.4149	27.5367	496527
E-5Fa	27.3665	27,4863	198892
E-5Ib	27.5403	27.6641	509574
E-5Fb	27,3976	27.5147	211 359
Vial Label	Initial wt.	Initial wt. +	Activity (cpm)

Table E2. Tc Nitrate/Pertechnetate 65°C LSC data

Thi	tral	ut.	+
TU!	10.0	with	

2

1

		21111		
	-		aliquot	
1	E-6Ia	6.3960	6.5196	
	E-6Fa	6.5828	6.6706	
our ?	E-6Ib	6.4611	6.5748	
1 00 56	E-6Fb	6.4893	6.5944	
,	E-7Ia	27.3999	27,5209	51657.7
	E-7Fa	27.4629	27,5869	19811.3
	E-7Ib	27.3317	27.4558	54583.7
	E-7Fb	27.4981	27,6236	21107.3
/	E-8Ia	6.4247	6.5461	
	E-8Fa	6.4561	6.5802	
	E-8Ib	6.4624	6.5808	
	E-8Fb	6.4577	6.5773	
	E-9Ia	6.4574	6.5814	
	E-9Fa	6.5284	6.6469	
duru	E-9Ib	6.4400	6.5623	
	E-9Fb	6.5057	6,6307	
	E-10Ia	6,4694	6,5880	
	E-10Fa	6.4367	6.5581	5
	E-10Ib	6.5195	6,6395	
	E-10Fb	6.5031	6.6256	
	Blank a			29.45 30.90
	Blank b			28.75, 28.95

*Note: In the table above the initial wt. refers to the weight of the 20 mL scintillation vial plus 10 mL Ultima Gold. In addition, #8, 10, 12 and 13 are to be sampled into an empty 1 dram vial. Blanks refer to simple Ultima Gold in the absence of a radioactive aliquot.

F) Ionic Strength Effects on SuperLig 639 Distribution measurements.

- F.1. Prepare twelve 20 mL sample vials. Label and tare the sample vials. Record the weights in Table F1 below.
- **v**F.2. Place ca. 0.100 grams of SuperLig 639 in each vial listed in F.1. Record the new weight in Table F1 below.
- F.3. Place 10.1 mL of the test solution as indicated in Table F1 into a different set of 20 mL LSC vials using a pipette. Record the weight change in Table F1.
- •F.4. Place a 35 microliter aliquot from the ca. 0.3 M Tc stock solution and 6 microliters of the ca. 1.8 M Re stock solution as indicated in Table F1 into each solution-containing vial.
- **-**F.5. Agitate the solutions for 1 minute. Remove a 0.1 mL aliquot and place in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record this information in Table F2.
- √F.6. Transfer each solution to the corresponding vial described in F1 containing the SuperLig 639. Take care not to disturb the resin so as to splash it on the vial's sides. Seal the cap to the vial with a piece of tape and place the vials in an orbital shaker set to 25°± 5°C. Stir the solutions at ca. 225 rpm. Record the initial and final vial temperatures.

Initial temperature:	25.6	°C
Final temperature:		°C
Shaker speed	225	

F.7. After 72 hours, stop shaking and remove the sample vials, filter the liquids through a 0.2 micron syringe filter, and place an 0.1 mL aliquot in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record the weight in Table F2.

F.8. Count the LSC samples and record this information in Table F.2.

F.9. Decant and discard the remaining liquids into a radioactive waste container and the resin into a solid "SuperLig 639" waste container containing DI water.

Vial Label	Tare wt. (g)	Tare Wt. SuperLig (g)	Wt. soln. (g)	Solution Type	Stock Soln. Type
F-1a	17.2125	17,3280	12.1328	A	Tc
F-1b	17.2279	17.3262	12.0758	А	Тс
F-2a	17.3403	17.4498	10.6029	В	Tc
F-2b	17,1732	17.2828	10.5955	В	Тс
F-3a	17,3427	17,4408	10.4129	С	Тс
F-3b	17.3135	17.4109	10.4046	С	Тс
F-4a	17,2435	17.3442	10,2090	D	Тс
F-4b	17.3388	17.4335	10,2002	D	Тс
F-5a	17.2832	17,3936	10,2048	Е	Tc
F-5b	17.4365	17.5429	10.1720	Е	Tc
F-6a	17.1664	17,2609	10.5297	В	Re
F-6b	17.3093	17.4190	10.5759	В	Re

Table F1. Tc Ionic Strength Collection Data

Table F1 code:

Tc = 0.3 mM pertechnetate in DI water

Re = 1.8 mM perrhenate in DI water

A = 0.018 M NaNO₃, 0.01 M NaOH, 5 M in NaCl

 $w^{eld} = 0.018 \text{ M NaNO}_3, 0.01 \text{ M NaOH}, 1 \text{ M in NaCl}$

✓C = 0.018 M NaNO₃, 0.01 M NaOH, 0.5 M in NaCl

D = 0.018 M NaNO₃, 0.01 M NaOH, 0.1 M in NaCl

E = 0.018 M NaNO₃, 0.01 M NaOH

Start Time: Stop Time:	13:50	5/21/01			
Initial Temperature:	25.6	°C	Final Temperature:	25.3	°C

Vial Label	Initial wt. (g)	Initial wt. + aliquot (g)	Activity (cpm)
F-1Ia	26.9085	27,0184	492748
F-1Fa	27,4058	27.5191	24365.6
F-1Ib	27.4352	27,5497	497275
F-1Fb	27.5308	27.6403	30766.5
F-2Ia	27,4548	27,5479	496736
F-2Fa	27.3052	27.3877	109756
F-2Ib	27,5079	27.6047	493530
F-2Fb	27.5447	27,6347	118832
F-3Ia	27,4788	27.5707	495577
F-3Fa	27.6427	27.7283	175805
F-3Ib	27, 4278	27.5225	495442
F-3Fb	27,4562	27,5393	181017
F-4Ia	27,4756	27,5677	494411
F-4Fa	27.5519	27.6367	297945
F-4Ib	27,5221	27.6126	497786
F-4Fb	27.3729	27,4593	298352
F-5Ia	27.5478	27.6422	495787
F-5Fa	27.4994	27,5857	402759
F-5Ib	27,5429	27,6345	497260
F-5Fb	27, 3224	27.4024	401537
Vial Label	Initial wt	Initial wt +	Activity (cpm)

Table F2. Tc Ionic Strength LSC data

ų,

÷

	[Daitia Wt.	+	
(F-6Ia	1 1307	aliquot	
	F-6Fa	6.1007	6.2333	
(during	F-6Ib	6.1635	6.2210	
	F-6Fb	6,1989	6.2998	
	Blank a			31.15
	Blank b			36.25

*Note: In the table above the initial wt. refers to the weight of the 20 mL scintillation vial plus 10 mL Ultima Gold. #6 (Re sample) is to be sampled into an empty 1 dram vial. Blanks refer to simple Ultima Gold in the absence of a radioactive aliquot.

G) Tc Loading Isotherm for SuperLig 639.

- ✓G.1. Prepare eight, 20 mL sample vials. Label and tare the sample vials. Record the weights in Table G1 below.
- UG.2. Place ca. 0.100 grams of SuperLig 639 in each vial listed in G.1. Record the new weight in Table G1 below.
- G.3. Place 10.1 mL of the test solution as indicated in Table G1 into a different set of vials using a pipette. Record the weight change in Table G1.
- G.4. Place an aliquot from the ca. 0.3 M Tc stock solution as indicated in Table G1 into each solution-containing vial.
- ✓G.5. Agitate the solutions for 1 minute. Remove a 0.1 mL aliquot and place in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record this information in Table G2.
- $\sqrt{G.6.}$ Transfer each solution to the corresponding vial described in G1 containing the SuperLig 639. Take care not to disturb the resin so as to splash it on the vial's sides. Seal the cap to the vial with a piece of tape and place the vials in an orbital shaker set to $25 \pm 5^{\circ}$ C. Stir the solutions at ca. 225 rpm. Record the initial and final vial temperatures.

25.6 °C	
°C	
225	
	25.6 °C ℃ 225

G.7. After 72 hours, stop shaking and remove the sample vials, filter the liquids through a 0.2 micron syringe filter, and place a 0.1 mL aliquot in a labeled 20 mL liquid scintillation vial containing 10 mL of Ultima Gold XR. Weigh the samples and record the weight in Table G2.

G.8. Count the LSC samples and record this information in Table G2.

G.9. Decant and discard the remaining liquids into a radioactive waste container and the resin into a solid "SuperLig 639" waste container containing DI water.

				Tare WH. + Superling	
Vial Label	Tare wt. (g)	Wt Soln. (g)	Aliquot size	Wt. + soln.+ aliquot (g)	Solution Type
G-1a	17, 2538	12.3615	1000 μL	17.3498	A
G-1b	17,2928	12.4055	1000 μL	17,3977	А
G-2a	17,2827	12.3418	500 μL	17.3905	В
G-2b	17,3606	12.2108	500 μL	17.4687	В
G-3a	17.1552	12.2160	100 μL	17.2506	С
G-3b	17,1193	12.1177	100 μL	17,2268	С
G-4a	17,2954	12,1879	10 μL	17. 3983	D
G-4b	17.2539	12.1215	10 µL	17.3529	D

Table G1. Tc Loading Isotherm for SuperLig 639 Collection Data

Table D1 code:

N

3

✓A = 1.8 M NaNO₃, 0.1 M NaOH, 3.1 M in NaCl

 $\mathcal{B} = 0.9$ M NaNO₃, 0.1 M NaOH, 4 M in NaCl

∠C = 0.18 M NaNO₃, 0.1 M NaOH, 4.7 M in NaCl

∠D = 0.018 M NaNO₃, 0.1 M NaOH, 4.9 M in NaCl

Start Time:

Initial Temperature:

Stop Time:

25.6°C °C Fina

Final Temperature: 25.3 °C

Table G2. Tc Loading Isotherm for SuperLig 639 LSC data

1

(Note: dilute all G1 samples by a factor of 40 by weight before counting; dilute all G2 samples by a factor of 20 before counting; and dilute all G3 samples by a factor of 4 before counting) all dilute used 100 λ alignet.

				(DI WARD)		
	Vial Label	Initial wt. (g)	Initial wt. + aliquot (g)	Activity (cpm)	Wt. cl: luent (g.)	
(G-1Ia	27.5366	27.6302	325790	3.9899	
	G-1Fa	27,3873	27.4745	264642	3,9420	
90 x {	G-1Ib	27,4486	27,5359	322450	3.9810	
A	G-1Fb	27,4605	27,5441	267283	3,8191	
E.	G-2Ia	27,4423	27.5335	331649	1.9712	
204	G-2Fa	27,4234	27,5058	346647	1.9665	
LOF	G-2Ib	27, 3699	27,4614	334645	1.9776	
	G-2Fb	27.4017	27,4777	184899	1.9886	
A.	G-3Ia	27,5199	27.6140	406520	0.4010	
.)	G-3Fa	27,4669	27.5583	46633.7	0,3969	
44 (G-3Ib	27.5371	27,6350	279794	0.4048	
\langle	G-3Fb	27.4373	27.5260	33007.2	0.4016	
	G-4Ia	27.4164	27,5281	144412		
	G-4Fa	27.4135	27,5144	6367.40		
	G-4Ib	27, 3811	27,4937	143245		
	G-4Fb	27.5714	27.6664	6361.09		
	Blank a		8	35.95, 31.15		
	Blank b			41.60, 30.2	5	

In the table above the initial wt. refers to the weight of the 20 mL scintillation vial plus 10 mL Ultima Gold. Blanks refer to simple Ultima Gold in the absence of a radioactive aliquot.

Appendix C

Analytical Data

Battelle, Pacific Northwest National Laboratory Richland, WA Radiochemical Processing Group

filename 01-0544 3/12/2001

Client:

Carson

Cognizant Scientist: <u>C. Sodergues 3-13-01</u> Concur: <u>IN Securit 3-13-01</u>

	Lab ID	Results of Tc-99 Assay					
Sample		dpm/mL	Ci/mL	g/mL	± 1s		
Tc Stock 1 Tc Stock 2	01-0544 01-0545	1.55E+9 1.51E+6	6.97E-4 6.80E-7	4.11E-2 4.01E-5	±1% ±1%		
£3	Spike	1.41E+5 1.39E+5 101%	dpm/mL ot dpm/mL ex spike yield	pserved			

Battelle - PNNL / AIAL Inorganic Analysis / 320-ICP/MS Data Report

Project / WP#:	42365 / W58010
ASR#:	6134
Client:	K.J. Carson / B. Rapko
Total Samples:	42

Client ID
See below

Procedure: PNL-SC-01 Rev. 1, Inductively Coupled Plasma Mass Spectrometric (ICP-MS) Analysis

M&TE Number:	WB36913 512-06-01-01	4	ICP/MS, VG Elemental Mettler AJ100 Balance	
Analyst:	Orvill	e Thoma	as Farmer III	
Report Written by:	Orvill	e Thoma	as Farmer III	
Analysis Date(s):	8/19/01			
Analysis Files:	Experiments - Procedures - Element Men	– 19Aug Manual us – 19A	01S data collection aug01S	
Laboratory Record	Book (LRB):	LRB B LRB B	NW 56465: Sample login: NW 56465: Rhenium assay	

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Stur Bana 8-25-01 Reviewed By

Concur 25 Augor

p.47-48 : p.47-48

2

Page 1 of 4

1. Analysis

Forty-two liquid samples for Rhenium analysis were received from the client and were analyzed by ICP/MS. All samples were first diluted by a factor of 100,000 and screened to determine an estimate of the Re concentration. After screening, the samples were dilution to yield a known Re solution concentration and bracketed by the calibration standards accordingly.

Data was collected using peak-hopping data acquisition parameters and manual solution sampling into the instrument. All solutions (Standards, Instrument QC's, Preparation QC's and Samples) were spiked with thallium that was used as the internal standard element.

ICP/MS results for all solutions are reported in units of mg/L and are instrument blank corrected. In Table 1, reported concentrations for instrument QC's are reported back to the instrument solutions only. In Table 2, final results have been corrected for all laboratory dilutions performed on the samples during analysis.

File Name	Criteria	EQL	Expected	Found	0/0
			(mg/L)	(mg/L)	Rec
ICB	< EQL	1.1E-06	A STATE OF CONTRACTOR	2 14E-08	SI THE PARAMETER
ICB ^a	< EQL	1.1E-06		1.41E-08	
CCB-1	< EQL	1.1E-06		4 53E-08	
CCB-2	< EQL	1.1E-06		2.83E-08	
CCB-1 ^a	< EQL	1.1E-06		3 10F-08	
CCB-2 ^a	< EQL	1.1E-06		6 78E-08	
CCB-3 ^a	< EQL	1.1E-06		1.21E-07	
ICV	(+/-) 10 %		1.67E-04	1.68E-04	101
ICV ^a	(+/-) 10 %		1.67E-04	1.68E-04	101
CCV-1	(+/-) 10 %		1.67E-04	1.68E-04	101
CCV-2	(+/-) 10 %		1.67E-04	1 70E-04	102
CCV-1 ^a	(+/-) 10 %		1.67E-04	1.70E-04	102
CCV-2 ^a	(+/-) 10 %		1.67E-04	1.69E-04	101
CCV-3 ^a	(+/-) 10 %		1.67E-04	1.69E-04	101
ICS				8.16E-04	
ICS Dup.	(+/-) 10 %			8 14E-04	100
ICS Dup. Spike	(+/-) 25 %		1.67E-04	1.71E-04	100
ICS ^a			11072 01	8 12E-04	102
ICS Dup. ^a	(+/-) 10 %			8 12E-04	100
ICS Dup. Spike ^a	(+/-) 25 %		1.67E-04	1.69E-04	100

Table 1: Instrument Quality Control

Second run was preformed on the samples due to nebulizer plugging. Samples between CCV-2 and CCV-3 in the first analytical run were re-analyzed in the second analytical run.

QC Summary:

Duplicate (DUP): No duplicate was submitted. However, a replicate instrument QC analysis (ICS and ICS Dup.) was performed on sample (D-6Fb) and met the QC criteria of ±20%.

Matrix Spike (MS): A post matrix spike (E-6Fa) was submitted, however no information as too the spiking level was provided, therefore no recovery was calculated.

Post Spike (PS): No post spike was submitted. However, an instrument post spike analysis (ICS Dup. Spike) was performed on sample (D-6Fb) and met the QC criteria of ±25%.

<u>Preparation Blank (PB) and Laboratory Control Standard (LCS/BS)</u>: A preparation blank was submitted and analyzed and meet the criteria of being < 5% of the measured concentration in the samples but was greater than the calculated EQL. A LCS/BS was submitted and analyzed, however no information as too the spiking level in this QC was provided and no recover was calculated.

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB): The ICB/CCB standards are 1-% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than the estimated quantitation limit (< EQL) were met for all ICBs and CCBs.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV): The ICV/CCV standards met the QC criteria of ±10% were met for all ICV and CCV check solutions.

Internal Standard (ISTD): The ISTDs met the QC criteria of 30% to 120%.

Battelle – PNNL / AIAL / Inorganic Analysis ... 320-ICP/MS Data Report

ACL Sample ID	e ID Client ID Vial ID Dilution		Re (mg/L)	(+/-) 1 sigma		
	这 次这些"我们是你是你们		Factor			
01-1412	D-6Ia	A	2069	1.76E+00	116E-03	
01-1413	D-6Fa	B	500	4.32E-01	2 81F-04	
01-1414	D-6Ib	С	1714	1.48E+00	9.64E-04	
01-1415	D-6Fb	D	484	3.93E-01	2.73E-04	
DUP 01-1415	D-6Fb	D	484	3.93E-01	2.72E-04	
DUP Spike 01-1415	D-6Fb	D	484	4.75E-01	2.72E-04	
01-1416	D-8Ia	E	120	1.76E-02	6.74E-05	
01-1417	D-8Fa	F	120	3.25E-03	6.74E-05	
01-1418	D-8Ib	G	120	1.89E-02	6.74E-05	
01-1419	D-8Fb	Н	120	3.63E-02	3.58E-05	
01-1420	D-9Ia	I	120	5.79E-04	4.01E-06	
01-1421	D-9Fa	J	120	1 20E-04	2.62E-06	
01-1422	D-9Ib	K	120	5.93E-04	7.98E-06	
01-1423	D-9Fb	L	120	1.32E-04	1.45E-06	
01-1424	D-101a	M	2069	1.78E+00	1.45E-00	
01-1425	D-10Fa	N	750	6.29E-01	4 21 E-04	
01-1426	D-101b	0	2069	1.68E+00	1.16E-03	
01-1427	D-10Fb	P	674	5.68E-01	3.80E-04	
01-1428	E-6Ia	Q	2143	1.81E+00	1.21E-03	
01-1429	E-6Fa	R	923	7.68E-01	5 19F-04	
Reagent Blank Spike	DI-H2O spike	S	120	2.78E-03	7.24E-06	
Process Water	DI-H2O	Т	120	6.98E-06	1 39E-06	
Post MS-1429	E-6Fa	U	414	3.89E-01	2.79E-04	
01-1430	E-6Ib	A-1	2069	1.74E+00	1.17E-03	
01-1431	E-6Fb	B-1	1176	9.55E-01	6.63E-04	
01-1432	E-8Ia	C-1	120	1.86E-02	6.74E-05	
01-1433	E-8Fa	D-1	120	1.14E-02	6.74E-05	
01-1434	E-8Ib	E-1	120	1.97E-02	6.74E-05	
01-1435	E-8Fb	F-1	120	1.11E-02	6.74E-05	
01-1436	E-9Ia	G-1	120	6.77E-04	1.26E-05	
01-1437	E-9Fa	H-1	120	3.69E-04	1.20E-06	
01-1438	E-9Ib	I-1	120	6.63E-04	5.63E-06	
01-1439	E-8Fb	J-1	120	4.04E-04	7.25E-06	
01-1440	E-10Ia	K-1	2143	1.80E+00	1.21E-03	
01-1441	E-10Fa	L-1	1304	1.09E+00	7.34E-04	
01-1442	E-10Ib	M-1	2143	1.82E+00	1.21E-03	
01-1443	E-10Fb	N-1	1429	1.19E+00	8.03E-04	
01-1444	F-6Ia	O-1	120	7.54E-04	7.85E-06	
01-1445	F-6Fa	P-1	779	6.44E-01	4.38E-04	
01-1446	F-6Ib	Q-1	120	1.04E-02	6.74E-05	
01-1447	F-6Fb	R-1	822	6.87E-01	4.62E-04	
Reagent Blank Spike	DI-H2O spike	S-1	120	2.68E-03	1.80E-06	
Process Water	DI-H2O	T-1	120	5.24E-06	1.04E-06	
Post MS-1447	F-6Fb	U-1	353	3.06E-01	2 80F-04	

Table 2: Sample results

A

	<u>24 A</u> Prot	ocol #	1 19:53 :21		ALPHA/I	BETA -	1.09				Page #	1
	Time:	20.00			102000) IC-	99			n niai di sessi di nen seni nati	User	: BM
	Data Mo Backgro	und Subtrac	t: None	Nuclide;	MANUAL			l	New "	SuperLig	639	
		LL	UL LCR	25%	BKG			RT	Kinedic	s uf shak	er thest	
	Region Region	A: 0.0 - B: 2.0 -	300 0	0.0	0.00				B. Raph	0 4-	25-01	
	Region	C: 300 -	2000 0	0.0	0.00		د	holer spe	ed 2225	npm		
	Guench 1 Ext 9 Coincide Delay Be Protocol Count Da Spectrum	Indicator: Std Termina ence Time(ne fore Burst(Data Filen ta Filename Data Drive	tSIE/AEC tor: Count s): 18 (ns): Normal pame: A:\AEN09 2: A:\AEN09\SDA 2: & Path: A:\AE	APRDT.DAT MTA21.DAT EN09								
1	S# 1 2 3 4 5 6 7 8 9 10 11 MIS	TIME 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 51NG TI	CPMA 29.70 500460 144619 504539 160203 501728 116056 494845 114369 503501 89772.4	A:25% 8.21 0.06 0.12 0.06 0.11 0.06 0.13 0.06 0.13 0.06 0.15	 CPMB 28.88 499490 144381 503536 159942 500722 115865 493866 114190 502507 89629.6 	B:25% B.32 0.06 0.12 0.06 0.11 0.06 0.13 0.06 0.13 0.06 0.15	CPMC 8.80 1183.30 266.89 1134.38 279.97 1022.99 210.71 961.64 226.07 1010.00 172.05	C:25% 15.08 1.30 2.74 1.33 2.67 1.40 3.08 1.44 2.97 1.41 3.41	SIS 94.998 144.80 142.79 144.62 142.53 144.50 140.62 144.55 142.22 144.43 141.27	tSIE 512.78 441.78 439.22 445.53 442.04 448.85 432.18 450.18 436.71 448.70 435.32	FLAG Blanka A laJ A laJ A laF A lBF A JBF A JBF A JBF A JBF A JBF A JBF A JBF A JGF A JGF	
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	504104 74671.0 501473 485071 500364 501075 498352 502061 502123 498552 493326 79823.0 82228.9 28.85	0.06 0.16 0.06 0.06 0.06 0.06 0.06 0.06	503097 74549.8 500484 484104 499389 500087 497371 501083 502081 501122 497580 492360 79693.2 82093.2 27.83	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06	1046.73 149.03 1015.09 905.65 1114.66 1052.91 1017.16 1015.06 1136.31 1008.55 1018.96 1021.21 156.45 166.99 9.40	1.38 3.66 1.40 1.49 1.34 1.38 1.40 1.40 1.40 1.40 1.40 3.58 3.46 14.59	144.33 141.18 144.26 144.26 144.30 143.99 144.14 144.56 144.25 144.25 144.28 144.56 144.71 147.46 148.08 94.494	448.14 434.23 448.10 451.13 445.03 445.97 447.35 448.57 444.31 449.41 448.66 448.77 451.28 451.58 520.09	AJbJ AJbF AJbF AJaJ AJGJ ASGJ ASGJ AJGJ AJGJ AJFASS AJFASS AJFASS AJFASS Blant b	

<u>07 May 2001 10:57</u> Protocol #:21	ALPHA/BETA - 1.09 PTC2550 Tc-99	Page #1
Time: 20.00 Data Mode: CPM Background Subtract: None	Nuclide: MANUAL	User : BM
LL UL Region A: 0.0 - 300 Region B: 2.0 - 300 Region C: 300 - 2000	LCR 25% BKG 0 0.0 0.00 0 0.0 0.00 0 0.0 0.00	
Quench Indicator: tSIE/AE Ext Std Terminator: Co Coincidence Time(ns): 18 Delay Before Burst(ns): No Protocol Data Filename: A Count Data Filename: A:\AB Spectrum Data Drive & Path	C unt s\AEN09\PRDT.DAT EN09\SDATA21.DAT h: A:\AEN09	

S#	TIME	CPMA	A:25%	COMP	D 00.					
1	20.00	41.00	6.98		8:257	CPMC	C:25%	SIS	5 tSIE	FLAG /
2	20.00	86622.8	0.15	94400 5	7.08	8.45	15.38	75.655	6 444.16	Blank
З	20.00	71209.8	0.17	71100 4	0.15	196.68	3.19	142.81	433.60	AYAF
4	20,00	80998.6	0 16	90970 1	0.1/	166.89	3.46	142.55	431.39	AUBE
5	20.00	84285.9	0.15	84150 /	0.16	181.60	3.32	142.05	432.22	ASAF
6	20.00	94985.3	0.15	94940 0	0.15	201.44	3.15	141.99	431.93	ASBF
7	20.00	75616.8	0.16	75502 1	0.15	211.36	3.08	144.58	439.58	AGAF
8	20.00	85820.2	0.15	85491 0	0.16	1/4.61	3.38	145.53	439.15	AGBI
9	20.00	80902.9	0.16	80782 7	0.15	192.01	3.23	145.22	439.44	ATAF
10	20.00	92527.0	0.15	92391 1	0.16	164.19	3.49	146.03	443.02	ATBF
11	20.00	70426.5	0.17	70320 3	0.15	225.85	2.98	142.81	433.51	ASAFSS
12	20.00	95491.4	0.14	95342 1	0.1/	164./4	3.48	143.07	434.97	A8BFSS
13	20.00	95773.9	0.14	95674 7	0.14	214.6/	3.05	149.13	450.36	A SAF
14	20.00	145141	0.12	144921	0.17	200.75	2.82	149.97	450.54	ABBF
15	20.00	145473	0.12	145243	0.12	383.64	2.28	147.52	444.68	CIIA
16	20.00	150520	0.12	150291	0.12	3/1.62	2.52	147.67	448.23	CIIB
17	20.00	142720	0.12	142499	0.12	407.43	2.21	148.28	447.67	CZIA
18	20.00	151327	0.11	151092	0.12	302.01	2.30	148.42	449.10	CZIB
19	20.00	146469	0.12	146248	0.12	307.07	2.2/	148.01	449.20	C3IA
20	20.00	146358	0.12	146129	0.12	392.07	2.20	148.55	448.57	CJIB
21	20.00	145153	0.12	144936	0.12	380.30	2.27	148.36	447.43	CYJA
22	20.00	137996	0.12	137789	0.12	385 81	2.27	148.51	448.34	C4IB
23	20.00	146515	0.12	146291	0.12	407 04	2.20	148.49	446.61	CSIA
24	20.00	146154	0.12	145930	0.12	345 37	2.22	148.88	447.23	CSIB
25	20.00	141817	0.12	141606	0.12	381 03	2:34	148.03	450.20	CGIA
26	20.00	144244	0.12	144021	0.12	395 57	2.27	148.10	448.32	CGIB
27	20.00	145905	0.12	145677	0.12	381 39	2.20	140.04	448.84	CIIA
28	20.00	144939	0.12	144727	0.12	416.23	2.27	140.00	449.83	CTIB
29	20.00	140558	0.12	140347	0.12	381 45	2.17	148.55	443.98	CSIA
30	20.00	510125	0.06	509130	0.06	1435 84	1 10	147.30	450.30	CSIB
31	20.00	502809	0.06	501812	0.06	1299.63	1 24	147.80	454.80	C-114
32	20.00	507093	0.06	506097	0.06	1360.09	1 21	150.07	458.02	C~ ILB
33	20.00	503582	0.06	502586	0.06	1331.48	1 23	140.70	457.52	C-214
34	20.00	501281	0.06	500302	0.06	1319.06	1 23	1/0 57	458.42	6210
35	20.00	503779	0.06	502794	0.06	1323.91	1 23	1/0 50	457.16	CJPA
36	20.00	504713	0.06	503713	0.06	1310.68	1 24	1/0 17	437.02	C318
37	20.00	495733	0.06	494771	0.06	1380.93	1 20	140.00	436.32	CYIH
38	20.00	506021	0.06	505031	0.06	1295 82	1 24	1/10.70	403.34 (CAIB
				장님 아님은 가지 않는 사람이 귀찮다.		12/0:02	1.24	140.07	434.19	USPA

<u>08 Ma</u> Proto	y 2001 col #:2	00:53		ALPHA/BE PTC2550	TC-9	1.09 9				Page #2 User :	BM
S# 39 40 41 42 43 44 45 46	TIME 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	CPMA 502868 499674 508631 500407 503992 504768 499669 34.60	A:25% 0.06 0.06 0.06 0.06 0.06 0.06 7.60	CPMB 501865 498717 507645 499434 502983 503783 498695 33.90	B:25% 0.06 0.06 0.06 0.06 0.06 0.06 7.68	CPMC 1327.62 1408.04 1331.40 1316.98 1267.81 1315.83 1276.63 8.85	C:25% 1.23 1.19 1.23 1.23 1.23 1.26 1.23 1.25 15.03	SIS 149.39 148.86 148.83 148.43 148.54 148.73 148.62 81.979	tSIE 456.10 451.70 453.94 453.37 455.35 454.23 454.23 454.70 449.27	FLAG C°53B C°63A C°63A C°63A C°73B C°73B C°73B C°73B C°83B BIMIC b	2

<u>08 May 2001</u> Protocol #:21	ALPHA/ PTC255	<u>BETA - 1.</u> 0 Tc-99	07	Page #1	
Time: 20.00 Data Mode: CP Background Su	M btract: None	•	Nuclide:	MANUAL	User : BM
Region A: Region B: Region C:	LL UL 0.0 - 300 2.0 - 300 300 - 2000	LCR 0 0	25% 0.0 0.0 0.0	BKG 0.00 0.00 0.00	
Quench Indica Ext Std Te Coincidence T Delay Before I Protocol Data Count Data Fi Spectrum Data	tor: tSIE/AE rminator: Co ime(ns): 18 Burst(ns): No Filename: A lename: A:\AN Drive & Path	C unt STMAL NO9\SDA STAL STAL STAL STAL STAL STAL STAL STA	PROT.DAT ATA21.DAT EN09		

S# 1234567890112314567891011231451718	TIME 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	CPMA 48.90 144426 143305 149718 139194 154072 149631 151182 147455 202816 228812 243027 214622 228370 233795 227719 235540 49.25	A:25% 6.40 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1	CPMB 48.26 144199 143083 149481 138979 153831 149400 150954 147228 202499 228445 242635 214286 228018 233417 227362 235172 48.60	B:25% 6.44 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	CPMC 10.80 375.54 360.47 393.61 373.29 418.62 357.00 422.00 378.87 511.72 589.27 589.27 588.22 561.58 597.81 582.07 572.42 610.47 10.60	C:25% 13.61 2.31 2.36 2.25 2.31 2.19 2.37 2.18 2.30 1.98 1.84 1.84 1.84 1.84 1.85 1.85 1.87 1.81 13.74	SIS 97.622 146.49 146.37 146.55 146.59 146.39 146.16 146.19 146.31 146.33 146.33 146.35 146.43 146.43 146.18 146.42 145.51 146.14 106.14	tSIE FLAG 444.38-Blda 442.95.c IFa 443.87.c IFb 443.16.C 2Fa 442.15.C 2Fb 441.12.C 3Fa 445.23.C3Fb 445.23.C3Fb 440.98-C4Fa 440.98-C4Fb 443.63-C*IFb 443.63-C*IFb 443.02-C*2Fb 442.91-C*3Fa 444.96-C*3Fb 442.27-C*4Fa 442.80-C*4Fb 448.61-Bltb
--	---	--	--	--	---	--	---	---	---

K. Thomas 5/9/01

00 M			
<u>09 May 2001 10:10</u> Protocol #:21	ALPHA/BETA - 1.09 PTC2550 Tc-99		Page #1
Time: 20.00 Data Mode: CPM Background Subtract: None	Nuclide: MA	NUAL	User : BM
LL UL Region A: 0.0 - 300 Region B: 2.0 - 300 Region C: 300 - 2000	LCR 25% E 0 0.0 0. 0 0.0 0. 0 0.0 0.	KG 00 00	
Quench Indicator: tSIE/AEC Ext Std Terminator: Cou Coincidence Time(ns): 18 Delay Before Burst(ns): No Protocol Data Filename: A: Count Data Filename: A:\AE Spectrum Data Drive & Path	C Int \AENO9\PROT.DAT NO9\SDATA21.DAT : A:\AENO9		
S# TIME CPMA A:25%	CPMB B:25% CI	MC C:25% 515 +515	5.00

23456	20.00	47.80	6.47	46.66	6.55	9.65	14.40	86.347	444.44 BIK 9
	20.00	149638	0.12	149401	0.12	370.26	2.32	144.72	436.48 C 5 Fq
	20.00	159808	0.11	159561	0.11	386.90	2.27	144.44	437.24 C 5 FG
	20.00	240810	0.09	240408	0.09	577.28	1.86	143.40	436.09 C * 5 FG
	20.00	232235	0.09	231863	0.09	610.78	1.81	143.62	433.09 C * 5 FG
	20.00	49.70	6.34	48.76	6.40	8.95	14.95	93.537	444.47 BK 5

<u>10 May 2001 10:14</u> Protocol #:21	ALPHA/BETA - 1. PTC2550 Tc-99	09		Page #1
Time: 20.00 Data Mode: CPM Background Subtract: None	Nuclide:	MANUAL		user : BM
LL UL Region A: 0.0 - 300 Region B: 2.0 - 300 Region C: 300 - 2000	LCR 25% 0 0.0 0 0.0 0 0.0	BKG 0.00 0.00 0.00		
Quench Indicator: tSIE/AE Ext Std Terminator: Con Coincidence Time(ns): 18 Delay Before Burst(ns): No Protocol Data Filename: A Count Data Filename: A:\AB Spectrum Data Drive & Path	C unt :\AEN09\PROT.DAT EN09\SDATA21.DAT h: A:\AEN09			
S# TIME CPMA A:25%	CPMB B:25%	CPMC C:25%	SIS	THE FLAG

1	20.00	62.67	5.65	60.87	5.73	11.58	13.14	121.78	515.75 Blkg
2	20.00	158802	0.11	158558	0.11	393.81	2.25	145.28	438.46 C 6 Fg
3	20.00	153902	0.11	153662	0.11	405.27	2.22	144.46	435.22 C 6 Fg
4	20.00	242092	0.09	241705	0.09	595.52	1.83	142.72	432.68 C 6 Fg
5	20.00	213162	0.10	212823	0.10	522.64	1.96	143.26	434.25 C K 6 Fg
6	20.00	65.00	5.55	63.21	5.63	13.15	12.33	116.39	518.11 016
		00.00	5.55	63.21	5.63	13.15	12.33	116.39	518.11 BKG

<u>11 May 2001 10:55</u> Protocol #:21	ALPHA/BETA - 1. PTC2550 Tc-99	09		Page #1
Time: 20.00 Data Mode: CPM Background Subtract: None	Nuclide:	MANUAL		User : Bh
LL UL Region A: 0.0 - 300 Region B: 2.0 - 300 Region C: 300 - 2000	LCR 25% 0 0.0 0 0.0 0 0.0	BKG 0.00 0.00 0.00		
Quench Indicator: tSIE/AEC Ext Std Terminator: Cou Coincidence Time(ns): 18 Delay Before Burst(ns): No Protocol Data Filename: A: Count Data Filename: A:\AE Spectrum Data Drive & Path	C Int AENO9\PROT.DAT NO9\SDATA21.DAT A:\AENO9			
S# TIME CPMA A:25% 1 20.00 33.75 7 70	CPMB B:25%	CPMC C:25%	SIS	tsie flag

23456	20.00 20.00 20.00 20.00 20.00	33.75 166090 165623 223675 196174 29.60	7.70 0.11 0.11 0.09 0.10 8.22	32.11 165827 165364 223324 195869 28.86	7.87 0.11 0.11 0.09 0.10 8.33	6.80 445.13 440.80 571.05 518.67 8.25	17.15 2.12 2.13 1.87 1.96 15.57	68.990 145.86 146.19 145.36 145.70 72.664	446.24 BK 438.92 C TF 438.92 C TF 441.67 C TF 439.82 C + 7F 439.37 C + 7F 445.72 BK 5
-------	---	--	--	--	--	--	--	--	---

<u>14 May 2001</u> Protocol #:	<u>15:12</u> 21	ALPHA/ PTC255	BETA - 1.		
Time: 20.00 Data Mode: (Background S	0 CPM Subtract: None	2	Nuclide:	MANUAL	User : Dh
Region A: Region B: Region C:	LL UL 0.0 - 300 2.0 - 300 300 - 2000	LCR 0 0 0	25% 0.0 0.0 0.0	BKG 0.00 0.00 0.00	
Quench India Ext Std T Coincidence Delay Before Protocol Dat Count Data F Spectrum Dat	ator: tSIE/AE [erminator: Co Time(ns): 18 Burst(ns): N a Filename: A ilename: A:\A a Drive & Pat	C unt :\AENO9 ENO9\SD h: A:\A	PROT.DAT ATA21.DAT EN09		

S# 1 2 3 4 5 6 7 8 9 10 11	TIME 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	CPMA 28.05 179320 165253 236747 232388 149947 150203 145432 149738 147377	A:25% 8.44 0.11 0.09 0.09 0.12 0.12 0.12 0.12 0.12	CPMB 27.61 179031 164993 236369 232018 149725 149974 145210 149511 147152	B:25% 8.51 0.11 0.09 0.09 0.12 0.12 0.12 0.12 0.12 0.12	CPMC 7.75 476.37 443.62 583.71 568.81 334.03 334.37 313.57 326.15 322.08	C:25% 16.06 2.05 2.12 1.85 1.88 2.45 2.45 2.45 2.53 2.48 2.49	SIS 70.064 147.02 147.06 147.31 147.33 146.90 147.04 146.46 146.96 147.65	tSIE FLAG 444.41 Blk9 443.94 C8 F4 442.73 C8 F6 445.07 C8 F6 445.15 C*8 F6 443.54 BIT9 444.460 IT6 444.75 B2 T9 445.32 B2 T5 445.32 B2 T5 446.40 B3 T5
8	20.00	145432	0.12	149974	0.12	334.37 313.57	2.45 2.53	147.04 146.46	444.46 3 1 16 444.75 82 19
10 11	20.00	147377	0.12	149511 147152	0.12	326.15 322.08	2.48 2.49	146.96 147.65	445.32 B255 446.40 B3IS
12 13	20.00	147334	0.12	147106	0.12	360.91 349.38	2.35 2.39	147.11 147.88	443.05 B 315 446.14 B 414
14 15	20.00	149153	0.12	149755	0.12	356.05	2.37	147.63 147.88	443.7884IS 446.2785IG
16 17	20.00	503027 502759	0.06	502057	0.06	358.67 1235.84	2.36	147.69	444.77 3515 451.04 D. 15
18 19	20.00 20.00	491589 512631	0.06	490643 511623	0.06	1285.55	1.26	149.29	452.94 0129
20 21	20.00 20.00	501780 501561	0.06	500817 500611	0.06	1161.55	1.31	149.64	453.870 219 450.61 0 3 D6
22 23	20.00	52805.3 51615.5	0.19	52725.3 51537.4	0.19	106.74	4.33	145.33	440.80 044
24 25 26	20.00 20.00 20.00	497710 494556 50219.7	0.06 0.06 0.20	496893 493732 50159.2	0.06	568.48 560.31	1.88	106.73	320.85 D 5 IG 319.96 D 5 IG
27 28	20.00 20.00	52818.0 28.95	0.19 8.31	52757.9 28.45	0.19	45.89	6.60	104.48	312.20 0755 449.00 BIK6

<u>17 May 2001 15:26</u> Protocol #:21	ALPHA/BETA - 1.09 PTC2550 Tc-99	Page #1 User : BN		
Time: 20.00 Data Mode: CPM Background Subtract: None	Nuclide: MANUAL			
LL UL Region A: 0.0 - 300 Region B: 2.0 - 300 Region C: 300 - 2000 Quench Indicator: tSIE/AE	LCR 25% BKG 0 0.0 0.00 0 0.0 0.00 0 0.0 0.00			
Coincidence Time(ns): 18 Delay Before Burst(ns): No Protocol Data Filename: A Count Data Filename: A:\A6 Spectrum Data Drive & Path	Drmal :\AENO9\PROT.DAT ENO9\SDATA21.DAT n: A:\AENO9			

S#	TIME	CPMA	A:257	COMD	B. 20%	00110	-			
1	20.00	46.90	6 53	45 O1	D:25/	CPMC	C:25%	SIS	tSIE F	LAG
2	20.00	5322.00	0.61	5712 04	0.60	10.05	14.11	97.606	446.63	ika
3	20.00	6099.35	0.57	4000 00	0.61	20.06	9.99	145.34	440.10B	1F4
4	20.00	6201.10	0.57	6180 80	0.57	21.45	9.66	145.74	440.883	145
5	20.00	5575.66	0.60	5547 24	0.5/	23.60	9.21	145.88	441.20 8	219
6	20.00	6531.52	0.55	4510 74	0.60	21.49	9.65	146.73	442.13B	ZEP
7	20.00	6859.85	0.54	6017.74	0.55	22.88	9.35	147.16	445.32 3	3fg
8	20.00	7163.32	0.53	7151 14	0.54	23.50	9.23	147.49	442.76 8	3F5
9	20.00	6547 82	0.55	/131.14	0.53	24.18	9.09	147.01	445.653	4Fg
10	20.00	8738 97	0.10	0330.60	0.55	24.58	9.02	147.58	443.633	415
11	20.00	10779 9	0.40	107/7 0	0.48	26.23	8.73	147.47	446.03 3	SFG
12	20.00	25021 3	0.40	10/63.8	0.43	30.27	8.13	147.97	445.173	515
13	20.00	26061 0	0.20	24986.3	0.28	60.48	5.75	146.65	441.31 D	1FG
14	20.00	28999 0	0.20	26019.9	0.28	59.39	5.80	146.27	442.18D	IFS
15	20.00	28700 0	0.26	28952.7	0.26	70.42	5.33	146.57	442.21 0	ZFA
16	20.00	70747 4	0.2/	28345.8	0.27	70.44	5.33	146.20	437.83 D	ZFS
17	20.00	94500 7	0.16	/9121./	0.16	192.62	3.22	146.35	439.02 D	3FG
18	20.00	5004 00	0.15	844/1.8	0.15	186.42	3.28	146.74	443.30 0	3F5
19	20.00	J770.78	0.58	5987.58	0.58	22.82	9.36	145.50	440.5704	tra
20	20.00	A7111 4	0.56	6454.29	0.56	22.74	9.38	143.44	436.67 04	1F5
21	20.00	43111.1	0.22	43050.8	0.22	56.56	5.95	116.10	346.45 0:	5FG
22	20.00	04874./	0.18	64812.0	0.18	68.89	5.39	110.60	327.1905	SFS
27	20.00	4131.66	0.69	4144.21	0.69	13.94	11.98	108.77	324.6707	iFa
20	20.00	4346.67	0.66	4538.48	0.66	14.24	11.85	108.33	321.77 07	155
44	20.00	41.90	6.91	41.10	6.98	8.80	15.08	94.431	446.64 131	K b

Protocol #:21 PTC2550 Tc-99 Time: 20.00 Data Mode: CPM Nuclide: MANUAL Background Subtract: None Nuclide: MANUAL LL UL LCR 25% Region A: 0.0 - 300 0 0.00 Region B: 2.0 - 300 0 0.00 Region C: 300 - 2000 0 0.00	Page #1		
Time: 20.00 Data Mode: CPM Nuclide: MANUAL Background Subtract: None LL UL LCR 25% BKG Region A: 0.0 - 300 0 0.0 0.00 Region B: 2.0 - 300 0 0.0 0.00 Region C: 300 - 2000 0 0.00	User : BM		
LL UL LCR 25% BKG Region A: 0.0 - 300 0 0.0 0.00 Region B: 2.0 - 300 0 0.0 0.00 Region C: 300 - 2000 0 0.0 0.00			
Quench Indicator: tSIE/AEC Ext Std Terminator: Count Coincidence Time(ns): 18 Delay Before Burst(ns): Normal Protocol Data Filename: A:\AEN09\PROT.DAT Count Data Filename: A:\AEN09\SDATA21.DAT Spectrum Data Drive & Path: A:\AEN09			

S#	TIME	CPMA	A:25%	CPMB	B:25%	CPMC	C:25%	SIS	tSIE FLAG
1	20.00	35.95	7.46	35.50	7.51	8.50	15.34	95.092	443.82 BIK 9
2	20.00	492748	0.06	491813	0.06	1241.42	1.27	149.45	450.18 FITA
3	20.00	497275	0.06	496309	0.06	1268.00	1.26	149.06	452.01FII5
4	20.00	496736	0.06	495799	0.06	1353.75	1.22	149.47	450.59 FZIG
5	20.00	493530	0.06	492583	0.06	1251.13	1.26	149.40	453.43 F 2T5
6	20.00	495577	0.06	494648	0.06	1276.87	1.25	149.47	452.99 F 3IA
7	20.00	495442	0.06	494487	0.06	1292.90	1.24	149.24	451.89 F 3IS
8	20.00	494411	0.06	493455	0.06	1239.95	1.27	149.30	454.49 F4IG
9	20.00	497786	0.06	496836	0.06	1395.88	1.20	149.19	451.35F4T5
10	20.00	495787	0.06	494820	0.06	1226.76	1.28	149.72	455.10F5IG
11	20.00	497260	0.06	496277	0.06	1146.23	1.32	150.20	459.40F5IB
12	20.00	325790	0.08	325244	0.08	766.44	1.62	149.23	452.62 GIG
13	20.00	322450	0.08	321912	0.08	807.47	1.57	149.44	450.94 WIL
14	20.00	331649	0.08	331101	0.08	829.07	1.55	149.81	452.076ZIG
15	20.00	334645	0.08	334078	0.08	791.81	1.59	149.33	452.286213
16	20.00	406520	0.07	405800	0.07	1077.72	1.36	149.87	451.64 6 319
17	20.00	279794	0.08	279355	0.08	645.45	1.76	150.03	448.996 313
18	20.00	144412	0.12	144182	0.12	347.10	2.40	149.67	450.936419
19	20.00	143245	0.12	143034	0.12	337.76	2.43	148.79	448.676413
20	20.00	41.60	6.93	40.83	7.00	9.45	14.55	92.884	451.99 BKS

<u>01 Jun 2001 13:59</u> Protocol #:21	ALPHA/BETA - 1.09 PTC2550 Tc-99	Page #1 User : B	M
Time: 20.00 Data Mode: CPM Background Subtract: None	Nuclide: MAN	JAL	
LL UL Region A: 0.0 - 300 Region B: 2.0 - 300 Region C: 300 - 2000	LCR 25% BK 0 0.0 0.00 0 0.0 0.00 0 0.0 0.00	5)))	
Quench Indicator: tSIE/AE Ext Std Terminator: Co Coincidence Time(ns): 18 Delay Before Burst(ns): N Protocol Data Filename: A Count Data Filename: A:\A Spectrum Data Drive & Pat	C unt prmal :\AEN09\PROT.DAT EN09\SDATA21.DAT h: A:\AEN09		
S# TIME CPMA A:25%	CPMB B:25% CPI	1C C:25% SIS tSIE FLAG	

1	20.00	31.15	8.01	30.21	8.14	10.10	14.07	81.908	445.24 BIK 9
2	20.00	1977.00	1.01	1971.34	1.01	21.20	9.71	147.61	457.54 waste jug 511-0228
3	20.00	24365.6	0.29	24326.0	0.29	50.62	6.29	146.32	445.66 F 1 F9
4	20.00	30766.5	0.25	30713.1	0.26	65.10	5.54	147.38	446.38F 1F5
5	20.00	109756	0.13	109579	0.14	227.00	2.97	148.07	448.97 FZ F9
6	20.00	118832	0.13	118647	0.13	247.38	2.84	147.89	448.64F 2FS
7	20.00	175805	0.11	175528	0.11	373.60	2.31	148.46	449.67 F 3F9
8	20.00	181017	0.11	180722	0.11	381.28	2.29	148.43	449.75 F 3F5
9	20.00	297945	0.08	297442	0.08	682.72	1.71	149.41	451.04F4F9
10	20.00	298352	0.08	297829	0.08	663.02	1.74	149.58	454.4654155
11	20.00	402759	0.07	401991	0.07	874.49	1.51	150.16	457.69F 5F9
12	20.00	401537	0.07	400776	0.07	924.80	1.47	150.59	457.85 F 5 FS
13	20.00	264642	0.09	264191	0.09	604.46	1.82	149.56	453.846159
14	20.00	267283	0.09	266825	0.09	587.72	1.84	149.84	455.756 IFL
15	20.00	346647	0.08	346024	0.08	760.15	1.62	150.17	457.636259
16	20.00	184899	0.10	184601	0.10	406.63	2.22	149.48	453.4562FS
17	20.00	46633.7	0.21	46560.6	0.21	95.20	4.58	147.70	448.71635-9
18	20.00	33007.2	0.25	32955.7	0.25	74.26	5.19	148.11	449.336355
19	20.00	6367.40	0.56	6355.95	0.56	21.35	9.68	146.67	448.226459
20	20.00	6361.09	0.56	6350.97	0.56	19.11	10.23	147.64	451.066455
21	20.00	30.25	8.13	29.84	8.19	8.15	15.67	78.620	450.81 BIKb
04 Jun 2001 19:55	ALPHA/	BETA - 1.	09			Page	#1		
--	--	----------------------------------	---------------------	-------	-----	-----------	-----	----	
Protocol #:21	PTC255	0 Tc-99				Use	r :	BM	
Time: 20.00 Data Mode: CPM Background Subtrac	t: None	Nuclide:	MANUAL	÷					
LL Region A: 0.0 - Region B: 2.0 - Region C: 300 -	UL LCR 300 0 300 0 2000 0	25% 0.0 0.0	BKG 0.00 0.00						
Quench Indicator: Ext Std Termina Coincidence Time(n Delay Before Burst Protocol Data File Count Data Filenam Spectrum Data Driv	tSIE/AEC tor: Count s): 18 (ns): Normal name: A:\AEN09 e: A:\AEN09\SE e & Path: A:\A	PNPROT.DAT DATA21.DAT EN09							
S# TIME CPM	A A:25% CPM	B 8:25%	CPMC	C:25%	SIS	tSIE FLAG			

1	20.00	29.45	8.24	28.90	8.32	7.65	16.17	80.526	447.70 BIK 9
2	20.00	507273	0.06	506284	0.06	1233.59	1.27	149.19	452.44 E ITA
3	20.00	507615	0.06	506601	0.06	1155.20	1.32	149.64	457.44 5175
4	20.00	509043	0.06	508025	0.06	1148.53	1.32	148.81	456.55 EZIG
5	20.00	509424	0.06	508431	0.06	1298.03	1.24	149.72	453.99 EZIL
6	20.00	510725	0.06	509722	0.06	1191.11	1.30	148.25	452.31 5 314
7	20.00	513367	0.06	512342	0.06	1090.60	1.35	148.08	456.03 E 316
8	20.00	52936.3	0.19	52854.4	0.19	113.70	4.19	145.30	442.16E4TA
9	20.00	51149.7	0.20	51072.1	0.20	112.44	4.22	145.13	439.09 E4IS
10	20.00	496527	0.06	495662	0.06	661.81	1.74	114.42	343.27E5B
11	20.00	509574	0.06	508656	0.06	632.53	1.78	113.23	342.07E 5TS
12	20.00	51657.7	0.20	51591.7	0.20	58.61	5.84	110.50	329.425719
13	20.00	54583.7	0.19	54512.9	0.19	58.94	5.83	109.88	327.80 E 715
14	20.00	28.75	8.34	28.04	8.45	9.40	14.59	75.018	451.00 B1K b

07 Jun 2001 15:03	ALPHA/BETA - 1.	Page #1	
Protocol #:21	PTC2550 Tc-99	User : BM	
Time: 20.00			
Data Mode: CPM	Nuclide:	MANUAL	,
Background Subtract: None			
LL UL	LCR 25%	BKG	
Region A: 0.0 - 300	0 0.0	0.00	
Region B: 2.0 - 300	0 0.0	0.00	
Region C: 300 - 2000	0 0.0	0.00	
Quench Indicator: tSIE/AEC Ext Std Terminator: Cou) Int		
Coincidence Time(ns): 18			
Delay Before Burst(ns): No	ormal		
Protocol Data Filename: A:	\AEN09\PROT.DAT		
Count Data Filename: A:\AE	NO9\SDATA21.DAT		
Spectrum Data Drive & Path	A:\AEN09		
	COMP. D. OCY	60M0 0.00M	
1 20.00 30.90 8.05	30 35 8 12	LPML L:25% SI	5 tSIE FLAG

S#	TIME	CPMA	A:25%	CPMB	B:25%	CPMC	C:25%	SIS	tSIE FLAG
1	20.00	30.90	8.05	30.35	8.12	8.85	15.03	84.731	446.09 BIKG
2	20.00	158180	0.11	157929	0.11	328.43	2.47	148.56	450.67 E IFA
3	20.00	172124	0.11	171846	0.11	368.26	2.33	148.52	451.44 E IF6
4	20.00	165919	0.11	165654	0.11	352.42	2.38	148.74	450.43EZFn
5	20.00	201151	0.10	200817	0.10	418.24	2.19	148.72	452.17E2F5
6	20.00	236794	0.09	236413	0.09	510.21	1.98	148.31	449.91E3FG
7	20.00	240590	0.09	240187	0.09	497.57	2.00	148.30	451.43 E3F5
8	20.00	24433.1	0.29	24398.0	0.29	53.16	6.13	146.22	443.62 = 4 5
9	20.00	21330.2	0.31	21295.8	0.31	50.13	6.32	146.68	443.81E4FS
10	20.00	198892	0.10	198608	0.10	235.85	2.91	118.68	352.49ESF3
11	20.00	211359	0.10	211057	0.10	231.55	2.94	120.02	356.40ESF6
12	20.00	19811.3	0.32	19781.1	0.32	26.54	8.68	116.07	347.79 275
13	20.00	21107.3	0.31	21077.1	0.31	24.17	9.10	116.27	347.38 5745
14	20.00	28.95	8.31	28.42	8.39	8.30	15.52	79.970	456.13 Blkb

1

2¹⁵

SYSTEM NORMALIZED

. .

```
C14 IPA DATA PROCESSED - 08-Jun-2001 06:05

C14 Eff (0-156 keV) = 96.66 %

C14 CHI SQUARE IPA DATA PROCESSED - 08-Jun-2001 06:15

C14 Chi Square = 22.54

H3 IPA DATA PROCESSED - 08-Jun-2001 06:16

H3 Eff (0-18.6 keV) = 64.95 %

H3 CHI SQUARE IPA DATA PROCESSED - 08-Jun-2001 06:27
```

Appendix D

Sample Calculations

Batte		ĸ	ENGI	EERING W	ORKSHEE	г		Page	of
Prepared By:	Brian	Rasko Date	-18-01 F	Project: 42.3	65	_			
Title/Subject:	Sample	Calculations	for	Super Lig®	639 Rep	ont			
SA. D	mple Calculas	Calcula:	hows : nolarity	, <u>M</u> .	€×،	Figure (, (see a	SNW 57	652,
Dat	A ; P P	formula weight Formula weight	NACI = NANO3	= 58.44 g. = 84.98g	[mo] [mo]		P9.	12 5	
Νστο	i O.I Gee	M NAOH S BNW 5765 E	2 5765	Drepared E	sy dilution	04 STOC	ik sola	ton	
Ex	: Solo	TON YM N	aci, 0,	9 M in 1	NaNOz, O	.1 M in	NaOH		
Parts	9; //.) *9 3.	6974 9 Na. CI 81559 Na.No3	Lin Jon	nL 0.1 M	NaOH				
M	⇒ mole	L Component	Cdefinit	(m)					
mo	les =	mass molecular wt =	formula wit	= <u> 1.</u>	6974 g No. 0.05 L	58.44 g Na	= 1 Val (1	0.2002	Naci
<u>m</u> ,	Now, 5	0.2002 moles 0.05 L	= *	4.003 <u>M</u>	Nacl				
Sim	itarly	3.8 155 9 1	Na NOz	= 0.04	489 mokes 1	VANO3			
		0.04489	poles =	0,89:	PA M No	NO3			
Todal	1 CM	(2+) = MNac	1 + M	ning +	MNe OH	= 4.003 +	0.8979	४०.1 = ऽ ४,७	TM
Note	Ave stan	dard devision	and bous ca	le later	by Exee	1 ⁶⁶ ѕргся	diffect	direct	1 Y .

Page <u>2</u> of <u>5</u> Battelle ENGINEERING WORKSHEET Prepared By: Brian Reptro Date: 12-18-01 Project: 42365 Title/Subject: Sample Calculations for SuperLige 639 Report @ Calculation of molality, m. m = moles component Ing solute Note, solute here is water Ex: Calculation molality of solution 5 M NACI, 0.01 M NAOH, 0.018 M NONO, Data: solution density = gooldon Data: Formula wt. NAOH = 40.00 g/mole mL solution Aside density calculation clota son columptic Ansle thre at = 9,0029 g Flask + 5ml solution = 14.9481 g density = (Final at - Tare ad) g = (14.9481-9.0029) g = 1.1899/mL SmL 5 mL 50 1 L of solution = 1.1889/mL = 1000 mL = 11899/L Solution 5 12 in NaCI has (58.449 wall - 5 mole) / L = 292.2 g Nacl 0.01 M in NaOH has (4.0.000 NaOH & 0.01 mot) / L = 0.4 g NaOH 0.018 / in NaNO3 has (84.99 g NaNO3 to 0.018 port) / L = 1.5 g NaNO3 So in 1 L total solute = 292.2g + 0.4g + 1.5g = 294.1g Since total wit = solute + soluent => 1189 = 294.1 + grunten = 894.9 aster. In 1000g solvent the smand (5) of cach component would need to be increased by 1000 = 1.117 forder. => molal = 1.117 + (Molariz) $\begin{array}{rcl} So & fir NACI & molectify = 5 & 1.117 = 5.59 \\ NAOH & = 0.01 & 1.117 = 0.0112 \\ NaNO_3 & = 0.018 & 1.117 = 0.020 \end{array}$

Pacific Northwest Laboratories	ENGINEERING WORKSHEET	Page _ <u>4</u> of
Prepared By: Brian Repto	Date: Project: 42345	
Title/Subject: Sample Ca	Iculations for Superlig 639 Report	
F-fadur Calcul	lation	
Definition: F	= dried resin ut, g	
	stored resir ent, g	
Data : Cfrom i	F, test data) two ut vial = 17.1494 g vial + stred reviv = 17.3498 g vial + dried reviv = 17.3016 g	(b) (c)
stored ressin	wt = b-a = 17.3498 - 17,1494 = 0.1984	Ĵ
dry resilvi	us = c-a = 17.3016-17.1494 = 0,15220	9
F - factor	$= \frac{0.1522g}{0.1984g} = 0.7671$	
Kd Calculation	$k_d = \frac{(c_0 - c_i)}{c_{m \neq F}} + \frac{V}{c_{m \neq F}}$	definition .
$C_{0} = initial n c$ $C_{i} = equilibrium$ $V = Test s:$ $m = mass$ $F = F - foot$	conc. on Activity conc. Im mass conc. on Activity conc. Solution volume (10 ml for 1911 texts) of resin (g)	
Ex: RT kine	tics test - point 7A	
pada: initial	Aliquot = 0.1003 g Activity = 502081	срм
ويدانهم	is a aliquot = 0.1225; Activity = 85691 c,	DAD V
Volume = Ioml	L, ut resin = 0.1003g	
$k_d = \left[\left(\frac{5020}{0.100} \right) \right]$	$\frac{81 cpn}{0.3 g} - \left(\frac{85691 cpn}{0.1225 g}\right) - \left(\frac{85691 cpn}{0.1225 g}\right) = 4 \frac{10 mL}{(0.7671 + 0.000)}$	D. 1003 g)
<u>s</u> (a	9 9	

Pacific Northwest Laboratories	کے Page کے Page Page States Page Page Page Page Page Page States Page Page Page Page Page Page Page Page
Prepared By: Brian Ropho Date: 12-18	Project: 42.765
Title/Subject: Sample Colculations for	Sperlig 635 Report
Calculation of Equilibri	in ENO3-)/ETEO3] Ex: Test D-1A
Data: Initial Activity co	incentration Gee pg 4 of sample calculations)
= 4370348 <u>cpm</u>	
Final Activity concen	tration = 220646 cpm
35 micolitors 0.415 M	Te stack solution into 10,1 mL test solution ,
Dilution of Too Stock	Solution to form Test Solution :
= (volume stock solut (Total volume Test	oni) a M stack solution solution)
$= \left(\begin{array}{c} 0.035 \text{ mL} \\ 10.135 \text{ mL} \end{array}\right) \text{a}$	0.415M = 1.43×10-3 M TcOg
Assuming "To Og - Activ	ity of "Troy concentration, then.
Acturity finish Test solution Actuity initian Test Juludo	M Troy in final test solution M Troy in initial test solution
Rearinging & pluggin	in data yields.
(1.43×10-3 M TcOy) ≠ ((220646 cpm/g) = Te Oy, M equilibrium tast solution, 4370348 cpm/g)
Since the Test solution	KNOWN = 7.22×10 M. is Assumed to 0.0018 M. in Non initial and
is assumed to be unche	@ 12-15-01 enged:
$\frac{\sum NO_2}{(T_CO_y)} initial = \frac{\sum O_1}{O_1}$	<u>.0018</u> M - 1.26 00143MJ
(Tcay) at couldoning	$\frac{(0.0018 \text{ M})}{(7.22 \times 10^{-5} \text{ M})} = 2.49 \times 10^{1}$

DOE-RL Richland, WA

H4-02

H4-02

H4-02

H4-02

Distribution

No. of Copies

OFFSITE

5

No. of Copies

ONSITE

R. Peterson

M. Thorson

R&T Manager

WTP PDC Coordinator

Savannah River Technology Center	8	Battelle - Pacific Northwest Divis	ion
Larry Hamm		D. L. Blanchard Jr.	P7-25
PO Box 616, Road 1		K. J. Carson	P7-25
Building 773-42A		D. E. Kurath	P7-28
Aiken, South Carolina 29808		B. M. Rapko	P7-25
		J. J. Toth	K7-94
Mike Hay		Project Office	P7-28
PO Box 616, Road 1		Information Release (2)	K1-06
Building 773-42A			
Aiken, South Carolina 29808	6	Bechtel National, Inc.	
		W. Graves	H4-02
Charles Nash		S. Jenkins	H4-02

Charles Nash PO Box 616, Road 1 Building 773-42A Aiken, South Carolina 29808

Jim Marra PO Box 616, Road 1 Building 773-42A Aiken, South Carolina 29808

Harold Sturm PO Box 616, Road 1 Building 773-A Aiken, South Carolina 29808