# Performance of Tubular Porous Metal Crossflow Filters

G. R. Golcar

November 2002

Prepared for Bechtel National Inc. under Contract No. 24590-101-TSA-W0000-0004

#### LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either: **makes any warranty or representation, express or implied**, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

#### PNWD-3216 WTP-RPT-019, Rev 0

## **Performance of Tubular Porous Metal Crossflow Filters**

G. R. Golcar

November 2002

Prepared for Bechtel National Inc. under Contract No. 24590-101-TSA-W0000-0004

Battelle, Pacific Northwest Division Richland, Washington, 99352

## **Completeness of Testing**

This report describes the results of work and testing not specified by a test plan or test specification. The work and any associated testing followed the quality assurance requirements of the WTP Support Project. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

**Approved:** 

Gordon H. Beeman, Manager WTP R&T Support Project Date

G. Todd Wright, Manager Research and Technology Date

### Summary

In the course of developing Envelope D simulants for scaled crossflow filtration testing in support of the River Protection Project-Waste Treatment Plant (RPP-WTP) project documented in Golcar et al. (2000), simulants were tested in the cell unit filter (CUF) and a large number of crossflow filtration flux results were obtained using a 0.1-micron Graver, a 0.1-micron liquid-service, industrial-grade Mott, and 0.5-micron liquid-service, industrial-grade Mott filter elements. The goal of conducting parametric CUF tests with various filter elements was to replicate the operating and experimental conditions of the actual waste trials and to validate simulant filtration performance. A large amount of filtration data were obtained but only those results that provided direct simulant filtration performance data compared with actual waste results were reported (Golcar et al. 2000).

The objective of this report is to document the unpublished crossflow filtration data generated from testing the Envelope D HLW filtration simulants during the development phase of these simulants. This report is merely a compilation of previous test data and mostly not the work performed directly in support of the WTP. The goal of testing in FY 2000 was not to examine the performance of various filters in a comprehensive parametric fashion, but because these data provide valuable insight into optimum filter elements for the design of the WTP they are presented in this report. A detailed filtration flux data package for each filter element at various test matrix conditions is also provided in this document.

Filter flux data were measured using the C-106 and AZ-101/102 filtration simulants at various slurry solids loadings. The experiments were conducted in a Battelle-constructed CUF testing apparatus with a single-tube filter module similar to the system used for the radioactive waste testing. The C-106 simulant was tested in the CUF at two series of "low" and "high" axial velocities (6–9 ft/sec and 9–12 ft/sec) and transmembrane pressures (12.5–35 psid versus 30–70 psid) at 8 wt% insoluble solids loading. The AZ-101/102 simulant was tested only at "high" testing conditions at 5 and 15 wt% insoluble solids. In all tests the filtrate was recycled back into the feed tank to maintain a constant solids concentration. The baseline 0.1-micron industrial grade, Mott stainless steel filter was compared with a 0.5-micron industrial grade, Mott stainless steel filter and a 0.1-micron "Scepter" Graver filter. A list of filtration flux data for each filter type is summarized in Table S.1.

| Filter Element       | C-106 Simulant at<br>8 wt%, "Low"<br>Conditions | C-106 Simulant at<br>8 wt%, "High"<br>Conditions | AZ-101/102<br>Simulant at<br>5 wt%, "High"<br>Conditions | AZ101/102 Simulant<br>at<br>15 wt%, "High"<br>Conditions |
|----------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 0.1-micron Mott      | Not Available                                   | 9–12 ft/sec;<br>30–70 psid                       | 7.2–13.1 ft/sec;<br>30–70 psid                           | 6–11.5 ft/sec;<br>30–70 psid                             |
| Industrial Grade     |                                                 |                                                  |                                                          |                                                          |
| 0.5-micron Mott      | 4.5–9 ft/sec;<br>12.5–35 psid                   | 9–12 ft/sec; 30–70<br>psid                       | 7.2–13.1 ft/sec;<br>30–70 psid                           | 6–11.5 ft/sec;<br>30–70 psid                             |
| Industrial Grade     |                                                 |                                                  |                                                          |                                                          |
| 0.1-micron<br>Graver | 4.5–9 ft/sec;<br>12.5–35 psid                   | Not Available                                    | Not Available                                            | Not Available                                            |

Table S.1. List of Filtration Flux Data Discussed in This Report

The filtrate fluxes for the C-106 simulant at "low" testing conditions of 4.5–9 ft/sec axial velocity and 12.5–35 psid transmembrane pressure indicate that, overall, the filtrate fluxes were similar when the simulant was crossflow-filtered either with the 0.5-micron industrial grade Mott filter or the 0.1-micron Graver filter. A closer examination of the center point (20 psid and 6 ft/sec) flux data show that in the course of ~8 hours of CUF operation, the performance of the 0.1-micron Graver filter was less sensitive (or almost insensitive) to particle deagglomeration and subsurface pore plugging than the 0.5-micron industrial grade Mott filter.

The results for the C-106 simulant at "high" testing conditions of 9–12 ft/sec axial velocity and 30–70 psid transmembrane pressure indicate that the fluxes of the 0.1-micron industrial grade Mott filter for all run conditions are greater than those achieved with 0.5-micron, liquid-service, industrial-grade Mott filter. Depending on the test matrix conditions, the filtrate flux with the 0.1-micron liquid-service Mott filter were 14% to 450% greater than the results with 0.5-micron, liquid-service Mott filter.

Similarly, for all run conditions with the AZ-101/102 simulant, the average filtrate fluxes with 0.1-micron industrial grade Mott filter were greater than the fluxes observed with 0.5-micron, liquid-service, industrial-grade Mott filter at 5 wt% insoluble solids. The results support our conclusion that the larger pore size of the 0.5-micron Mott filter caused the filter to be more susceptible to internal/subsurface fouling.

#### Reference

Golcar GR, KP Brooks, JG Darab, JM Davis, and LK Jagoda. 2000. *Development of Inactive High-Level Waste Envelope D Simulants for Scaled Crossflow Filtration Testing*. BNFL-RPT-033 Rev. 0, PNWD-3042, Battelle Pacific Northwest Division, Richland, Washington.

## Contents

| 1.0 | Intro | oduction                                                                                                                   | 1.1               |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------|-------------------|
|     | 1.1   | Objectives                                                                                                                 | 1.1               |
| 2.0 | Exp   | erimental                                                                                                                  | 2.1               |
|     | 2.1   | Tested Slurry Materials2.2.1Filter Media Specification2.2.2Test Apparatus and Operation                                    | 2.1<br>2.1<br>2.2 |
| 3.0 | Resu  | ults and Discussion         3.2.1       5 Wt% Insoluble Solids Loading         3.2.2       15 Wt% Insoluble Solids Loading | 3.1<br>3.7<br>3.9 |
| 4.0 | Con   | clusions                                                                                                                   | 4.1               |
| 5.0 | Refe  | erences                                                                                                                    | 5.1               |
| App | endix | A Envelope D High-Level Waste Filtration Simulant Specification                                                            | A.1               |
|     | A-1.  | AZ-101/102 Slurry Simulant                                                                                                 | A.2               |
|     | A-2.  | C-106 Slurry Simulant                                                                                                      | A.2               |
|     | A-3.  | Preparation Procedure                                                                                                      | A.2               |
|     | A-4.  | Simulant Material Suppliers                                                                                                | A.4               |
| App | endix | B Filtrate Flux Raw Data Package at Each Operating Condition                                                               | B.1               |

# Figures

| Figure 2.1. | Photograph of the Cold Crossflow Filtration System                                       | 2.3   |
|-------------|------------------------------------------------------------------------------------------|-------|
| Figure 3.1. | An Illustration of the Rapid Decline in the Filtration Flux in the Initial               |       |
| C           | Minutes of Testing                                                                       | 3.2   |
| Figure 3.2. | C-106 Filtration Simulant Average Filtrate Flux at Low Axial Velocity and                |       |
| -           | Transmembrane Pressure Conditions Using 0.1 micron Graver & 0.5 micron                   |       |
|             | Liquid-Service Mott Filters                                                              | 3.3   |
| Figure 3.3. | C-106 Simulant Center Point 1 <sup>st</sup> 30 Minutes Filtrate Flux Profile at Low      |       |
| -           | Axial Velocity and Transmembrane Pressure Conditions Using 0.1 micron                    |       |
|             | Graver & 0.5 micron Liquid-Service Mott Filters                                          | 3.4   |
| Figure 3.4. | C-106 Simulant Center Point 2 <sup>nd</sup> 30 Minutes Filtrate Flux Profile at Low      |       |
| -           | Axial Velocity and Transmembrane Pressure Conditions Using 0.1 micron                    |       |
|             | Graver & 0.5 micron Liquid-Service Mott Filters                                          | 3.4   |
| Figure 3.5. | The C-106 Filtration Simulant Average Filtrate Flux at High Axial Velocity               |       |
|             | and Transmembrane Pressure Conditions Using 0.1 micron and 0.5 micron                    |       |
|             | Liquid-Service Industrial Grade Mott Filters                                             | 3.6   |
| Figure 3 6  | Viscosity as a Function of Shear Rate at 25 <sup>o</sup> C for the AZ-101/102 Filtration |       |
| 8           | Simulant                                                                                 |       |
| Figure 2.7  | Viscosity as a Eurotian of Shaar Pate at $25^{\circ}$ C for the C 106 Eiltration         |       |
| Figure 5.7. | Simulant                                                                                 | 28    |
| Eiguro 2 8  | The A7 101/102 Eiltration Simulant Average Eiltrate Elux at 5wt% Insoluble               | 3.8   |
| Figure 5.8. | Solida Using 0.1 migron and 0.5 migron Liquid Sorvice Mott Filters                       | 2.0   |
| Figure 3.0  | The A.7 101/102 Filtration Simulant Average Filtrate Flux at 5wt% Insoluble              | 5.9   |
| Figure 5.9. | Solids Using 0.1 micron and 0.5 micron Liquid Service Mott Filters                       | 3 10  |
| Figure 3 10 | Volume Weighted Distribution for C 106 Filtration Simulant Before and                    | 5.10  |
| Figure 5.10 | After Sonication                                                                         | 3 1 1 |
| Figure 3 11 | Volume Weighted Distribution for A7 101/102 Filtration Simulant Defore                   |       |
| riguit 5.11 | and After Sonication                                                                     | 3 1 2 |
|             |                                                                                          |       |

## Tables

| Table S.1. | List of Filtration Flux Data Discussed in this Report                       | iii  |
|------------|-----------------------------------------------------------------------------|------|
| Table 2.1. | Properties and Dimensions of Tested Porous Metal Filters                    | 2.2  |
| Table 2.2. | Clean Water Flux for 0.1 Micron Graver, 0.1 and 0.5 Micron Liquid-Service,  |      |
|            | Industrial-Grade Mott Filters                                               | 2.4  |
| Table 2.3. | The C-106 Filtration Simulant "Low" Testing Condition Series Target         |      |
|            | conditions                                                                  | 2.4  |
| Table 2.4. | Test Conditions for the AZ-101/102 Simulant at 5 and 15 wt% Solids Using    |      |
|            | 0.1- and 0.5-micron Mott Filters                                            | 2.5  |
| Table 3.1. | The C-106 Filtration Simulant Average Filtrate Flux at Low Axial Velocity   |      |
|            | and Transmembrane Pressure Conditions Using 0.1 micron Graver & 0.5         |      |
|            | micron Liquid-Service Mott Filters                                          | 3.2  |
| Table 3.2. | The C-106 Filtration Simulant Average Filtrate Flux at High Axial Velocity  |      |
|            | and Transmembrane Pressure Conditions Using 0.1 micron and 0.5 micron       |      |
|            | Liquid-Service Industrial Grade Mott Filters                                | 3.5  |
| Table 3.3. | The AZ-101/102 Filtration Simulant Average Filtrate Flux at 5 wt% Insoluble |      |
|            | Solids Using 0.1-micron and 0.5-micron Liquid-Service Mott Filters          | 3.7  |
| Table 3.4. | AZ-101/102 Filtration Simulant Average Filtrate Flux at 15 wt% Insoluble    |      |
|            | Solids Using 0.1- and 0.5-micron Liquid-Service Mott Filters                | 3.10 |
| Table 3.5. | Particle Size Distribution of C-106 Filtration Simulant                     | 3.12 |
| Table 3.6. | Particle Size Distribution of AZ-101/102 Samples                            | 3.13 |
| Table 3.7. | Clean Water Flux for 0.1 Micron Graver, 0.1 and 0.5 Micron Liquid-Service,  |      |
|            | Industrial-Grade Mott Filters                                               | 3.14 |
| Table A.1. | Inactive AZ-101/102 Filtration Simulant Composition                         | A.3  |
| Table A.2. | Inactive C-106 Filtration Simulant Composition                              | A.4  |
| Table A.3. | Inactive AZ-101/102 and C-106 Filtration Simulant Material Suppliers        | A.5  |

## Acronyms

| CUF     | cell unit filter                               |
|---------|------------------------------------------------|
| HLW     | high-level waste                               |
| LAW     | low-activity waste                             |
| PSD     | particle-size distribution                     |
| RPP-WTP | River Protection Project-Waste Treatment Plant |
| SST     | single-shell tank                              |
| TMP     | transmembrane pressure                         |
| BNI     | Bechtel National Inc.                          |

## 1.0 Introduction

The baseline flow sheets for the River Protection Project-Waste Treatment Plant (RPP-WTP) indicate the use of a crossflow filtration system for solid-liquid separation of low-activity waste (LAW) and high-level waste (HLW) streams (DOE-RL 1996). The RPP-WTP flow sheets also use crossflow filtration to separate the leach and wash solutions from the solids between each step. The work reported compares the performance of various tubular porous metal filters examined in the cell unit filter (CUF) filtration rig fabricated at Battelle.

In the course of developing Envelope D- simulants for scaled cross flow filtration testing in support of the RPP-WTP project, simulants were tested in the CUF, and a large number of crossflow filtration flux results were obtained. The tests were conducted to examine and verify the filtration performance of formulated simulants relative to the available actual waste data at filter media and operating conditions similar to those used in the actual waste testing. The CUF testing conducted in FY 2000 was not aimed at examining the performance of various filters in a comprehensive parametric fashion. This report is merely a compilation of previous test data and mostly not the work performed directly in support of the WTP.

CUF trials were conducted at various axial velocity and transmembrane pressure conditions using a 0.1-micron Graver filter, a 0.1-micron liquid-service, industrial-grade Mott filter, and 0.5-micron industrial-grade, Mott filter elements. The entire set of simulant CUF testing results with various filters was not included in the Envelope-D HLW simulant development report prepared in FY 2000 (Golcar et al. 2000). Only the simulant CUF results that provide direct comparison with the available actual waste data were reported. The results of unpublished crossflow filtration tests for 0.1-micron Graver filter and 0.5-micron liquid-service, industrial-grade Mott filter provide valuable insight in determining the performance of alternative filter media against the baseline Mott 0.1-micron liquid-service, industrial-grade filter. Thus, the Bechtel filtration design team has requested that Battelle prepare and publish a document describing these comparative CUF results.

### 1.1 Objectives

The specific objectives of this report are to:

- Document the unpublished crossflow filtration data produced from testing the Envelope-D HLW filtration simulants in support of the RPP-WTP project.
- Compare the filtrate flux rates of the baseline 0.1-micron Mott filter media with the filtrate flux rates of the 0.5-micron Mott filter and 0.1-micron Graver filter at the same axial velocity and transmembrane pressure conditions.
- Describe the HLW filtration simulant slurries used in these CUF trials and their solids loadings.
- Provide details of the CUF testing matrix and the experimental apparatus.
- Present the filtrate flux profiles as a function of time for tested filter elements.
- Provide a detailed crossflow filtration raw data package sustaining tested filters performance evaluation.

### 2.0 Experimental

The filtration simulant slurries were tested at various slurry solids loadings. A Battelleconstructed CUF testing apparatus and single tube filter modules similar to the system for the radioactive testing were used. The specifics of the slurry materials, equipment description, filter element ratings and dimensions, and testing conditions are described in the following sections.

#### 2.1 Tested Slurry Materials

The AZ-101/102 and C-106 Envelope-D HLW simulants developed by Battelle for the crossflow filtration equipment testing were used (Golcar et al. 2000) in evaluating the performance of various filter elements. In this document the filtrate flux data at 8 wt% insoluble solids are presented for the tests with the C-106 filtration simulant. In the case of testing with the AZ-101/102 filtration simulant, the CUF results at 5 and 15 wt% insoluble solids are discussed.

Because the morphology of the AZ-101/102 and C-106 filtration slurry simulants are unique, the performance of the filter elements is examined for two different types of slurries (see section 3.2 for detail). The solids morphology and agglomeration/deagglomeration of the AZ-101/102 simulant is driven by the high concentration of iron-bearing solids, whereas the C-106 simulant morphology is influenced by the high concentration of aluminum-bearing solids. The difference in the morphology of these two simulants induces variation in the declining behavior of the filtrate flux over the course of testing as a result of particle deagglomeration, cake enrichment with fine particles over time, and filter plugging.

The simulant formulations are described in Appendix A. Detailed characteristics of these simulants, the formulation rationale, and the supporting CUF validation performance against radioactive CUF trials are described in Golcar et al. (2000).

#### 2.2 Equipment Description

The Battelle-constructed CUF testing apparatus and single-tube filter modules were used for this work. The filtration test target conditions (presented in Tables 2.3 and 2.4) were based on the conditions used for the actual C-104 and AZ-102 CUF testing. In the actual waste CUF testing, these conditions were used to determine the optimum waste feed dewatering conditions.

#### 2.2.1 Filter Media Specification

The baseline 0.1-micron rated Mott liquid-service stainless steel filter was compared with a 0.5-micron liquid-service stainless steel Mott filter and a 0.1-micron "Scepter" Graver filter. The engineering properties and dimensions of tested filters are summarized in Table 2.1.

| Filter Media                             | Micron<br>Grade | Outer Diameter<br>(in) | Inner Diameter<br>(in) | Porous Element<br>Length (in) |
|------------------------------------------|-----------------|------------------------|------------------------|-------------------------------|
| Liquid-service, industrial-grade<br>Mott | 0.1             | 0.500                  | 0.375                  | 24                            |
| Liquid-service, industrial-grade<br>Mott | 0.5             | 0.625                  | 0.500                  | 6                             |
| "Scepter" Graver                         | 0.1             |                        | 0.250                  | 24                            |

#### Table 2.1. Properties and Dimensions of Tested Porous Metal Filters

The liquid-service Mott filters are seamless tubes fabricated by sintering 316 stainless steel pregraded particles. The pore size is controlled by the size of primary particles and the sintering condition. The pore size distribution is controlled uniformly within the thickness of the filter. Both Mott filters are 0.0625 inches wall thickness.

The "Scepter" Graver filter is a coated ceramic stainless steel filter that is fabricated by applying a thin layer of sintered titanium dioxide coating, 0.1-micron pore size, that is bonded to the porous stainless steel substrate tube of 1.0-micron pore size. The resulting Graver filter has 0.1-micron pores at the surface and a more open internal structure to reduce overall filter resistance.

#### 2.2.2 Test Apparatus and Operation

Crossflow filtration testing of both HLW Envelope-D filtration simulants was conducted on a Battelle-modified CUF with the following specifications:

- single tube filter module, as described in Section 2.2.1
- recirculation flow such that 5 m/s (15ft/sec) maximum linear crossflow velocity can be achieved through the filter tube with water
- maximum transmembrane pressure 80 psid with water.

A photograph of the CUF used for this testing is shown in Figure 2.1. The slurry feed is introduced into the CUF through the slurry reservoir. An Oberdorfer progressive cavity pump (powered by an air motor) pumps the slurry from the slurry reservoir through the magnetic flow meter and the filter element. The axial velocity and transmembrane pressure are controlled by the pump speed (which is controlled by the pressure of the air supplied to the air motor) and the throttle valve position. Additional details of the CUF equipment are provided in Brooks et al. (2000a, 2000b).

The slurry temperature was maintained at  $25 \pm 5^{\circ}$ C for all filtrate rate testing. The flux was corrected (for both simulant and actual waste) to  $25^{\circ}$ C using the formula (Equation 2.1) provided by Bechtel National Inc. (BNI) to correct for viscosity and surface tension changes:

$$Flux_{25C} = Flux_{T}e^{2500\left(\frac{1}{273+T} - \frac{1}{298}\right)}$$
(2.1)

where  $Flux_{25C}$  is the corrected filtrate flux, and T is the temperature (°C) at the flux measurement (Flux<sub>T</sub>).

Because the RPP-WTP project has plans to operate the crossflow filtration system at higher axial velocity and transmembrane pressure, the C-106 and AZ-101/102 simulants were also tested at these higher experimental conditions. The HLW filtration test conditions were based on a 5-point matrix around the center-point at 50 psid and 12.2 ft/sec, transmembrane pressures of 30, 50, and 70 psid, and a velocity range of 9.1–13.1 ft/sec.

The filtrate was recycled back into the feed tank to maintain the steady-state solids concentration for testing. Each condition was run for 60 minutes with data taken every 5 minutes. The system was back pulsed twice between each condition except during the testing at conditions similar to those conducted on actual waste samples (see Brooks et al. 2000a,b). The 0.1- and 0.5-micron Mott filters were used for these test series. The slurry temperature was maintained at  $25 \pm 5^{\circ}$ C for all filtration testing.



Figure 2.1. Photograph of the Cold Crossflow Filtration System

Following the filtration tests with each simulant formulation, the slurry was drained from the CUF and the CUF was rinsed thoroughly with water. One liter of 1 M HNO<sub>3</sub> was then circulated in the CUF for approximately 30 minutes or until high filtration fluxes were attained. The acid was drained, and the system was flushed with water. After the CUF had been thoroughly cleaned, testing to establish a background filtrate flux was conducted with demineralized water, prefiltered using a 0.1-micron absolute rated Millipore filter. Clean water flux testing was performed in the CUF at 20, 10, and 30 psid and are presented in Table 2.2 for the 0.1 micron Graver filter, and the 0.1 and 0.5 micron Liquid-service Industrial-grade Mott Filters. Once the filtration flux exceeded the listed fluxes in Table 2.2 and were

maintained constant for 30 minutes, the filter was considered clean and the next set of test were performed.

|                                   | Flux (gpm/ft <sup>2</sup> ) |                           |                           |  |  |  |
|-----------------------------------|-----------------------------|---------------------------|---------------------------|--|--|--|
| Trans-Membrane<br>Pressure (psid) | Graver Filter<br>0.1-micron | Mott Filter<br>0.1-micron | Mott Filter<br>0.5-micron |  |  |  |
| 10                                | 0.072                       | 1.0                       | 2.8                       |  |  |  |
| 20                                | 0.132                       | 2.5                       | 5.0                       |  |  |  |
| 30                                | 0.215                       | 2.8                       | 7.4                       |  |  |  |

 Table 2.2. Clean Water Flux for 0.1 Micron Graver, 0.1 and 0.5 Micron Liquid-Service, Industrial-Grade Mott Filters

### 2.3 Experimental Matrix

The target axial velocity and transmembrane pressures for the low and high testing condition series using C-106 filtration simulant at 8 wt% insoluble solids are presented in Table 2.3.

The C-106 simulant was tested in the CUF at two distinct series of low and high axial velocities and transmembrane experimental conditions. The solids loading in the C-106 slurry simulant was 8 wt% insoluble solids for both the low and high series. The AZ-101/102 simulant was tested only at high testing conditions.<sup>(1)</sup> The AZ-101/102 simulant was tested at 5 and 15 wt% insoluble solids. In all tests the filtrate was recycled back into the feed tank to maintain the steady-state solids concentration.

| Table 2.3. | The C-106 Filtration | Simulant "Low" | <b>Testing Condition</b> | Series Target conditions |
|------------|----------------------|----------------|--------------------------|--------------------------|
|------------|----------------------|----------------|--------------------------|--------------------------|

| "Low" Testing Condition Series<br>0.1 Micron Graver and 0.5 Micron Mott Filters |                              |                              | "High" Testing Condition Series<br>0.1 and 0.5 Micron Mott Filters |                              |                              |  |
|---------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|--|
| Condition #                                                                     | Target<br>Velocity<br>(ft/s) | Target<br>Pressure<br>(psid) | Condition #                                                        | Target<br>Velocity<br>(ft/s) | Target<br>Pressure<br>(psid) |  |
| 1                                                                               | 6                            | 20                           | 1                                                                  | 12.2                         | 50                           |  |
| 2                                                                               | 4.5                          | 12.5                         | 2                                                                  | 9.2                          | 30                           |  |
| 3                                                                               | 9                            | 20                           | 3                                                                  | 11.3                         | 70                           |  |
| 4                                                                               | 6                            | 35                           | 4                                                                  | 11.4                         | 30                           |  |
| 5                                                                               | 6                            | 20                           | 5                                                                  | 9.1                          | 70                           |  |
| 6                                                                               | 6                            | 5                            | 6                                                                  | 12.2                         | 50                           |  |
| 7                                                                               | 7.5                          | 27                           |                                                                    |                              |                              |  |
| 8                                                                               | 6                            | 20                           |                                                                    |                              |                              |  |

<sup>(1)</sup> As discussed in Golcar et al. (2000), at the time of developing the AZ-101/102 filtration simulant, no actual waste CUF data were available to examine the performance of the developed simulant. Efforts were made to create a simulant that exhibited a declining flux behavior over time (in terms of the one-hour run time and over the entire testing matrix), similar to that seen in the CUF testing of most actual waste samples.

For the low testing condition series the axial velocities of 3–7.5 ft/sec and transmembrane pressures of 5–35 psid were targeted. The C-106 simulant CUF testing in the low testing condition series was driven by emulating the same CUF testing condition conducted on the actual C-106 waste (see Geeting and Reynolds 1997). Each condition was tested for 60 minutes with back pulsing once after 30 minutes of operation during the condition similar to the actual C-106 trials. The data were taken every 5 minutes. Between each condition, the system was back-pulsed twice. The 0.1-micron Graver and 0.5-micron Mott filters were used for the low testing condition series.

Filter back pulsing was conducted by opening a toggle valve and allowing the back-pulse chamber to fill with filtrate. The toggle valve was then closed and the back-pulse chamber was pressurized with air at approximate 60 psi through a three-way valve. Once charged, the toggle valve was then opened, allowing the pressurized filtrate to back-pulse the filter element.

The matrix performed with the AZ-101/102 filtration simulant prepared at 5 and 15 wt% insoluble solids at various target transmembrane pressure and axial velocity conditions are listed in Table 2.4. These conditions were the same as the planned conditions for the actual AZ-102 sample that was later tested by Battelle with the hot CUF ultra filter during January 2000.

| Condition # | Velocity at 5 wt%<br>(ft/sec) | Velocity at 15 wt%<br>(ft/sec) | Pressure<br>(psid) |
|-------------|-------------------------------|--------------------------------|--------------------|
| 1           | 9.4                           | 7.8                            | 50                 |
| 2           | 7.6                           | 6.6                            | 30                 |
| 3           | 7.2                           | 5.9                            | 70                 |
| 4           | 7.8                           | 8.5                            | 30                 |
| 5           | 8.6                           | 8.9                            | 50                 |
| 6           | 13.1                          | 11.5                           | 30                 |
|             |                               |                                |                    |

| Table 2.4. | Test Conditions for the AZ-101/102 Simulant at 5 and 15 wt% Solids Using 0.1- and 0.5- |
|------------|----------------------------------------------------------------------------------------|
|            | micron Mott Filters                                                                    |

## 3.0 Results and Discussion

The results discussion is divided into three sections. Section 3.1 describes C-106 simulant filter performance results at 8 wt% insoluble solids loading; Section 3.2 discusses AZ-101/102 simulant filter performance results at 5 and 15 wt% insoluble solids loading; and section 3.3 compares the particle size distribution of the C-106 and AZ-101/102 filtration simulants. The filtrate flux profiles and raw data at each condition are presented and compared in detail in Appendix B.

### 3.1 C-106 Simulant Filter Performance Results

The unpublished data for the C-106 simulant at 8 wt% insoluble solids consisted of two sets of testing matrixes:

- 0.1-micron Graver and 0.5-micron liquid-service, industrial-grade Mott filters at low axial velocities of 6–9 ft/sec and 12.5–35 psid transmembrane pressures conditions
- 0.5-micron liquid-service, industrial-grade Mott filter and the project baseline 0.1-micron liquidservice, industrial-grade Mott Filter at high axial velocities of 9–12 ft/sec and 30–70 psid transmembrane pressure conditions.

A fresh batch of simulant was used for each testing matrix to account for solids de-agglomeration as the flux results for each filter type are compared. The solid particles are expected to de-agglomerate in the crossflow filtration loop as a result of the shearing that occurs during the course of the CUF testing. The low axial velocity and transmembrane pressure set consisted of eight conditions. In this matrix incremental increases in the condition number also represent an increase in the total time of CUF operation. For instance, the condition #1 represent the first hour of the slurry re-circulation in the CUF flow loop and the condition #6 represents six hours of slurry re-circulation in the CUF.

As described in section 2.2.2 each condition was run for 60 min with back pulsing once after 30 minutes of operation. The average filtrate fluxes for the 0.1-micron Graver and 0.5-micron liquid-service, industrial-grade Mott filters for these conditions are shown in Table 3.1. The actual velocities and pressures for both sets are within 5% of the target values for both testing matrices. For comparison of test conditions, the flux rate is averaged over the 30 minutes of continuous operation, except the first 5 minutes of operation after the system was back pulsed. All the flux data have been corrected to 25°C using the formula (Equation 2.1, see section 2.2.2) to correct for viscosity and surface tension changes.

 Table 3.1. The C-106 Filtration Simulant Average Filtrate Flux at Low Axial Velocity and

 Transmembrane Pressure Conditions Using 0.1 micron Graver & 0.5 micron Liquid-Service Mott Filters

| Condition | Average            | Average            | A                                             | Average Filtrate Flux (gpm/ft <sup>2</sup> ) |                                            |                                         |           |  |
|-----------|--------------------|--------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------|-----------------------------------------|-----------|--|
| #         | Velocity<br>(ft/s) | Pressure<br>(psid) | <b>0.1 Micron</b><br>(1 <sup>st</sup> 30 min) | Graver Filter<br>(2 <sup>nd</sup> 30 min)    | <b>0.5 Micron</b> (1 <sup>st</sup> 30 min) | Mott Filter<br>(2 <sup>nd</sup> 30 min) |           |  |
| 1         | 6.0                | 20.1               | 0.038                                         | 0.038                                        | 0.048                                      | 0.040                                   | -23%/-5%  |  |
| 2         | 4.5                | 12.6               | 0.024                                         | 0.025                                        | 0.028                                      | 0.029                                   | -15%/-15% |  |
| 3         | 9.1                | 20.0               | 0.102                                         | 0.022                                        | 0.063                                      | 0.062                                   | 47%/51%   |  |
| 4         | 6.0                | 35.0               | 0.034                                         | 0.033                                        | 0.032                                      | 0.036                                   | 6%/-9%    |  |
| 5         | 6.0                | 20.0               | 0.039                                         | 0.037                                        | 0.035                                      | 0.033                                   | 11%/11%   |  |
| 6         | 6.0                | 5.2                | 0.025                                         | 0.021                                        | 0.043                                      | 0.054                                   | -53%/-88% |  |
| 7         | 7.4                | 27.4               | 0.032                                         | 0.035                                        | 0.044                                      | 0.042                                   | -32%/-18% |  |
| 8         | 6.0                | 20.1               | 0.038                                         | 0.036                                        | 0.035                                      | 0.029                                   | 14%/22%   |  |

(a) Relative Percentage Difference =(  $2(V_{0.1g}-V_{0.5m})/(V_{0.1g}+V_{0.5m})$ ) x 100

where:  $V_{0.1g}$  = Average 0.1 micron Graver filtrate flux  $\geq 5$  min

 $V_{0.5m}$  = Average 0.5 micron Mott filtrate flux  $\geq$ 5 min

The first 5 minutes of CUF operation was excluded from averaging the fluxes because fluxes collected at this stage are a direct result of the variation in the system back pulsing operation. The flux profiles in all cases (see Appendix B) show that the high initial flux rates drop within a few minutes to a lower, more consistent flux rate that slowly decreases over time. An example of this rapid decline in the filtration flux in the initial minutes of testing is illustrated in Figure 3.1.



Figure 3.1. An Illustration of the Rapid Decline in the Filtration Flux in the Initial Minutes of Testing

The average filtrate flux as a function of run condition is graphed in Figure 3.2. The results shown in Figure 3.2 and Table 3.1 indicate that, overall, the filtrate fluxes were similar when the simulant was crossflow filtered with the 0.5 micron liquid-service industrial grade Mott filter or the 0.1 micron Graver filter except for condition #3 and condition #6. At higher axial velocity of 9 ft/s for condition #3, the average flux was 50% higher for the 0.1 micron Graver filter, whereas the average flux of the 0.1 micron Graver filter was approximately 50-80% lower as the transmembrane pressure was decreased to 5 psi for condition #6.



**Figure 3.2.** C-106 Filtration Simulant Average Filtrate Flux at Low Axial Velocity and Transmembrane Pressure Conditions Using 0.1 micron Graver & 0.5 micron Liquid-Service Mott Filters

A closer examination of the test matrix center point (conditions 1, 5 and 8) filtrate flux profiles at 20 psid transmembrane pressure and 6 ft/s axial velocity shown in Figure 3.3 and Figure 3.4 for the 1<sup>st</sup> and 2<sup>nd</sup> 30 minutes of testing reveal additional insight to the performance of these two filters. As seen in condition #1, the 0.5 micron Mott filter fluxes are initially higher when compared to the results with the 0.1 micron Graver filter. However, the 0.5 micron Mott filter fluxes gradually decline below the 0.1 micron Graver filter filtration fluxes during the 8 hours of CUF operation at similar axial velocity and transmembrane pressure of the conditions #5 and #8. These center point (20 psid and 6 ft/s) fluxes show that in the course of ~ 8 hours of CUF operation, the 0.1 micron Graver filter is less sensitive (or almost insensitive) to the flux decline and filter fouling as compared to the 0.5 micron liquid-service Mott filter.



#### C-106 Simulant at 8 Wt % Insoluble solids Centerpoint Target Conditions of 20.0 psig and 6.0 ft/s (1st 30 Min)

**Figure 3.3.** C-106 Simulant Center Point 1<sup>st</sup> 30 Minutes Filtrate Flux Profile at Low Axial Velocity and Transmembrane Pressure Conditions Using 0.1 micron Graver & 0.5 micron Liquid-Service Mott Filters



C-106 Simulant at 8 Wt % Insoluble Solids Centerpoint Target Conditions of 20.0 psig and 6.0 ft/s (2nd 30 Min)

**Figure 3.4.** C-106 Simulant Center Point 2<sup>nd</sup> 30 Minutes Filtrate Flux Profile at Low Axial Velocity and Transmembrane Pressure Conditions Using 0.1 micron Graver & 0.5 micron Liquid-Service Mott Filters

One explanation could be that since the 0.1 micron Graver is fabricated by sintering a thin coating of 0.1 micron porous  $TiO_2$  layer on the perforated filter substrate (see section 2.2.1), the decline in the filtrate flux may be primarily influenced by the formation of cake layer and cake enrichment with fine particles on the filter surface which induce surface fouling rather than internal pore blockage. Considerations for surface fouling can be further substantiated by the lack of significant change in the flux behavior of the center point condition and the higher average flux of condition #3 that was observed for the 0.1 micron Graver as a result of cake layer removal and the sweeping action of the increased axial velocity (9 ft/s) as opposed to the 0.5 micron Mott results. On the other hand, the larger pores of the 0.5 micron porous liquid-service Mott filter that are distributed within the filter thickness seem to facilitate the penetration of the fine particles inside the pores, which promote the internal pore fouling observed in the center point behavior. This hypothesis may be further supported by the improved performance of the 0.5 micron Mott filter at low transmembrane pressure of condition #6 and the examination of center point data presented in Figures 3.3 and 3.4.

The high axial velocity and transmembrane pressure matrix consisted of six conditions. The average filtrate fluxes for the 0.1-micron and 0.5-micron liquid-service Mott filters for these conditions are listed in Table 3.2. As described in section 2.2.2 in this test series each condition was run for 60 minutes and was backpulsed twice in between each condition. Again, the flux rates were averaged over the duration of each condition run, in this case 1-hour of run operation, and the first 5 minutes of operation was excluded from the average The fluxes have been corrected to 25°C using the formula (Equation 2.1, see section 2.2.2) to correct for viscosity and surface tension changes.

 Table 3.2.
 The C-106 Filtration Simulant Average Filtrate Flux at High Axial Velocity and

 Transmembrane Pressure Conditions Using 0.1 micron and 0.5 micron Liquid-Service Industrial Grade

 Mott Filters

| High Axial Velocity and Transmembrane Conditions |                              |                              |                                                                                       |                                                                                       |  |  |
|--------------------------------------------------|------------------------------|------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Condition #                                      | Target<br>Velocity<br>(ft/s) | Target<br>Pressure<br>(psid) | Average Filtrate Flux<br>(gpm/ft <sup>2</sup> )<br>0.1 Micron Mott Filter<br>(60 min) | Average Filtrate Flux<br>(gpm/ft <sup>2</sup> )<br>0.5 Micron Mott Filter<br>(60 min) |  |  |
| 1                                                | 12.2                         | 50                           | 0.090                                                                                 | 0.073                                                                                 |  |  |
| 2                                                | 9.2                          | 30                           | 0.064                                                                                 | 0.032                                                                                 |  |  |
| 3                                                | 11.3                         | 70                           | 0.115                                                                                 | 0.021                                                                                 |  |  |
| 4                                                | 11.4                         | 30                           | 0.082                                                                                 | 0.053                                                                                 |  |  |
| 5                                                | 9.1                          | 70                           | 0.098                                                                                 | 0.086                                                                                 |  |  |
| 6                                                | 12.2                         | 50                           | 0.079                                                                                 | 0.050                                                                                 |  |  |

The average filtrate fluxes listed in Table 3.2 imply that the filtrate fluxes of the 0.1-micron liquid-service Mott filter for all run conditions are greater than the fluxes achieved with 0.5-micron liquid-service Mott filter using the C-106 slurry simulant at 8 wt% insoluble solids. The results indicate that the filtrate fluxes in tests with the 0.1-micron liquid-service Mott filter for conditions #1, 4, 5, 6 are, respectively, 23%, 55%, 14%, and 58% higher than those with 0.5-micron liquid-service Mott filter. Furthermore, the performance of the 0.1-micron Mott filter is 2 times higher for condition #2 and 450% times higher for condition #3. A plausible explanation for the significantly better performance of the 0.1 micron Mott filter pore sizes. It is speculated that as the transmembrane pressure was increased in the condition #3 additional solid particles were penetrated

inside the larger pores of the 0.5 micron filter as opposed to the smaller pores of the 0.1 micron Mott filter, which increased the subsurface pore plugging of the 0.5 micron Mott filter.

The illustration of the filtrate fluxes in Figure 3.5 over approximately 6-hours of CUF operation further imply that the extent of fouling becomes more significant for the 0.5 micron Mott. The additional fouling of the 0.5-micron filter is evidenced by the widening difference in the average filtrate flux of center point (conditions 1 and 6) filtrate fluxes at 50 psid transmembrane pressure and 12.2 ft/s axial velocity. The observed fluxes (shown in Table 3. 2 and Figure 3.5) seem to indicate that in crossflow filtration more open media (i.e. 0.5 micron pores) usually yield-after a certain initial time- a lower filtrate flux owing to a high degree of internal clogging.



**Figure 3.5.** The C-106 Filtration Simulant Average Filtrate Flux at High Axial Velocity and Transmembrane Pressure Conditions Using 0.1 micron and 0.5 micron Industrial Grade Mott Filters

### 3.2 AZ-101/102 Simulant Filter Performance Results

The AZ-101/102 filtration simulant was tested with both 0.1- and 0.5-micron liquid-service Mott filters. The same crossflow filtration matrices (see Section 2.3) were conducted at 5 and 15 wt% insoluble solids.

The morphology of the AZ-101/102 filtration simulant is different than that of the C-106 filtration simulant. It is speculated that the solids morphology and agglomeration/deagglomeration of the AZ-101/102 simulant is driven by the high concentration of iron-bearing solids, whereas the C-106 simulant morphology is influenced by the high concentration of aluminum-bearing solids. The examination conducted during the development phase of these two Envelope-D filtration simulants indicated that the agglomerates formed in the AZ-101/102 simulant demonstrated a broader range of agglomerate compaction than the C-106 simulant. The broader range of agglomerate compaction in the AZ-101/102 filtration simulant induce a dynamic solids attrition behavior during the ~6-hours of CUF operation.

The difference in the solids attrition/de-agglomeration characteristics of the AZ-101/102 and the C-106 filtration simulants can be further explained by examining the viscosities of the AZ-101/102 and C-106 simulants as a function of shear rate shown in Figures 3.6 and 3.7. In these figures, both measurements were conducted at  $25^{\circ}$ C. The viscosity profiles of the AZ-101/102 simulant at 10, 30 and 40 Wt% solids loading show several fluctuation points. As the shear rate is increased and the solids/agglomerates structure break down, the AZ-101/102 slurry viscosity changes from shear thinning to dilatant and back to shear-thinning again several times. This behavior in the AZ-101/102 simulant indicates that the solid particles or the agglomerates of various compactions are present that are not de-agglomerating or breaking down uniformly as the slurry is sheared. On the other hand, these fluctuation points are absent from the C-106 viscosity profiles. Lack of the fluctuation points suggest that the C-106 solids/agglomerates break down uniformly as the shear rate is increased as opposed to the AZ-101/102 solids.

As explained in the previous paragraphs since the solids attrition/de-agglomeration characteristics behavior of the AZ-101/102 simulant slurries differs from the C-106 simulant slurry the performance of the 0.1 micron and 0.5 micron filters were tested using the AZ-101/102 simulant.

#### 3.2.1 5 Wt% Insoluble Solids Loading

In this set of experiments, six conditions were tested. The average filtrate fluxes for the 0.1-micron and 0.5-micron liquid-service Mott filters at 5-wt% insoluble solids in the AZ-101/102 simulant are listed in Table 3.3. For comparison of test conditions, the flux rate was averaged over the 1-hour run time, excluding for the initial 5 minutes of operation and the flux data have been corrected to  $25^{\circ}$ C.

| Condition | Target Velocity<br>(ft/sec) | Target Pressure<br>(psid) | Average Filtrate Flux<br>(gpm/ft <sup>2</sup> )<br>0.1-micron Mott Filter<br>(60 min) | Average Filtrate Flux (gpm/ft <sup>2</sup> )<br>0.5-micron Mott Filter<br>(60 min) |
|-----------|-----------------------------|---------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1         | 9.4                         | 50                        | 0.198                                                                                 | 0.172                                                                              |
| 2         | 7.6                         | 30                        | 0.115                                                                                 | 0.058                                                                              |
| 3         | 7.2                         | 70                        | 0.124                                                                                 | 0.021                                                                              |
| 4         | 7.8                         | 30                        | 0.104                                                                                 | 0.073                                                                              |
| 5         | 8.6                         | 50                        | 0.115                                                                                 | 0.032                                                                              |
| 6         | 13.1                        | 30                        | 0.104                                                                                 | 0.068                                                                              |

 Table 3.3. The AZ-101/102 Filtration Simulant Average Filtrate Flux at 5 wt% Insoluble Solids Using 0.1-micron and 0.5-micron Liquid-Service Mott Filters

Once again, the average filtrate fluxes listed in Table 3.3 indicate that, at 5 wt% insoluble solids, the 0.1-micron liquid-service Mott filter filtrate fluxes for all run conditions are greater than the fluxes achieved with 0.5-micron liquid-service Mott filter. These results support the observation discussed in a previous section indicating that the larger pore size of the 0.5-micron Mott filter causes the filter to be more susceptible to internal/subsurface fouling.



Figure 3.6. Viscosity as a Function of Shear Rate at 25<sup>o</sup>C for the AZ-101/102 Filtration Simulant



**Figure 3.7.** Viscosity as a Function of Shear Rate at 25<sup>o</sup>C for the C-106 Filtration Simulant

Table 3.3 and Figure 3.8 show that the flux rates from the 0.1  $\mu$ m Mott filter are greater than that of the 0.5  $\mu$ m filter, despite the fact that the hydraulic resistance of the former is less (when new). The difference in flux is most likely due to the 0.5  $\mu$ m filter being more susceptible to in-depth fouling, causing the hydraulic resistance during the run to be greater than the smaller pore size filter, resulting in the lower filtration rates. While no clean water flux measurements were made to confirm this hypothesis, these results are consistent with those of Geeting (1997) who reported less in-depth fouling and better filtration results with a 0.1  $\mu$ m Graver filter compared with a 0.5  $\mu$ m Mott on Hanford tank wastes.



**Figure 3.8.** The AZ-101/102 Filtration Simulant Average Filtrate Flux at 5wt% Insoluble Solids Using 0.1 micron and 0.5 micron Liquid-Service Mott Filters

#### 3.2.2 15 Wt% Insoluble Solids Loading

The average filtrate fluxes for 0.1- and 0.5-micron liquid-service Mott filters at 15 wt% insoluble solids in the AZ-101/102 simulant are listed in Table 3.4. For comparing test conditions, the flux rate was averaged over the 1-hour run time except for the initial 5 minutes of operation, and flux data have been corrected to  $25^{\circ}$ C.

|           | Target<br>Velocity | Target<br>Pressure | Average Filtrate Flux (gpm/ft <sup>2</sup> )<br>0.1-micron Mott Filter | Average Filtrate Flux (gpm/ft <sup>2</sup> )<br>0.5-micron Mott Filter |
|-----------|--------------------|--------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| Condition | (ft/sec)           | (psid)             | (60 min)                                                               | (60 min)                                                               |
| 1         | 7.8                | 50                 | 0.092                                                                  | 0.086                                                                  |
| 2         | 6.6                | 30                 | 0.062                                                                  | 0.053                                                                  |
| 3         | 5.9                | 70                 | 0.062                                                                  | 0.021                                                                  |
| 4         | 8.5                | 30                 | 0.069                                                                  | 0.058                                                                  |
| 5         | 8.9                | 50                 | 0.077                                                                  | 0.050                                                                  |
| 6         | 11.5               | 30                 | 0.072                                                                  | 0.036                                                                  |

**Table 3.4.** AZ-101/102 Filtration Simulant Average Filtrate Flux at 15 wt% Insoluble Solids Using0.1- and 0.5-micron Liquid-Service Mott Filters

At 15 wt% solids the filtrate flux differences for conditions #1 and #2 are less significant than those in the 5 wt% solids loading. However, during the testing with the 0.5-micron Mott filter, repeated back pulsing was required to re-establish the filtrate flux. The need for back pulsing increased significantly between conditions #3 and #4 in tests with the 0.5-micron filter. It is speculated that in the case of the 0.5-micron filter, in addition to the compaction of the cake layer deposited on the surface, the increased transmembrane pressure contributed substantially to the subsurface fouling of the filter. The average filtrate fluxes are also shown in Figure 3.9.



**Figure 3.9.** The AZ-101/102 Filtration Simulant Average Filtrate Flux at 5wt% Insoluble Solids Using 0.1 micron and 0.5 micron Liquid-Service Mott Filters

#### 3.3 Particle Size Distribution Comparison of Tested Simulants

The Particle size distribution of the C-106 simulant feed that was used in CUF testing is shown in Figure 3.10 on a volume-weighted distribution before and after sonication. As described before, a fresh batch of simulant was prepared and used for each CUF testing series for each test matrix to account for changes in the particles/agglomerates size distribution induced by vigorous mixing and attrition of particles in the CUF re-circulation as a function of CUF operation time. The major particle size peak modes along with the relative volume and number-weighted percentage that each peak represents are summarized in Table 3.5 before and after sonication. To emulate deagglomeration of solids in the CUF recirculation the solids were sonicated in conducting the particle size distribution measurements.



Figure 3.10. Volume-Weighted Distribution for C-106 Filtration Simulant Before and After Sonication

The particle size distribution of the C-106 simulant feed for the CUF testing on a volume-weighted distribution is approximated by three Gaussian peak distributions populated around 22.0, 6.5 and 0.6  $\mu$ m with respectively 59%, 12% and 29% for each peak. When particles were sonicated in the particle size analyzer circulation loop the solids de-agglomerated and smaller size particles were produced. On a volume-weighted distribution the sonicated particle size peak distributions were populated around 16.0, 0.8 and 0.2  $\mu$ m with respectively 57%, 24% and 19% for each peak. These results indicate that 35% of the particles in the sonicated simulant sample were smaller than 0.8  $\mu$ m for the C-106 simulant.

|                                            | Volume–Weighted Distribution |      |       | Number–Weighted Distribution |       |       |  |
|--------------------------------------------|------------------------------|------|-------|------------------------------|-------|-------|--|
| Sample                                     | Mode<br>Diameter (μm)        | Vol% | Width | Mode<br>Diameter (μm)        | Num%  | Width |  |
|                                            | 22.0                         | 59 % | 16.0  | 0.3                          | 100 % | 0.1   |  |
| C-106 Filtration<br>Simulant               | 6.5                          | 12%  | 0.7   |                              |       |       |  |
|                                            | 0.6                          | 29 % | 1.7   |                              |       |       |  |
| C-106 Filtration<br>Simulant,<br>Sonicated | 16.14                        | 57 % | 18.4  | 0.2                          | 100   | 0.1   |  |
|                                            | 0.8                          | 24 % | 0.8   |                              |       |       |  |
|                                            | 0.2                          | 19 % | 0.2   |                              |       |       |  |

| Table 3.5. 1 | Particle Size | Distribution | of C-106 | Filtration | Simulant |
|--------------|---------------|--------------|----------|------------|----------|
|--------------|---------------|--------------|----------|------------|----------|

The Particle size distribution of the AZ-101/102 simulant feed is shown in Figure 3.11 on a volume-weighted distribution before and after sonication. The major particle size peak modes along with the relative volume and number-weighted percentage that each peak represents are summarized in Table 3.6 before and after sonication.



Figure 3.11. Volume-Weighted Distribution for AZ-101/102 Filtration Simulant Before and After Sonication

|                                                | Volume–Weighted Distribution |      |       | Number–Weighted Distribution |       |       |  |
|------------------------------------------------|------------------------------|------|-------|------------------------------|-------|-------|--|
| Sample                                         | Mode<br>Diameter (μm)        | Vol% | Width | Mode<br>Diameter (μm)        | Num%  | Width |  |
| A 7 101/102                                    | 17.9                         | 31 % | 17.8  | 0.4                          | 100 % | 0.6   |  |
| Filtration Simulant                            | 6.4                          | 40 % | 5.2   |                              |       |       |  |
|                                                | 1.4                          | 25 % | 1.4   |                              |       |       |  |
| AZ-101/102<br>Filtration Simulant<br>Sonicated | 14.5                         | 55 % | 18.4  | 0.16                         | 100 % | 0.1   |  |
|                                                | 0.9                          | 20 % | 0.8   |                              |       |       |  |
|                                                | 0.3                          | 18 % | 0.2   |                              |       |       |  |
| Sometica                                       | 0.1                          | 7 %  | 0.03  |                              |       |       |  |

**Table 3.6.** Particle Size Distribution of AZ-101/102 Samples

The particle size distribution of the AZ-101/102 simulant feed for the CUF testing on a volumeweighted distribution is approximated by three Gaussian peak distributions populated around 18, 6.4 and 1.4  $\mu$ m with respectively 31%, 40% and 25% for each peak. When particles were sonicated in the particle size analyzer circulation loop smaller size particles were produced. On a volume-weighted distribution the sonicated particle size peak distributions were populated around 14.0, 0.9, 0.3 and 0.1  $\mu$ m with respectively 55%, 20%, 18% and 7% for each peak. These results indicate that 25% of the particles in the sonicated simulant sample were smaller than 0.3  $\mu$ m for the AZ-101/102 simulant.

Although sonication does not represent the shear fields that are encountered in crossflow filtration CUF flow loop, the data still provide some information regarding the breakup of the agglomerates. The results support that sonication of the C-106 and AZ-101/102 simulant slurries could produce a large number of sub-micron particles that can penetrate the pores and promote filter fouling. In addition, these fine particles can also decrease the permeability of the formed filter cake on the membrane surface. This outcome results in a net increase in the membrane and filter cake resistance and declining filter flux at a given transmembrane pressure and axial velocity. However, for the case of a 0.5-micron Mott filter element; resulting in larger membrane resistance and lower filter fluxes than the 0.1-micron filter elements.

Furthermore, the clean water described in section 2.2.2 and presented once again in Table 3.7 below show that the clean water flux for the 0.5 micron Mott filter is respectively higher than clean water fluxes for 01.micron Mott and 0.1 micron Graver filters. The higher clean water flux of the 0.5 micron Mott with a pore size of 0.5 micron is expected since the resistance due to the pore size is the least compared to the 0.1 micron Mott and Graver filters. However, as described above the presences of sub-micron particles below 0.5 micron in the AZ-101/102 and C-106 simulant slurry will adversely affect the performance of the 0.5 micron Mott filter by promoting particles inside the pores and the internal filter clogging.

| <b>Table 3.7.</b> | Clean Water Flux for 0.1 Micron Graver, 0.1 and 0.5 Micron Liquid-Servi | ce, Industrial-Grade |
|-------------------|-------------------------------------------------------------------------|----------------------|
|                   | Mott Filters                                                            |                      |

|                                   | Flux (gpm/ft <sup>2</sup> ) |                           |                           |  |  |  |  |
|-----------------------------------|-----------------------------|---------------------------|---------------------------|--|--|--|--|
| Trans-Membrane<br>Pressure (psid) | Graver Filter<br>0.1-micron | Mott Filter<br>0.1-micron | Mott Filter<br>0.5-micron |  |  |  |  |
| 10                                | 0.072                       | 1.0                       | 2.8                       |  |  |  |  |
| 20                                | 0.132                       | 2.5                       | 5.0                       |  |  |  |  |
| 30                                | 0.215                       | 2.8                       | 7.4                       |  |  |  |  |

## 4.0 Conclusions

Based on the testing and analysis performed on the HLW C-106 and AZ-101/102 crossflow filtration simulants, the following conclusions and recommendations were obtained.

- The filtrate fluxes for the C-106 simulant at "low" testing conditions indicate that overall the filtrate fluxes are similar when the simulant was crossflow filtered either with the 0.5-micron liquid-service Mott filter or the 0.1-micron Graver Filter.
- An examination of the test matrix center point (conditions 1, 5 and 8) filtrate flux profiles at 20 psid transmembrane pressure and 6 ft/s axial velocity for the tests conducted with C-106 simulant at "low" testing conditions reveal additional insight into the performance of these two filters. For condition #1, the 0.5 micron Mott filter fluxes are initially higher when compared to the results with the 0.1 micron Graver filter. However, the 0.5 micron Mott filter fluxes gradually decline below the 0.1 micron Graver filter filtration fluxes during the 8 hours of CUF operation at similar axial velocity and transmembrane pressure of the conditions #5 and #8. These center point (20 psid and 6 ft/s) fluxes show that in the course of ~ 8 hours of CUF operation, the 0.1 micron Graver filter is less sensitive (or almost insensitive) to the flux decline and filter fouling as compared to the 0.5 micron liquid-service Mott filter.
- Because the 0.1-micron Graver is fabricated by sintering a thin coating of 0.1-micron porous TiO<sub>2</sub> on the perforated filter substrate (see Section 2.2.1), it is plausible that the decline in the filtrate flux may be primarily influenced by the formation of cake layer and cake enrichment with fine particles on the filter surface.
- In general the Graver filter has a lower permeability compared to the micron Mott filters that results in lower overall filtration flux throughput.
- Over the course of CUF operation the extent of fouling became more significant for the 0.5micron Mott as compared to the 0.1-micron Mott for the C-106 simulant at "high" testing conditions. The additional fouling of the 0.5-micron filter is evidence by the widening difference in the average filtrate flux of center point (conditions 1 and 6) filtrate fluxes at 50 psid transmembrane pressure and 12.2 ft/sec axial velocity. The observed fluxes seem to indicate that in crossflow filtration more open media (i.e. 0.5 micron pores) usually yield-after a certain initial time- a lower filtrate flux owing to a high degree of internal pore fouling.
- The average filtrate fluxes in testing with AZ-101/102 simulant once again indicate that the filtrate fluxes of the 0.1-micron liquid-service Mott filter for all run conditions were greater than those achieved with the 0.5-micron liquid-service Mott filter at 5 wt% insoluble solids. These results support previous observations that the larger pore size of the 0.5-micron Mott filter causes the filter to be more susceptible to internal/subsurface fouling.
- The filter flux rates obtained for the 0.1 micron Mott Liquid-service, Industrial –grade Mott filter ranged from 15% to 3.5 times higher than fluxes with 0.5-micron Liquid-service, Industrial grade Mott filter using the AZ-101/102 simulant at 5 wt% insoluble solids

### 5.0 References

Brooks KP, PR Bredt, GR Golcar, SA Hartley, LK Jagoda, KG Rappe, and MW Urie. 2000a. *Characterization, Washing, Leaching, and Filtration of C-104 Sludge*. BNFL-RPT-030 Rev. 0, PNWD-3024, Battelle, Pacific Northwest Division, Richland, Washington.

Brooks KP, PR Bredt, SK Cooley, GR Golcar, LK Jagoda, KG Rappe, and MW Urie. 2000b. *Characterization, Washing, Leaching, and Filtration of AZ-102 Sludge*. BNFL-RPT-038 Rev. 0, PNWD-3045, Battelle, Pacific Northwest Division, Richland, Washington.

Geeting JGH and BA Reynolds. 1997. *Bench-Scale Crossflow Filtration of Hanford Tank C-106, C-107, B-110, and U-110 Sludge Slurries*. PNNL-11652, Pacific Northwest National Laboratory, Richland, Washington.

Golcar GR, KP Brooks, JG Darab, JM Davis, and LK Jagoda. 2000. *Development of Inactive High-Level Waste Envelope D Simulants for Scaled Crossflow Filtration Testing*. BNFL-RPT-033 Rev. 0, PNWD-3042, Battelle, Pacific Northwest Division, Richland, Washington.

# Appendix A

## Envelope D High-Level Waste Filtration Simulant Specification

### Appendix A

### **Envelope-D High-Level Waste Filtration Simulant Specification**

The specifications and preparation procedures for the inactive HLW Envelope-D filtration simulants are presented in this section. These simulants were developed for testing crossflow filtration systems. The applicability of these simulants for filtration studies using washed and leached solids is uncertain and requires additional evaluation. These simulants have not been developed to mimic the chemical properties of the sludge, and their use for washing and caustic-leaching experiments is not recommended. Specifications outlined below are for

- AZ-101/102 waste simulant slurry for the NCAW from Hanford Tanks AZ-101 and AZ-102
- C-106 waste simulant slurry for the high-heat tank waste from Hanford Tank C-106

The actual C-106 waste has recently been transferred to Hanford Tank AY-102. The C-106 waste simulant replicates the Tank C-106 waste and does not replicate the AY-102/C-106 mixed waste.

### A-1. AZ-101/102 Slurry Simulant

Table A-1 lists the solid and supernatant components of the inactive AZ-101/102 waste filtration simulant. The concentration of the solid components is reported on a 100% dry solids basis. For aluminum- and iron-bearing compounds in the simulant, several metal oxide/hydroxide powder grades of various PSD ranges were used to produce the required rheological and filtration characteristics.

### A-2. C-106 Slurry Simulant

Table A-2 lists the solid and supernatant components of the inactive C-106 waste filtration simulant. Similar to the inactive AZ-101/102 simulant, the concentration of the solid components is reported on a 100% dry solids basis. For aluminum- and iron-bearing compounds in the simulant, several metal oxide/hydroxide powder grades of various particle size distribution (PSD) ranges were used to produce the required rheological and filtration characteristics. The product descriptions for each mineral, including density and particle size; the material safety data sheets for listed source chemicals are provided in Golcar et al. (2000).

#### A-3. Preparation Procedure

Following is the procedure for preparing both the AZ-101/102 and C-106 simulants:

- Determine the wt% insoluble solids and the total mass of simulant desired. This simulant should mimic actual waste over the range of 3 to 40 wt% solids loading. At lower than 3 wt% solids loading, the supernatant composition becomes more significant than the particle characteristics. Further development of the supernatant may be required to mimic the actual waste. Additionally, higher than 40 wt% solids loading has not been evaluated in this study. Further validation at these higher concentrations would be required before using these simulants above 40-wt%.
- Weigh out and combine the solid components described in Table 3.1 or 3.2 for the 1) total simulant mass, and 2) wt% solids desired. The order of addition to the mixture is not important.
- Prepare sufficient simulated supernatant for the total mass of slurry at desired solids loading with the molarity specified in either Table A.1 or A.2.
- Add this simulated supernatant to the dry solids mixture until the total mass of slurry simulant desired is reached. Mix with a stirrer for 20 min immediately after addition and before use.

|                   | Solids Components |                               |                            |                          |                  |        |  |
|-------------------|-------------------|-------------------------------|----------------------------|--------------------------|------------------|--------|--|
| Compounds         |                   | Mineral                       |                            |                          | Mean Volume PSD  |        |  |
| Bearing           | wt%               | Phase                         |                            | Powder Grade             | (distribution)   | wt%    |  |
|                   |                   |                               | Iron Oxide                 | e No: 07-5001            | 22 µm            | 17.400 |  |
| Iron              | 58                | Hematite                      | Red Iron (                 | Oxide No: 07-3752        | 2–3 µm           | 29.000 |  |
| 11011             | 50                | Tiemane                       | Synthetic<br>No: 07-25     | Red Iron Oxide<br>68     | 0.6 µm           | 11.600 |  |
|                   |                   | Boehmite                      | HiQ-10 A                   | lumina                   | 0.0028–0.004 µm  | 7.200  |  |
|                   | l                 | Gibbsite                      | C-231 Ground White Hydrate |                          | 14 µm (broad)    | 8.400  |  |
| Aluminum          | 24                |                               | SpaceRite S-23 Alumina     |                          | 7.5 µm (broad)   | 5.040  |  |
| !                 |                   |                               | SpaceRite S-11 Alumina     |                          | 0.25 µm (narrow) | 3.360  |  |
|                   |                   | Gibbsite/Boehmite Ratio: 2.33 |                            |                          |                  |        |  |
| Zirconium         | 13                | Zirconium                     | Zirconium                  | Hydroxide; Product Code: | 15 µm            | 13.000 |  |
| Ziicomum          | 15                | Hydroxide                     | FZO922/0                   | 1                        |                  |        |  |
| Silicon           | 5                 | Nepheline                     | Spectrum                   | A 400 Nepheline Syenite  | 10 µm            | 5.000  |  |
|                   |                   |                               | Supern                     | atant Components         |                  |        |  |
| Component         | t (               | Concentration                 | 1 (M)                      | Concer                   | ntration (g/L)   |        |  |
| NaOH              |                   | 0.8                           |                            |                          | 32               |        |  |
| NaNO <sub>3</sub> |                   | 1.0                           |                            | 85                       |                  |        |  |

#### Table A.1. Inactive AZ-101/102 Filtration Simulant Composition

|                             | Solids Components |                        |                        |                          |                                   |        |  |  |  |
|-----------------------------|-------------------|------------------------|------------------------|--------------------------|-----------------------------------|--------|--|--|--|
| Compounds<br>Bearing        | wt%               | Mineral<br>Phase       | J                      | Powder Grade             | Mean Volume PSD<br>(distribution) | wt%    |  |  |  |
|                             | 21.25             |                        | Red Iron O             | vxide No: 07-3752        | 2-3 μm                            | 18.750 |  |  |  |
| Iron                        | 31.25             | Hematite               | Synthetic R<br>2568    | Red Iron Oxide No: 07-   | 0.6 µm                            | 12.50  |  |  |  |
|                             |                   | Boehmite               | HiQ-10 Al              | umina                    | 0.0028–0.004 μm                   | 18.230 |  |  |  |
|                             | ĺ                 |                        | SpaceRite S-23 Alumina |                          | 7.5 µm (broad)                    | 10.938 |  |  |  |
| Aluminum                    | 36.46             | .46 Gibbsite           | SpaceRite S-11 Alumina |                          | 0.25 μm (narrow)                  | 3.646  |  |  |  |
|                             |                   |                        | SpaceRite ?            | S-3 Alumina              | 1 μm (narrow)                     | 3.646  |  |  |  |
|                             |                   | Gibbsite /Boeł         | mite Ratio:            | 2.33                     |                                   |        |  |  |  |
| Zirconium                   | 28.12             | Zirconium<br>Hydroxide | Zirconium<br>FZO922/01 | Hydroxide; Product Code: | 15 μm                             | 28.125 |  |  |  |
| Silicon                     | 4.17              | Nepheline              | Spectrum A             | A 400 Nepheline Syenite  | 10 µm                             | 4.166  |  |  |  |
|                             |                   | -                      | Superna                | atant Components         |                                   |        |  |  |  |
| Component Concentration (M) |                   |                        | n (M)                  | Conce                    | entration (g/L)                   |        |  |  |  |
| NaOH                        |                   | 1.07                   | 7 42.8                 |                          |                                   |        |  |  |  |
| NaNO <sub>3</sub>           |                   | 1.00                   |                        |                          | 85.0                              |        |  |  |  |

#### Table A.2. Inactive C-106 Filtration Simulant Composition

## A-4. Simulant Material Suppliers

Simulant properties, such as particle size distribution and mineral composition, will vary from those listed in this report if alternative sources for simulant components are used. The brand names of each simulant component are given in Table A-3.
| Manufacturer                                                              | Simulant Material                       | Powder Grade                                 |
|---------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|
|                                                                           | Iron Oxide, Hematite                    | Iron Oxide No: 07-5001                       |
| The Prince Manufacturing Company                                          | Iron Oxide, Hematite                    | Red Iron Oxide No: 07-3752                   |
| http://www.princemig.com/                                                 | Iron Oxide, Hematite                    | Synthetic Red Iron Oxide<br>No: 07-2568      |
| Alcoa - Port Allen , LA<br>http://www.alcoa.com/<br>1-800-860-3290        | Beohmite, AlOOH                         | HiQ-10 Alumina                               |
|                                                                           |                                         | C-231Ground White Hydrate                    |
| Alcoa- Bauxite, AR                                                        | Cibbaita A1(OU)                         | SpaceRite S-23 Alumina                       |
| 1-225-382-3338                                                            | Globsite, $Al(OH)_3$                    | SpaceRite S-11 Alumina                       |
|                                                                           |                                         | SpaceRite S-3 Alumina                        |
| Magnesium Electron INC. (MEI)<br>http://www.zrchem.com/<br>1-800-366-9596 | Zirconium Hydroxide                     | Product Code: FZO922/01 from FZO 922 series. |
| Hammill & Gillespie<br>http://www.hamgil.com/<br>973-994-3847             | Nepheline,<br>(Na, K)AlSiO <sub>4</sub> | Spectrum A 400 Nepheline<br>Syenite          |

#### Table A.3. Inactive AZ-101/102 and C-106 Filtration Simulant Material Suppliers

Detailed simulant characterization and crossflow filtration performance testing are required if alternative commercial products are used. Such results should be similar to the simulant properties documented in this report. Further, the chemical and physical properties described in Appendix A of Golcar et al. (2000) report need to be matched as closely as possible if another commercial source is used.

#### Reference

Golcar GR, KP Brooks, JG Darab, JM Davis, and LK Jagoda. 2000. *Development of Inactive High-Level Waste Envelope D Simulants for Scaled Crossflow Filtration Testing*. BNFL-RPT-033 Rev. 0, PNWD-3042, Battelle Pacific Northwest Division, Richland, Washington.

### Appendix B

Filtrate Flux Raw Data Package at Each Operating Condition

## 0.1 micron Graver Filter

## C-106 Filtration Simulant at 8 wt% Solids Loading Cuf Testing

Low Axial Velocity and Transmembrane Pressure Conditions

| Permeability<br>(gpm/ft2/psi)          | 0.003329 | 0.002470 | 0.002141 | 0.002013 | 0.001903 | 0.001683 | 0.001633 |              |              |                |                |               |          | e.                            |         |          |          |          |          |          |          |         |             |              |               |                  |                                                                   |               |       |
|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|----------------|----------------|---------------|----------|-------------------------------|---------|----------|----------|----------|----------|----------|----------|---------|-------------|--------------|---------------|------------------|-------------------------------------------------------------------|---------------|-------|
| Filtrate<br>Flux<br>(gpm/ft2)          | 10.0     | 0.0482   | 0.0429   | 0.0403   | 0.0361   | 0.0345   | 0.0327   |              |              |                |                |               |          |                               |         | 0.092139 | 0.058106 | 0.051078 | 0.048323 | 0.045504 | 0.043301 | 0.04122 |             |              |               |                  |                                                                   |               |       |
| Permeability<br>(m/day/bar)            | 2 834    | 2 103    | 1.823    | 1.714    | 1.62     | 1.433    | 1.39     |              |              |                |                |               |          |                               |         | 00:0     | 0:05     | 0:10     | 0.15     | 0:20     | 0:25     | 0:30    |             |              |               |                  |                                                                   |               |       |
| Filtrate Flux<br>(m3/m2/day)           | 4.103    | 2.828    | 2.514    | 2364     | 2.234    | 2.025    | 1.916    |              |              |                |                |               |          |                               |         |          |          |          |          |          |          |         |             |              |               |                  |                                                                   |               |       |
| Slurry Temp C                          | 24.4     | 25.6     | 26       | 26.3     | 26.4     | 26.3     | 26.1     |              |              |                |                |               |          | Fitrate Flow<br>Rate (mL/sec) |         | 0.513    | 0.383    | 0.352    | 0.322    | 0.294    | 0.281    |         | vs. Time at |              | (se           |                  | •                                                                 |               |       |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.568    | 0.405    | 0.384    | 0.345    | 0.327    | 0.296    | 0.278    |              |              |                |                |               |          | Time of<br>Collection         | (Sec)   | 19.5     | 26.1     | 28.37    | 31.03    | 34.07    | 35.63    |         | neability   | and 6.1 ft/s | st 30 minute  |                  | •                                                                 |               |       |
| Time of<br>Collection<br>(Sec)         | 70.44    | 98.81    | 109.93   | 115.93   | 122.32   | 135.32   | 143,81   |              |              |                |                |               | Filtrate | Sample<br>Volume              | (mL)    | 10       | 10       | 10       | 10       | 10       | 10       |         | ulant Pen   | 20.0 psig a  | ondition 1, 1 |                  |                                                                   | -             |       |
| Filtrate<br>Sample<br>Volume<br>) (mL) | 40       | 40       | 40       | 40       | 40       | 40       | 40       |              |              |                | hed            |               |          | Filter Inlet<br>Pressue       | (pisig) | 20       | 20       | 20       | 20       | 20       | 20       |         | C-106 Sim   |              | 0             | 30.              | 2.0                                                               | 0.0           |       |
| Pressure<br>Drop (psig                 | Ū        | 1        |          |          | Ĭ        | 1        | Ŭ        | 6.12         |              |                | oint Remov     |               |          | Permeate<br>Pressure          | (Bisd)  |          |          |          |          |          |          |         |             |              |               | וג)<br>וְנָא     | idsən<br>idsən                                                    | שפנש)<br>שופנ | 1     |
| Filter Inlet<br>Pressue<br>(psig)      | 21       | 19       | 20       | 20       | 20       | 20       | 20       | = S/U        |              |                | With First P   |               | Filter   | Outlet<br>Pressure            | (pisig) | 20       | 20       | 20       | 20       | 20       | 20       |         |             |              |               | [                |                                                                   | T             | 00.00 |
| Filter<br>Outlet<br>Pressure<br>(psig) | 21       | 20       | 20       | 20       | 20       | 21       | 20       | 0.94         | 20.17        | 0.384          | 0.039          | 0.002         | Slurry   | Loop Flow<br>Rate             | (mdb)   | 0.89     | 0.94     | 0.92     | 0.9      | 0.98     | 0.98     |         | Time        |              | s)            |                  |                                                                   |               | +0.0+ |
| Shurry<br>Loop Flow<br>Rate<br>(gpm)   | 16.0     | 0.97     | 0.95     | 0.9      | 0.9      | 0.96     | 0.94     |              |              | = 005          | M12 =          | n/ft2/psi =   |          | Slumy                         | Temp C  | 21.3     | 20.8     | 21       | 21.6     | 23.1     | 23.8     |         | Flux vs.    | nd 6.1 ft/s  | st 30 minute  |                  |                                                                   |               | 1.44  |
| otal Time<br>(lapsed<br>Min)           | 0:00     | 0:02     | 0:10     | 0:15     | 0:20     | 0:25     | 0:30     | IN Flow apm  | isure psid = | ate Flow mL    | ate Flux gpm   | neability gpr |          | chilter Temp                  |         | 11       | Ch.      | 11       | 15       | 15       | 15       |         | Simulant    | 20.0 psig a  | ndition 1, 1s |                  | •                                                                 |               |       |
| Time                                   | 9:40     | 9:45     | 9:50     | 9:55     | 10:00    | 10:05    | 10:10    | Average Slun | Average Pres | Average Filtra | Average Filtre | Average Pen   |          | 2                             | Time C  | 9:58     | 10:03    | 10:08    | 10:13    | 10.23    | 10.28    |         | C-106       |              | (C0)          |                  | •                                                                 |               | -0    |
| Condition                              | la       | 1a       | 1a       | 13       | 1a       | 1a       | a        | 0            | m            | 1a             | 10             | a a           |          | Test                          | Number  | 1a       | 13       | 10       | 13       | 13       | 13       |         |             |              |               | 0.9<br>(Xe<br>Xn | e<br>bist<br>bist<br>bist<br>bist<br>bist<br>bist<br>bist<br>bist | H 10.00+      | 0.0   |



0:28

0:21

0:14

0:07

0:00

0:28

0:21

0:14

0:07

0:00

Time (hr:min)

Time (hr:min)

| Permeability<br>(gpm/ft2/psi)          | 0.002456234 | 0.002150302 | 0.001974063 | 0.001923511 | 0.001812516 | 0.001749342 | 0.001614031 |               |              |               |                                |          |               |                    |         |       |       |       |       |       |       |   |                           |               |                 |              |               |              |             |             |                               |                  |                           |                      |
|----------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|--------------|---------------|--------------------------------|----------|---------------|--------------------|---------|-------|-------|-------|-------|-------|-------|---|---------------------------|---------------|-----------------|--------------|---------------|--------------|-------------|-------------|-------------------------------|------------------|---------------------------|----------------------|
| Filtrate<br>Flux<br>(gpm/ft2)          | 0.0485      | 0.0438      | 0.0400      | 0.0390      | 0.0358      | 0.0354      | 0.0323      |               |              |               |                                |          |               |                    |         |       |       |       |       |       |       |   |                           |               |                 |              |               |              |             |             |                               |                  |                           |                      |
| Permeability<br>(m/day/bar)            | 2.091       | 1.831       | 1.681       | 1.638       | 1,543       | 1.489       | 1.374       |               |              |               |                                |          |               |                    |         |       |       |       |       |       |       |   |                           |               |                 |              |               |              |             |             |                               |                  |                           |                      |
| Filtrate Flux<br>(m3/m2/day)           | 2.848       | 2.656       | 2.347       | 2.286       | 2.101       | 2.079       | 1.895       |               |              |               |                                |          |               |                    |         |       |       |       |       |       |       | 1 |                           |               |                 |              |               | 9            | 5           |             |                               |                  |                           |                      |
| Sturry Temp C                          | 23.8        | 24.2        | 24.6        | 24.9        | 25          | 26.1        | 25.5        |               |              |               |                                |          | Filtrate Flow | Rate (mL/sec)      | 0.387   | 0.352 | 0.327 | 0.321 | 0.296 | 0.294 | 0.270 |   | vs. Time at               | es)           |                 |              |               | 0:28 0:3     |             | vs. Time at | ss)                           |                  | •                         |                      |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.387       | 0.352       | 0.327       | 0.321       | 0.296       | 0.294       | 0.270       |               |              |               |                                |          | Time of       | Collection (Sec)   | 25.81   | 28.43 | 30.62 | 31.16 | 33.81 | 34.07 | 36.97 |   | meability<br>and 6.0 ft/s | 2nd 30 minut  |                 | •            |               | 14 0:21      | ne (hr:min) | neability   | and 6.0 ft/s<br>nd 30 minute  |                  | •                         |                      |
| Time of<br>Collection<br>(Sec)         | 25.81       | 28.43       | 30.62       | 31.16       | 33.81       | 34.07       | 36.97       |               |              |               |                                | Filtrate | Sample        | Volume.            | 10      | 10    | 10    | 10    | 10    | 10    | 10    |   | 20.0 psid                 | ondition 1, 2 |                 | •            |               | 0:07 0:0     | Ē           | ulant Perr  | 20.0 psig a                   |                  | :                         |                      |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 10          | 10          | 10          | 10          | 10          | 10          | 10          |               |              |               | p                              |          | Fitter Inlet  | Pressue<br>(nsia)  | 20      | 20.5  | 20.5  | 20.5  | 20    | 20.5  | 20    |   | 2-106 Sim                 | 0)            |                 | •            | 0.0           | 0:00         |             | -106 Sim    | (C                            |                  | 002                       | 000                  |
| Pressure<br>Drop (psig)                | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0           | 9             |              |               | oint Remove                    |          | Permeate      | Pressure<br>(osia) | 1 reads |       | -     | -     | **    | -     |       |   | U                         |               | en)<br>lity     | ides<br>ides | sb/m          | )<br>)<br>)  |             | 0           |                               | 2<br>(14<br>(14) | ilids9<br>eabili<br>2 O O | o c<br>(abur<br>Perm |
| Filter Inlet<br>Pressue<br>(psig)      | 20          | 20.5        | 20.5        | 20.5        | 20          | 20.5        | 20          | ft/s =        |              |               | With First P                   | Filter   | Outlet        | Pressure<br>(nsin) | 19.5    | 20    | 20    | 20    | 19.5  | 20    | 20    |   |                           |               | -               |              |               | 0:36         |             |             |                               |                  | 11                        | 95-0                 |
| Filter<br>Outlet<br>Pressure<br>(psig) | 19.6        | 20          | 20          | 20          | 19.5        | 20          | 20          | 0.92          | 20.07        | 0.321         | 0.038                          | Shurry   | Loop Flow     | Rate<br>(nom)      | 0.89    | 0.93  | 0.96  | 0.98  | 0.0   | 0.89  | 0.86  |   | Time                      | (sa           |                 | •            |               | 0:28         |             | Time        | (se                           |                  | •                         | D-28                 |
| Slurry<br>Loop Flow<br>Rate<br>(gpm)   | 0.89        | 0.93        | 0.96        | 0.98        | 0.0         | 0.89        | 0.86        | 11            |              | /sec =        | n/ff/2 =<br>m/ff/2/psi =       |          | -             | Slurry<br>Temp C   | 23.8    | 24.2  | 24.6  | 24.9  | 25    | 25.1  | 25.5  |   | Flux vs.                  | nd 30 minut   |                 | •            |               | 0:21         | (hr:min)    | Flux vs.    | nd 6.0 ft/s<br>d 30 minute    |                  | •                         | 4 0.21               |
| Total Time<br>Elapsed<br>Min)          | 00:0        | 0:02        | 0:10        | 0.15        | 0.20        | 0:25        | 0:30        | rry Flow apri | ssure psid = | ate Flow mL   | rate Flux gpr<br>meability gpr |          | a contraction | Chiller Temp       | 13      | 15    | 15    | 15    | 15    | 15    | 15    |   | Simulant<br>20.0 psig a   | ndition 1, 21 | •               |              | -             | 0:14         | Time        | Simulant    | 20.0 psig al<br>rdition 1, 2n |                  |                           | 07 0-1               |
| Time                                   | 10:40       | 10:45       | 10:50       | 10.55       | 11:00       | 11:05       | 11:10       | Average Slui  | Average Pre  | Average Filts | Average Filt<br>Average Per    |          |               | Time               | 10:40   | 10:45 | 10:50 | 10:55 | 11:00 | 11:05 | 11:10 |   | C-106                     | (Co           | •               |              |               | 0 0:07       |             | C-106       | (Cor                          | 9                | 2 8                       | 0-00-0               |
| Condition                              | 1b            | 10           | 1b            | 4<br>1<br>1                    |          | 12<br>13      | Test               | 1b      | 1b    | 1b    | 10    | 1b    | 1b    | 1b    |   |                           |               | e<br>(Xe<br>xnj | uzvá<br>te F | entii<br>0.60 | н. (°<br>0:0 |             |             |                               | xn)<br>(z        | Hater<br>Humble<br>Co     | 0.0<br>5)<br>1113    |

0:36

0.28

0:14 0:21 Time (hr:min)

0:07

0:00

0:36

0:28

0:14 0:21 Time (hr:min) 0:21

0:07

0:00

τ.

| Permeability<br>(gpm/ft2/psi)          | 0.002530 | 0.002061 | 0.001963 | 0.002000 | 010010000 | 0.001801 |              |             |              |                                 |          |                                |                 |       |       |       |       |       |       |                                            |               |                                                                                                         |           |             |                                           |      |                                  |            |             |
|----------------------------------------|----------|----------|----------|----------|-----------|----------|--------------|-------------|--------------|---------------------------------|----------|--------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------|-----------|-------------|-------------------------------------------|------|----------------------------------|------------|-------------|
| Filtrate Flux<br>(com/tt2)             | 0.0316   | 0.0258   | 0,0246   | 7070.0   | 0.0238    | 0.0225   |              |             |              |                                 |          |                                |                 |       |       |       |       |       |       |                                            |               |                                                                                                         |           |             |                                           |      |                                  |            |             |
| Permeability<br>(m/day/bar)            | 2.154    | 1.755    | 1/9/2    | 71/1     | 10001     | 1.533    |              |             |              |                                 |          |                                |                 |       |       |       |       |       |       |                                            |               |                                                                                                         |           |             |                                           |      |                                  |            |             |
| Filtrate Flux<br>(m3/m2/dav)           | 1.857    | 1.513    | 144.1    | 0/4/1    | 1 28.4    | 1.322    |              |             |              |                                 |          | 2                              |                 |       |       |       |       |       |       |                                            |               |                                                                                                         |           |             |                                           |      |                                  |            | 5           |
| Sturry Temp C                          | 23       | 22.8     | 9.77     | 0.17     | 305       | 23.2     |              |             |              |                                 |          | Filtrate Flow<br>Rate (mL/sec) | faces much some | 0.247 | 0.199 | 0.189 | 0.188 | 0.104 | 0.101 | vs. Time at<br><sup>es)</sup>              |               | •                                                                                                       | 0:28 0:34 |             | vs. Time at<br>es)                        |      | •                                | 1 0-28 0-3 | (1          |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.247    | 0.199    | 0,103    | 0.100    | 0 181     | 0.177    |              |             |              |                                 |          | Time of<br>Collection          | (Sec)           | 40.5  | 50.28 | 52.79 | 12.15 | 10.10 | 21.00 | meability<br>and 4.5 ft/s<br>1st 30 minut  |               | •                                                                                                       | 14 0.21   | ne (hr:min) | meability<br>and 4.5 ft/s<br>1st 30 minut |      | •                                | 0.7        | ime (hr:mi  |
| Time of<br>Collection<br>(Sec)         | 40.5     | 50.28    | A 70     | 23.12    | 55.12     | 58.57    |              |             |              |                                 | Filtrate | Sample                         | (mL)            | 10    | 10    | 10    | 2 9   |       | 2 9   | ulant Per<br>12.5 psig<br>condition 2,     |               | •                                                                                                       | 0.07 0.   | Ę           | 12.5 psig<br>condition 2,                 |      | •                                | 0.07       | L L         |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 10       | 0        |          | 2 0      | 10        | 10       |              |             |              | pa                              |          | Filter Inlet<br>Pressue        | (pisig)         | 12.5  | 12.5  | 12.5  | 0.71  | 10.21 | 12.21 | C-106 Sim                                  | 0.0           |                                                                                                         | 0:00      |             | C-106 Sim                                 | 1003 | 002                              | 000.0      | 2           |
| Pressure<br>Drop (psig)                | 0        | 0.0      |          |          |           | 0        | 4.5          |             |              | oint Remov                      |          | Permeate                       | (pisig)         |       | 0     | 0 0   |       | 0.0   |       |                                            | ar)<br>ar)    | deem<br>i/day/b                                                                                         | 99<br>n)  |             |                                           | (is  | ilidsem<br>q\\$J]\rr             | udb)       |             |
| Filter Inlet<br>Pressue<br>(psig)      | 12.5     | 12.0     |          | 10.41    | 10.51     | 12.5     | ft/s =       |             |              | With First F                    | Filter   | Outlet<br>Pressure             | (bisd)          | 12.5  | 12.5  | 12.5  | 12.0  | 14.04 | 12.21 |                                            |               |                                                                                                         | 0:36      |             |                                           |      |                                  | 0:36       |             |
| Filter<br>Outlet<br>Pressure<br>(psia) | 12.5     | 12.5     |          | N. N.    | 10.61     | 12.5     | 0.69         | 12.50       | 0.195        | 0.024                           | Slurry   | Loop Flow<br>Rate              | (mdg)           | 0.6   | 0.64  | 0.61  | 0.76  | 010   | 21.0  | Time<br>es)                                |               |                                                                                                         | 0:28      |             | Time<br>es)                               |      | •                                | 0:28       |             |
| Slurry Loop<br>Flow Rate<br>(dpm)      | 9.0      | 0.6      | 0.0      | 22.0     | 070       | 0.72     | = E          |             | L/sec =      | m/ft2 =<br>5m/ft2/psi =         |          | Slurry                         | Temp C          | 23    | 22.6  | 22.6  | 0.12  | 44 00 | 0.22  | t Flux vs.<br>and 4.5 ft/s<br>st 30 minut  | •             |                                                                                                         | 0:21      | e (hr:min)  | Elux vs.<br>and 4.5 ft/s<br>st 30 minut   |      |                                  | 14 0.21    | me (hr:min) |
| Total Time<br>Elapsed<br>(Min)         | 00:0     | 0.02     | 2.4      | 00.0     | 0.25      | 0:30     | urry Flow an | essure psid | trate Flow m | trate Flux gp<br>irmeability gi |          | Chiller                        | Temp C          | 15    | 15    | 14    |       | : ;   | t 1   | 5 Simulan<br>at 12.5 psig<br>ondition 2, 1 |               |                                                                                                         | 7 0:14    | Tim         | Simulant<br>at 12.5 psig<br>indition 2, 1 |      | •                                | 0:07 0:    | F           |
| Time                                   | 11:33    | 11.38    | 04.40    | 11.40    | 11-58     | 12.03    | Average Sh   | Average Pri | Average Fil  | Average Fil<br>Average Pe       |          |                                | Time            | 11:33 | 11:38 | 11:43 | 11.40 |       | 12-03 | C-10                                       | •             |                                                                                                         | 0.0       |             | C-106                                     |      |                                  | 00:0       |             |
| Condition                              | 2a       | 82       | 50       | 000      | 23        | 2a       | 2a           | 2a          | 2a           | 2a<br>2a                        |          | Test                           | Number          | 2a    | 2a    | 23    | 87    | 00    | 5a    |                                            | XUI:<br>O. S. | H aterti<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | EI (EV.C  |             |                                           | xn[: | i eterti<br>1 eterti<br>1 eterti | 1          |             |

τ.

| Permeablity<br>(gpm/ft2/psi)           | 0.003024 | 0.002174 | 0.002027 | 0.001918 | 0.001944 | 0.001890 |              |              |                |                |               |                    |                    |       |       |       |       |       |       |
|----------------------------------------|----------|----------|----------|----------|----------|----------|--------------|--------------|----------------|----------------|---------------|--------------------|--------------------|-------|-------|-------|-------|-------|-------|
| Filtrate Flux<br>(gpm/ft2)             | 0.0378   | 0.0272   | 0.0254   | 0.0240   | 0.0243   | 0.0236   |              |              |                |                |               |                    |                    |       |       |       |       |       |       |
| Permeability<br>(m/day/bar)            | 2.575    | 1.851    | 1.726    | 1.633    | 1.655    | 1.609    |              |              |                |                |               | 3                  |                    |       |       |       |       |       |       |
| Filtrate Flux<br>(m3/m2/day)           | 2.219    | 1.595    | 1.487    | 1.408    | 1.426    | 1.387    |              |              |                |                |               |                    |                    |       |       |       |       |       |       |
| Slurry Temp C                          | 23.8     | 24       | 23.9     | 23.9     | 23.9     | 24       |              |              |                |                |               | Filtrata Flow      | Rate (mL/sec)      | 0.302 | 0.218 | 0.203 | 0.192 | 0.195 | 0.190 |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.302    | 0.218    | 0.203    | 0.192    | 0.195    | 0.190    |              |              |                |                |               | Time of            | Collection (Sec)   | 33.12 | 45.81 | 49.28 | 52.07 | 51.38 | 52.7  |
| Time of<br>Collection<br>(Sec)         | 33.12    | 45.81    | 49.28    | 52.07    | 51.38    | 52.7     |              |              |                |                |               | Filtrate           | Volume (mL)        | 10    | 10    | 10    | 10    | 10    | 10    |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 10       | 10       | 10       | 10       | 10       | 10       |              |              |                | T              |               | Filter Inlet       | Pressue (          | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  |
| Pressure<br>Drop (psig)                | 0        | 0        | 0        | 0        | 0        | 0        | 4.5          |              |                | oint Remove    |               | Permeate           | Pressure<br>(psia) | 0     | 0     | 0     | 0     | 0     | 0     |
| Filter Inlet<br>Pressue<br>(psig)      | 12.5     | 12.5     | 12.5     | 12.5     | 12.5     | 12.5     | ft/s =       |              |                | With First Po  |               | Filter             | Pressure<br>(psia) | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  |
| Filter<br>Outiet<br>Pressure<br>(psig) | 12.5     | 12.5     | 12.5     | 12.5     | 12.5     | 12.5     | 0.69         | 12.50        | 0.217          | 0.025          | 0.002         | Slumy<br>Loop Flow | Rate (apm)         | 0.71  | 0.71  | 0.69  | 0.66  | 0.68  | 0.69  |
| Slurry Loop<br>Now Rate<br>gpm)        | 0.71     | 0.71     | 0,69     | 0,66     | 0.68     | 0.69     | 11           |              | /sec =         | n/ft2 =        | m/ft2/psi =   |                    | Slurry<br>emp C    | 23.8  | 24    | 23.9  | 23,9  | 23.9  | 24    |
| Fotal Time S<br>Elapsed F<br>Min) ((   | 0:00     | 0:05     | 0.10     | 0.20     | 0.25     | 0:30     | ry Flow gpm  | ssure psid = | ate Flow mL    | ate Flux gpn   | meability gpr |                    | Chiller S          | 15    | 15    | 41    | 14    | 14    | 4     |
| Time                                   | 12:17    | 12.22    | 12:27    | 12:37    | 12:42    | 12:47    | Average Slur | Average Pre- | Average Filtr. | Average Filtr. | Average Per   |                    | Time               | 12.17 | 12.22 | 12:27 | 12.37 | 12:42 | 12:47 |
| Condition                              | 2b           | 20           | 20             | 2b             | 2b            |                    | Test<br>Number     | 20    | 25    | 2b    | 2b    | 2b    | 20    |



| Permeability<br>(gpm/ft2/psi)           | 0.005394 | 0.005385 | 0.005166 | 0.005131 | 0.004950 | 0,004835 |             |              |               |               |              |                     |                       |       |       |       |       |       |
|-----------------------------------------|----------|----------|----------|----------|----------|----------|-------------|--------------|---------------|---------------|--------------|---------------------|-----------------------|-------|-------|-------|-------|-------|
| Filtrate Flux<br>(gpm/ft2)              | 0.1080   | 0.1051   | 0.1034   | 0.1014   | 0,1016   | 0.0992   |             |              |               |               |              |                     |                       |       |       |       |       |       |
| Permeability<br>(m/day/bar)             | 4.592    | 4.585    | 4.398    | 4 369    | 4.215    | 4.117    |             |              |               |               |              |                     |                       |       |       |       |       |       |
| Fittrate Flux<br>(m3/m2/day)            | 6.333    | 6.165    | 6.085    | 5.949    | 5.957    | 5.819    |             |              |               |               |              |                     |                       |       |       |       |       |       |
| Slurry Temp C                           | 25.8     | 26.1     | 26.3     | 26.3     | 26.3     | 26.6     |             |              |               |               |              | These Plane         | Rate (mL/sec)         | 0.912 | 0.895 | 0.885 | 0.868 | 0.870 |
| Filtrate<br>Flow Rate<br>(mL/sec)       | 0.912    | 0.895    | 0.885    | 0.868    | 0.870    | 0.857    |             |              |               |               |              | Tomot               | Collection F<br>(Sec) | 21.94 | 22.35 | 22.59 | 23.03 | 23    |
| Time of<br>Collection<br>(Sec)          | 21.94    | 22.35    | 22.59    | 23.03    | 23       | 23.35    |             |              |               |               |              | Filtrate            | Volume<br>(mL)        | 20    | 20    | 20    | 20    | 20    |
| Filtrate<br>Sample<br>Volume<br>(mL)    | 20       | 20       | 20       | 20       | 20       | 20       |             |              |               | 13            |              | Cittar Intat        | psig)                 | 23    | 23    | 23.5  | 23    | 24    |
| Pressure<br>Drop (psig)                 | 9        | 2        | 1        | 6.5      | 7        | 7        | 17.9        |              |               | oint Remove   |              | Darmasta            | Pressure<br>(psig)    | 0     | 0     | 0     | 0     | 0     |
| Filter Inlet<br>Pressue<br>(psig)       | 23       | 23       | 23.5     | 23       | 24       | 24       | ft/s =      |              |               | With First Po |              | Filter              | Pressure<br>(psig)    | 17    | 16    | 16.5  | 16.5  | 17    |
| Filter<br>Outliet<br>Pressure<br>(psig) | 17       | 16       | 16.5     | 16.5     | 17       | 17       | 2.74        | 20.04        | 0.881         | 0.102         | 0.005        | Slurry<br>Loon Elow | Rate<br>(gpm)         | 2.73  | 2.74  | 2.73  | 2.77  | 27    |
| Slurry<br>Loop Flow<br>Rate<br>(gpm)    | 2.73     | 2.74     | 2.73     | 2.77     | 2.7      | 2.75     | = u         |              | L/sec =       | m/ft2 =       | im/ft2/psi = |                     | Slumy<br>Temp C       | 2.77  | 2.77  | 271   | 2.72  | 2.74  |
| Total Time<br>Elapsed<br>(Min)          | 00:00    | 0:05     | 0:10     | 0:15     | 0:20     | 0:30     | my Flow gpr | ssure psid = | rate Flow ml  | rate Flux gpi | meability gp |                     | Chiller<br>Temp C     | 15    | 15    | 14    | 14    | 14    |
| Time                                    | 13:13    | 13.18    | 13.23    | 13-28    | 13:33    | 13.43    | Average Slu | Average Pre  | Average Filth | Average Filth | Average Per  |                     | Time                  | 13,13 | 13:18 | 13:23 | 13.28 | 13:33 |
| Condition                               | 3a       | 3a       | 3a       | 3a       | 3a       | 33       | 3a          | 3a           | 38            | 3a            | 3a           |                     | Test<br>Number        | 3a    | 3a    | 3a    | 3a    | 3a    |

C.

0.857

23.35

50

24

0

17

2.75

2.72

4

13:43

3a



| Permeability<br>(gpm/ft2/psi)          | 0.001480 | 0.001197 | 0.001134 | 0.001097 | 0.001038 | 0.001024 | 0.000998 |              |             |              |               |              |                     |                     |       |       |       |       |       |       |       |
|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|--------------|-------------|--------------|---------------|--------------|---------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|
| Filtrate Flux<br>(gpm/ft2)             | 0.0292   | 0.0234   | 0.0221   | 0.0220   | 0.0213   | 0.0210   | 0.0205   |              |             |              |               |              | e.                  |                     |       |       |       |       |       |       |       |
| Permeability<br>(m/day/bar)            | 1.260    | 1.019    | 0.965    | 0.934    | 0.884    | 0.872    | 0.850    |              |             |              |               |              |                     |                     |       |       |       |       |       |       |       |
| Filtrate Flux<br>(m3/m2/day)           | 1.715    | 1.370    | 1.298    | 1.288    | 1.249    | 1.232    | 1.201    |              |             |              |               |              |                     |                     |       |       |       |       |       |       |       |
| Slurry Temp C                          | 25.8     | 26.1     | 26.3     | 26.3     | 26.3     | 26.6     | 26.6     |              |             |              |               |              | Eiltrata Elow       | Rate (mL/sec)       | 0.247 | 0.199 | 0.189 | 0.188 | 0.182 | 0.181 | 0.177 |
| Filtrate<br>Flow Rate<br>(mU/sec)      | 0.247    | 0.199    | 0.189    | 0.188    | 0.182    | 0.181    | 0.177    |              |             |              |               |              | Time of             | Collection<br>(Sec) | 40.5  | 50.28 | 52.79 | 53.19 | 54.84 | 55.12 | 56.57 |
| Time of<br>Collection<br>(Sec)         | 40.5     | 50.28    | 52.79    | 53.19    | 54.84    | 55.12    | 58.57    |              |             |              |               |              | Filtrate            | Volume<br>(mL)      | 10    | 10    | 10    | 10    | 10    | 10    | 10    |
| Fittrate<br>Sample<br>Volume<br>(mL)   | 10       | 10       | 10       | 10       | 10       | 10       | 10       |              |             |              | pa            |              | Filter Inlet        | Pressue<br>(psig)   | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  |
| Pressure<br>Drop (psig)                | 7.5      | 1        | 7        | 9        | 2        | 7        | 1        | 17.9         |             |              | oint Remove   |              | Permeate            | Pressure<br>(psig)  | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Filter Inlet<br>Pressue<br>(psig)      | 23.5     | 23       | 23       | 23       | 24       | 24       | 24       | fl/s =       |             |              | With First P  |              | Filter              | Pressure<br>(psig)  | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  | 12.6  | 12.5  |
| Fitter<br>Outlet<br>Pressure<br>(psig) | 16       | 16       | 16       | 17       | 17       | 17       | 11       | 2.74         | 20.04       | 0.195        | 0.022         | 0.001        | Slurry<br>Loop Flow | Rate<br>(gpm)       | 2.77  | 2.77  | 2.71  | 2.72  | 2.74  | 2.72  | 2.73  |
| Slurry<br>Loop Flow<br>Rate<br>(gpm)   | 2.77     | 2.77     | 2.71     | 2.72     | 2.74     | 2.72     | 2.73     | = u          |             | L/sec =      | m/ft2 =       | om/tt2/psi = |                     | Sturry<br>Temp C    | 25.8  | 26.1  | 26.3  | 26.3  | 26.3  | 26.6  | 26.6  |
| Total Time<br>Elapsed<br>(Min)         | 00:00    | 0:02     | 0:10     | 0:15     | 0:20     | 0,25     | 0:30     | irry Flow gp | essure psid | trate Flow m | trate Flux gp | meability gi |                     | Chiller<br>Temp C   | 15    | 15    | 14    | 14    | 14    | 14    | 14    |
| Time                                   | 13:50    | 13:55    | 14:00    | 14:05    | 14:10    | 14:15    | 14:20    | Average Slu  | Average Pri | Average Filt | Average Filt  | Average Pe   |                     | Time                | 13:50 | 13:55 | 14:00 | 14:05 | 14:10 | 14:15 | 14:20 |
| Condition                              | 35       | 30       | 35       | 3b       | 30       | 35       | 3b       | 3b           | 3b          | 35           | ab            | 30           | (R )                | Test<br>Number      | 35    | 35    | 35    | 35    | 35    | 35    | 30    |



| Filtrate<br>Flux<br>(gpm/ft2)          | 0.0517 | 0.0383 | 0.0330 | 0.0339 | 0.0317 | 0.0307 |              |                |              |                    |               |              |                |                     |              |               |                                 |       |       |       |       |       |       |
|----------------------------------------|--------|--------|--------|--------|--------|--------|--------------|----------------|--------------|--------------------|---------------|--------------|----------------|---------------------|--------------|---------------|---------------------------------|-------|-------|-------|-------|-------|-------|
| Permeability<br>(m/day/bar)            | 1.257  | 0.931  | 0.803  | 0.823  | 0.770  | 0.740  |              |                |              |                    |               |              |                |                     |              |               |                                 |       |       |       |       |       |       |
| Filtrate Flux<br>(m3/m2/day)           | 3.034  | 2.247  | 1.938  | 1.987  | 1.859  | 1.799  |              |                |              |                    |               |              | 1,966          | moved               |              |               |                                 |       |       |       |       |       |       |
| Slurry Temp C                          | 27.7   | 28.3   | 28.5   | 27.3   | 29     | 28.8   |              |                |              |                    |               |              | Average Flux = | With First Point Re |              | Rate (mL/sec) | STATE OF THE STATE OF THE STATE | 0.460 | 0.347 | 0.301 | 0.298 | 0.292 | 0.281 |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.460  | 0.347  | 0.301  | 0.298  | 0.292  | 0.281  |              |                |              |                    |               |              | 0.330          | 2                   | Time of      | Collection    | (Sec)                           | 21.72 | 28,84 | 33.25 | 33,53 | 34.2  | 35.53 |
| Time of<br>Collection<br>(Sec)         | 21.72  | 28.84  | 33.25  | 33.63  | 34.2   | 35.53  |              |                |              |                    |               |              | = M            |                     | Filtrate     | Volume        | (mL)                            | 10    | 10    | 10    | 10    | 10    | 10    |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 10     | 10     | 10     | 10     | 10     | 10     |              |                |              |                    | g             |              | Average Flo    | Filtrate            | Cline Infert | Pressue       | (pisig)                         | 35    | 35    | 35    | 35    | 35    | 35.5  |
| Pressure<br>Drop (psig)                | 0      | 0      | 0      | 0      | 0      | 0,5    | 6 16         |                |              | 1212-2410-250 P    | oint Remove   |              |                |                     | Deservation  | Pressure      | (psig)                          |       |       |       |       |       |       |
| Filter Inlet<br>Pressue<br>(psig)      | 35     | 35     | 35     | 35     | 35     | 35,5   | = 5/4        |                |              | Carlo Contra Carlo | With First PI |              | 35.04167       |                     | Filter       | Pressure      | (bisid)                         | 35    | 35    | 35    | 35    | 35    | 35    |
| Fitter<br>Outlet<br>Pressure<br>(psig) | 35     | 35     | 35     | 35     | 35     | 35     | 0.94         | 35.04          | 0.330        | 0000               | 0.034         | 0.001        | = entre        |                     | Slumy        | Rate Rate     | (mdg)                           | 0.98  | 0.91  | 0,9   | 76.0  | 0.92  | 0.95  |
| Sturry<br>Loop Flow<br>Rate<br>(gpm)   | 0.98   | 0.91   | 0.9    | 0.97   | 0.92   | 0.95   | H            |                | lear =       | -neen-             | m/ft2 =       | im/ft2/psi = | Average Pre    | 0.94                |              | Slurry        | Temp C                          | 27.7  | 28.3  | 28.5  | 27.3  | 29    | 28.8  |
| Total Time<br>Elapsed<br>(Min)         | 00.0   | 0.05   | 0:15   | 0.20   | 0:25   | 0:30   | rrv Flow apr | serire risid = | rate Elow m  | IN LINK III        | rate Flux gp  | meability gp |                | rry Flow =          |              | Chiller       | Temp C                          | 22    | 23    | 24    | 25    | 26    | 26    |
| Time                                   | 14:35  | 14:40  | 14:50  | 14:55  | 15:00  | 15:05  | Average Slu  | Average Pre    | Average Filt | WALING AND LIN     | Average Filt  | Average Per  |                | Average Slb         |              |               | Time                            | 14:35 | 14:40 | 14:50 | 14:55 | 15:00 | 15:05 |
| Condition                              | 64     | 4a     | 4a     | 43     | 4a     | 4a     | 4a           | 4.0            | 44           | B.                 | 43            | 43           |                | RAW                 |              | Test          | Number                          | 4a    | 4a    | 64    | 4a    | 4a    | 4a    |

Permeabili ty (gpm/ft2/p si)

0.001477 0.001094 0.000943 0.000967 0.000967 0.000965



| eabili<br>ft2/p                        | 1253   | 1980   | 0947   | 9680   | 0902   | 1160   |              |             |               |                                |                                        |         |       |       |       |       |       |       |             |                               |        |                     |                          |             |                             |                 |                                   |              |
|----------------------------------------|--------|--------|--------|--------|--------|--------|--------------|-------------|---------------|--------------------------------|----------------------------------------|---------|-------|-------|-------|-------|-------|-------|-------------|-------------------------------|--------|---------------------|--------------------------|-------------|-----------------------------|-----------------|-----------------------------------|--------------|
| Perm<br>ty<br>(gpm/<br>si)             | 0.00   | 0000   | 0.00   | 0.00   | 0.00   | 0.00   |              |             |               |                                |                                        |         |       |       |       |       |       |       |             |                               |        |                     |                          |             |                             |                 |                                   |              |
| Filtrate<br>Flux<br>(dom/ft2)          | 0.0439 | 0.0335 | 0.0329 | 0.0323 | 0.0311 | 0.0338 |              |             |               |                                |                                        |         |       |       |       |       |       |       |             |                               |        |                     |                          |             |                             |                 |                                   |              |
| Permeability<br>(m/day/bar)            | 1.066  | 0.815  | 0.806  | 0.797  | 0.768  | 0.826  |              |             |               |                                | 2                                      |         |       |       |       |       |       |       |             |                               |        |                     |                          |             |                             |                 |                                   |              |
| Filtrate Flux<br>(m3/m2/dav)           | 2.573  | 1 968  | 1.931  | 1.896  | 1.827  | 1.980  |              |             |               |                                |                                        |         |       |       |       |       |       |       |             |                               |        |                     |                          |             |                             |                 |                                   |              |
| Slurry Temp C                          | 29.2   | 28.9   | 28.3   | 28     | 27.3   | 25     |              |             |               |                                | Filtrate Flow<br>Rate (mL/sec)         | 0.407   | 505 U | 0.309 | 892.0 | 0.290 | 0.274 | 0.279 | rs. Time at | s)                            |        | •                   | 0.28 0.36                |             | s. Time at                  | 6               |                                   |              |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.407  | 0.309  | 0.298  | D.290  | 0.274  | 0.279  |              |             |               |                                | Time of F<br>Collection F              | 24.57   | 31    | 37.4  | 33.56 | 34.47 | 36.47 | 35.88 | meability v | and 6.0 ft/s<br>2nd 30 minute |        | •                   | 14 0.21                  | ne (hr:min) | neability v:<br>nd 6.0 ft/s | samuim os pr    | •                                 |              |
| Time of<br>Collection<br>(Sec)         | 24.57  | 32.4   | 33,56  | 34.47  | 36.47  | 35.88  |              |             |               |                                | Filtrate<br>Sample<br>Volume<br>(mL)   | 10      | C.    | P P   |       | 10    | 10    | 10    | nulant Per  | 34.8 psig<br>Condition 4, 2   |        | •                   | 0.07 0                   | 1           | ulant Pern<br>34.8 psig a   | Condition 4, 21 | :                                 |              |
| Filtrate<br>Sample<br>Volume<br>1 (mL) | 99     |        | 10     | 10     | 10     | 7      |              |             |               | pa                             | Filter Inlet<br>Pressue<br>(nsin)      | 35      | 36    | 35    | 35    | 34.5  | 345   | 35    | C-106 Sin   | 5)                            |        | 1.5                 | 0.0                      | į           | 2-106 Sim                   | 0 000           | 0.001                             | 0.001        |
| Pressure<br>Drop (psig                 |        |        | 0.5    |        |        | 0.5    | 6.00         |             |               | oint Remov                     | Permeate<br>Pressure<br>(nsin)         | 1 Bundy |       |       |       |       |       |       |             |                               | ,      | day/bar)            | neq<br>Peri              |             |                             |                 | (isq\Sf)                          | mqg)<br>Perm |
| Filter Inlet<br>Pressue<br>(osia)      | 35     | 2 63   | 35     | 34.5   | 34.5   | 35     | 11/s =       |             | Surresson Fe  | With First F                   | Filter<br>Outlet<br>Pressure<br>(nsin) | 35      | 26    | 35    | 34.5  | 34.5  | 34.5  | 34.5  |             |                               |        |                     | 0:36                     |             |                             |                 |                                   | 00.0         |
| Filter<br>Outlet<br>Pressure<br>(psia) | 35     | 35     | 34.5   | 34.5   | 34.5   | 34.5   | 0.92         | 34.76       | 0.311         | 0.033                          | Slurry<br>Loop Flow<br>Rate<br>(mm)    | 0.92    | 0.03  | 0.92  | 0.92  | 0.93  | 0.9   | 0.93  | . Time      | s<br>ites)                    |        | •                   | 0:28                     |             | Time                        | (sa)            | •                                 | 0000         |
| Slurry<br>Loop Flow<br>Rate<br>(apm)   | 0.92   | 0.92   | 0.92   | 0.93   | 0.0    | 0.93   | = WI         | н.          | nL/sec =      | pm/ft2 = pm/ft2/psi =          | Slurry<br>Temp C                       | 28.2    | 704   | 28.9  | 28.3  | 28    | 27.3  | 25    | t Flux vs   | and 6.0 ft/<br>2nd 30 minu    |        | •                   | 0:21                     | ie (hr:min) | t Flux vs<br>and 6.0 ft/    |                 | •                                 |              |
| Total Time<br>Elapsed<br>(Min)         | 00:00  | 01:0   | 0.15   | 0.20   | 0:25   | 0:30   | urry Flow gp | essure psid | Itrate Flow n | trate Flux gr<br>ermeability g | Chiller<br>Termo C                     | 33      | 36    | 8     | 36    | 37    | 37    | 33    | i Simulan   | at 34.8 psig<br>indition 4, 2 |        | •                   | 7 0:14                   | Tim         | Simulani<br>at 34.8 psig    | nuiuon 4, 4     | •                                 |              |
| Time                                   | 15:15  | 15.25  | 15:30  | 15:35  | 15:40  | 15:45  | Average SI   | Average Pr  | Average Fil   | Average Fi<br>Average Pe       | tm                                     | 15:15   | 16-20 | 15-25 | 15.30 | 15.35 | 15:40 | 15:45 | C-106       | (Cc                           |        | •                   | 0:0                      |             | C-106                       | 200             | 5 4                               | 00           |
| Condition                              | 44     | 49     | 40     | 4b     | 45     | 4P     | 4b           | 4b          | 4b            | 4b<br>4b                       | Test<br>Number                         | 4b      | 4h    | 4b    | 44    | 40    | 4b    | 4b    |             |                               | × -3.0 | rate Flu<br>Mg2/day | 111<br>(m)<br>(m)<br>(m) |             |                             | 2               | culif eter<br>(Stil\mq<br>9 9 9 9 | 6)<br>(1)    |

٠ 0:14 0:21 Time (hr:min) ٠ ٠ . 0:07 -0:00 . (gpm/ft2) (gpm/ft2) (gpm/ft2)

0:43

0:14 0:28 Time (hr:min)

0:00

0.000 0.001

0:36

0:28

| Condition      | Time        | Total Time<br>Elapsed<br>(Min) | Slumy<br>Loop Flow<br>Rate<br>(gpm) | Filter<br>Outlet<br>Pressure<br>(psig) | Filter Inlet<br>Pressue<br>(psig) | Pressure<br>Drop (psig) | Fritrate<br>Sample<br>Volume<br>(mL) | Time of<br>Collection<br>(Sec) | Filtrate<br>Flow Rate<br>(mL/sec) | Slurry Temp C     | Filtrate Flux<br>(m3/m2/day) | Permeability<br>(m/day/bar) | Filtrate<br>Flux<br>(gpm/ft2 |
|----------------|-------------|--------------------------------|-------------------------------------|----------------------------------------|-----------------------------------|-------------------------|--------------------------------------|--------------------------------|-----------------------------------|-------------------|------------------------------|-----------------------------|------------------------------|
| 5a             | 16:05       | 0:00                           | 0.96                                | 20                                     | 21                                | -                       |                                      | 5 8.9                          | 6 0.558                           | 25.7              | 3.887                        | 2.750                       | 0.0661                       |
| 58             | 16.07       | 0.02                           | 2 0.95                              | 20                                     | 21                                |                         |                                      | 5 11.7                         | 2 0.427                           | 25.7              | 2.972                        | 2.103                       | 0.050                        |
| 5a             | 16:10       | 0:02                           | 1                                   | 20                                     | 20                                | 0                       |                                      | 13                             | 1 0.382                           | 26                | 2.637                        | 1.912                       | 0.0449                       |
| 5a             | 16:17       | 0:12                           | 1.02                                | 20                                     | 21                                | -                       |                                      | 13.9                           | 7 0.358                           | 27.6              | 2.365                        | 1.673                       | 0.0403                       |
| 5a             | 16.20       | 0.15                           | 5 0.85                              | 20                                     | 20                                |                         |                                      | 5 15.3                         | 5 0.326                           | 27.7              | 2.146                        | 1.556                       | 0.0366                       |
| 5a             | 16.25       | 0:20                           | 0.82                                | 20                                     | 21                                | -                       |                                      | 5 16.5                         | 9 0.301                           | 28.3              | 1.953                        | 1.382                       | 0.0333                       |
| 5a             | 16:30       | 0:25                           | 5 0.92                              | 19.5                                   | 20.5                              |                         |                                      | 17.1                           | 9 0.291                           | 28.2              | 1.890                        | 1.371                       | 0.0322                       |
| 5a             | 16:36       | 0:31                           | 0.92                                | 20                                     | 21                                | -                       |                                      | 5 17.1                         | 5 0.292                           | 27.7              | 1.921                        | 1.359                       | 0.0327                       |
| ę,             | Average SI  | inter Elevan                   | =                                   | 0.03                                   | Hie =                             | а+ а<br>а+              | 1942                                 |                                |                                   |                   |                              |                             |                              |
| 100            | Average Pr  | essure psid                    |                                     | 20.33                                  |                                   |                         | 23.                                  |                                |                                   |                   |                              |                             |                              |
| 5a             | Average Fil | Itrate Flow n                  | nL/sec =                            | 0.392                                  |                                   |                         |                                      |                                |                                   |                   |                              |                             |                              |
| 5a             | Average Fil | itrate Flux g                  | pm/ft2 =                            | 0.039                                  | With First P                      | oint Remov              | ed                                   |                                |                                   |                   |                              |                             |                              |
| 5a             | Average Pe  | ermeability g                  | gpm/ft2/psi =                       | 0.002                                  |                                   |                         |                                      |                                |                                   |                   |                              |                             |                              |
| RAW II         | Average SI  | urry Flow =                    | Average Pi                          | ressure =                              | 20,33333                          |                         | Average F                            | = mol                          | 0.392                             | Average Flux =    | 2.415<br>amoved              |                             |                              |
| 4400           | UVDIONC OF  | - MOUT LINE                    | 0.0                                 |                                        | Ethor                             |                         | 11000                                | Elitrato                       |                                   | WHILE FROM FURNER | navoula                      |                             |                              |
| 10.000         |             |                                | 3                                   | Slurry                                 | Outlet                            | Permeate                | Filter Inlet                         | Sample                         | Time of                           | Filtrate Flow     |                              |                             |                              |
| Test<br>Number | Time        | Chiller<br>Temp C              | Slumy<br>Temp C                     | Rate (apm)                             | Pressure<br>(psig)                | Pressure<br>(psia)      | Pressue<br>(psig)                    | Volume<br>(mL)                 | Collection<br>(Sec)               | Rate (mL/sec)     |                              |                             |                              |
| 5a             | 16:05       | 22                             | 27.7                                | 0.96                                   | 20                                | 1                       | N                                    |                                | 5 8.96                            | 0.558             |                              |                             |                              |
| 5a             | 16:07       | 23                             | 28.3                                | 0.95                                   | 20                                |                         | 0                                    |                                | 5 13.72                           | 0.364             |                              |                             |                              |
| 5a             | 16:10       | 24                             | 28.5                                | 1                                      | 20                                |                         | 2                                    | 0                              | 5 14.82                           | 0.337             |                              |                             |                              |
| 5a             | 16:17       | 26                             | 27.3                                | 1.02                                   | 20                                |                         | CN .                                 |                                | 5 13.97                           | 0.358             |                              |                             |                              |
| 58             | 16:20       | 26                             | 29                                  | 0.85                                   | 20                                |                         | 12                                   |                                | 5 15.35                           | 0.326             |                              |                             |                              |
| Sa             | 16:25       | 26                             | 1 28.8                              | 0.82                                   | 20                                |                         | ¢4                                   |                                | 5 16.59                           | 0.301             |                              |                             |                              |
| 53             | 16:30       | 26                             | 29                                  | 0.92                                   | 19.5                              |                         | 20.                                  | 10                             | 5 18,19                           | 0.275             |                              |                             |                              |
| Sa             | 16;36       | 26                             | 5 28                                | 0.92                                   | 20                                |                         | 2                                    |                                | 5 17,15                           | 0.292             |                              |                             |                              |
|                |             |                                |                                     |                                        |                                   |                         |                                      |                                |                                   |                   |                              |                             |                              |
|                | C-10        | 6 Simular                      | It Flux vs                          | . Time                                 |                                   | - 1759                  | C-106 Sir                            | nulant Pe                      | rmeability                        | vs. Time at       |                              |                             |                              |
| 1              | ξŪ          | ondition 4,                    | 1st 30 minu                         | tes)                                   |                                   |                         |                                      | Condition 4                    | 1 1 1 2 0 minur<br>1 1 2 0 minur  | es)               |                              |                             |                              |
| 0.0            |             |                                |                                     |                                        |                                   | ()<br>(4                | 2.0                                  | •                              | •                                 |                   |                              |                             |                              |
| C T (I X       |             |                                |                                     |                                        |                                   | 用目                      |                                      |                                | *                                 |                   |                              |                             |                              |



.

Permeabili ty (gpm/ff2/p 0.0023470 0.002246 0.001828 0.001828 0.001623 0.001623 0.001623

Permeability (m/day/bar) 2.636 1.676 1.676 1.713 1.713 1.453 1.453 (m3/m2/day) Filtrate Flux 3.816 2.370 2.327 2.244 2.244 2.093 2.011 2.209 With First Point Removed 0:36 Slurry Temp C () 26.2 28.5 28.6 28.6 28.6 28.6 27.9 27.2 0:43 Average Flux = Filtrate Flow Rate (mL/sec) Time at C-106 Simulant Permeability vs. Time at 0.556 0.357 0.357 0.357 0.357 0.357 0.357 0.357 0.307 0.307 0:28 ٠ C-106 Simulant Permeability vs. 0:14 0:28 Time (hr:min) ٠ 34.8 psig and 6.0 ft/s (Condition 4, 2nd 30 minutes) 34.8 psig and 6.0 ft/s (Condition 4, 2nd 30 minutes) Time of Collection (Sec) 9 14.02 14.32 14.32 16.29 16.29 17.55 Time (hr:min) 0:21 Filtrate Flow Rate 0.375 0.556 0.357 0.357 0.357 0.349 0.349 0.307 0.307 (mL/sec) ٠ 0:14 ٠ 9 14.02 14.32 14.32 16.29 16.29 Time of Collection (Sec) Sample Volume (mL) Filtrate ٠ 0:07 Average Flow = ٠ Filter Inlet 0:00 Fittrate Sample Volume (mL) Pressue Filtrate 0.002 0.003 0.000 0.004 0.001 (bisd) 0:00 0.96 ft/s = 6.16 20.25 0.375 With First Point Removed 0.002 3.0 Drop (psig) N-NN--0 Permeate (m/day/bar) Permeability Pressure Pressure Permeability (gpm/ft2/psi) (pisig) 20.25 88888888 Outlet Pressure Filler Inlet Pressue (psig) 0:36 0:36 (pisig) Filter Loop Flow ( Rate ( (gpm) ( 0.93 0.96 0.96 0.95 0.92 1.02 20 20 20 20 20 20 19 19 Filter Outlet Pressure . 0:28 ٠ 0:28 Average Pressure = (pisig) Slumy C-106 Simulant Flux vs. Time C-106 Simulant Flux vs. Time at 34.8 psig and 6.0 ft/s (Condition 4, 2nd 30 minutes) at 34.8 psig and 6.0 ft/s (Condition 4, 2nd 30 minutes) ٠ ٠ Slurry Loop Flow Rate (gpm) Temp C 26.2 27.4 28.1 28.6 28.6 28.8 28.8 28.8 27.9 27.2 0.93 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.92 0.92 0:21 0.96 Average Permeability gpm/ft2/psi = Time (hr:min) 0:21 Time (hr:min) . Average Filtrate Flow mL/sec = Average Filtrate Flux gpm/ft2 = Slumy ٠ Average Slurry Flow gpm = Average Pressure psid = 0:14 ٠ 0:00 0:10 0:15 0:25 0:25 0:25 0:14 **Total Time** ٠ Elapsed (Min) Chiller Temp C Average Slurry Flow ٠ 0:07 ٠ 0:07 16:40 16:45 16:50 16:55 16:55 17:00 17:05 16.40 16.50 16.55 16.55 17.00 17.00 ٠ ٠ Time Time 0:00 Filtrate Flux (gpm/ft2) 0.02 4 0.08 0.00 xulf ate Flux (m3/m2/day), 0 0 0 0 Condition Number RAW 88888888 88888

0.001829 0.001671 0.001707

0.0404 0.0397 0.0357 0.0357 0.0357 0.0357

(gpm/ff2/p si) 0.003096 0.001969 0.001888 0.001888

Filtrate Flux (gpm/ft2) 0.0651

Permeabili

| <sup>2</sup> ermeability (gpm/ft2/psi)   | 0.000077 | 0.000065 | 0 000044 | 0 000042 | 0 000041 | 0.000040 | 0.000039 |                 |                                         |                    |                    |             |       |        |       |       |       |
|------------------------------------------|----------|----------|----------|----------|----------|----------|----------|-----------------|-----------------------------------------|--------------------|--------------------|-------------|-------|--------|-------|-------|-------|
| Permeabili<br>ty<br>(gpm/ft2/p<br>si)    | 0.003254 | 0.002746 | 0.001887 | 0.001737 | 0.001748 | 0.001688 | 0.001671 |                 |                                         |                    |                    |             |       |        |       |       |       |
| Fittrate<br>Flux<br>(gpm/ft2)            | 0.0651   | 0.0550   | 0.0378   | 0.0356   | 0.0350   | 0.0338   | 0.0334   |                 |                                         |                    |                    |             |       |        |       |       |       |
| Permeability<br>(m/day/bar)              | 2.771    | 2.338    | 1.606    | 1.479    | 1.488    | 1.437    | 1,422    | 204.1           | 0.04.1                                  |                    |                    |             |       |        |       |       |       |
| Filtrate Flux<br>(m3/m2/day)             | 3.821    | 3.224    | 2.215    | 2.090    | 2.052    | 1.981    | 1.961    |                 |                                         |                    |                    |             |       |        |       |       |       |
| Slurry Temp C                            | 26.5     | 27.4     | 27.7     | 27.5     | 27.4     | 27.3     | 27.4     | 77 344          | L 1 1 1 1 1                             | Eiltrata Elow      | Rate (mL/sec)      | 000 0       | 0.182 | 0.180  | 0.179 | 0.181 | 0.174 |
| Fitrate Flow Rate<br>(mL/sec)            | 0.561    | 0.485    | 0.336    | 0.315    | 0.309    | 0.297    | 0.295    | Averana Flinv = | uni i stanina i                         |                    | Time of Collection | (28C) 97.7E | CE 67 | 49.94  | 50.41 | 49.85 | 51.75 |
| Time of<br>Collection<br>(Sec)           | 35.66    | 0 41.22  | 59.5     | 63.41    | 0 64.75  | 0 67.25  | 0 67.75  | 57 077          | 1 1 1 1 1 1 1                           | Filtrate<br>Samole | Volume             | (mu) a      |       | 0      | 6     | 6     | 8     |
| Filtrate<br>Sample<br>Volume<br>g) (mL)  | 0 20     | 2        | 2 20     | 1 20     | 2 20     | 2 20     | 2 20     | = low =         | Cileman                                 | Filler Inlet       | Pressue            | (Bied)      | 00    | 0      | 0     | 0     | 40    |
| f Pressure<br>Drop (psi                  | 20       | 21       | 21       | 21       | 21       | 21       | 21       | Average         | all | Permeate           | Pressure           | (Bred)      |       |        |       |       |       |
| Filter Inle<br>Pressue<br>(psig)         | 20       | 61       | 6        | 20       | 19       | 0        | 6        | 9 nsin          | n i i                                   | Filter<br>w Outlet | Pressure           | (Bied)      | WW 65 | 54 NM  | MN 60 | WN L  | WW L  |
| Filter<br>w Outlet<br>Pressure<br>(psig) | 93       | 34       | 94       | 98       | 03       | 16       | 34       | 20              | mine BE                                 | Slurry<br>Loop Flo | Rate               | (mdB)       |       | 25 3.0 | 2 3.6 | 1 3.  | 1     |
| Slurry<br>e Loop Flor<br>Rate<br>(gpm)   | 0 0.5    | 3 0.5    | 0.0      | 5 0.5    | 0.1.0    | 5 0.5    | 0.0      | Tressure =      | 00                                      |                    | Slumy              | Produinat 0 | 24    | 0      | 2 25  | 25 0  | 1 25  |
| Total Time<br>Elapsed<br>(Min)           | 0:0      | 0:0      | 5 0.1    | 0.1      | 5 0.2    | 0.2      | 5 0:3    | Average F       | humu Elosu -                            | - work Liow -      | Chiller<br>Tamo C  | o duisi     |       | 2      | 2     | 2     | 2     |
| Time                                     | 16:01    | 16:01    | 16:11    | 16:21    | 16:21    | 16:30    | 16.35    |                 | Augrana C                               | n aferanu          | Time               | 18-30       | 16.35 | 16.40  | 16:45 | 16:55 | 17:00 |
| Condition                                | 8a       | 8a       | 8a       | 83       | 88       | 8a       | 8a       |                 | DAW                                     |                    | Test               | Ra          | 8a    | 8a     | 8a    | 8a    | 8a    |

NM = Not Measured

| Permeabili<br>ty<br>(gpm/ft2/p<br>si)  | 0.003377 | 0.002449 | 0.001864 | 0.001562 | 0.001526 | 0.001557 |        |                   |                |             |          |               |                            |       |           |       |           |           |       |            |
|----------------------------------------|----------|----------|----------|----------|----------|----------|--------|-------------------|----------------|-------------|----------|---------------|----------------------------|-------|-----------|-------|-----------|-----------|-------|------------|
| Filtrate<br>Flux<br>(gpm/ft2)          | 0.0693   | 0.0490   | 0.0382   | 0.0320   | 0.0313   | 0.0312   | 0.0302 |                   |                |             |          |               |                            |       |           |       |           |           |       |            |
| Permeability<br>(m/day/bar)            | 2.875    | 2 085    | 1.587    | 1.330    | 1.299    | 1.326    | 1.283  | 204.4             | 0.04-1         |             |          |               |                            |       |           |       |           |           |       |            |
| Filtrate Flux<br>(m3/m2/day)           | 4.064    | 2.876    | 2.243    | 1,880    | 1.836    | 1.828    | 1.769  |                   |                |             |          |               |                            |       |           |       |           |           |       |            |
| Slurry Temp C                          | 24.4     | 25.3     | 25.1     | 24.7     | 24.9     | 25.5     | 25.5   | 75.057            | 100'07         |             | 1.00     | -ittrate Flow | (ate (mL/sec)              | 0.247 | 0.234     | 0.220 | 0.222     | 0.212     | 0.225 |            |
| ittrate Flow Rate                      | 0.562    | 0.408    | 0.317    | 0.262    | 0.258    | 0.261    | 0.253  | internet Eliter - | - vniu afierak |             | 20       |               | me of Collection F<br>lec) | 36.5  | 38.53     | 41    | 40.54     | 42.43     | 39,94 |            |
| Time of Fi<br>Collection (r<br>(Sec)   | 17.78    | 24.5     | 15.79    | 19.06    | 19.4     | 19.16    | 19.8   | 10.956            | 000.01         |             | Filtrate | Sample        | Volume Ti<br>(mL) (S       | 6     | 6         | G     | 0         | a         | 0     |            |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 10       | 10       | 5        | ŝ        | 2        | ŝ        | 5      |                   |                | Filtrate    |          | Filter Inlet  | Pressue<br>(psig)          | S     | LD        | 9     | 2<br>2    | S         | 5     |            |
| Pressure<br>Drop (psig)                | -        | 0        | -        |          | **       | 0        | 0      | Autoria El        | LI SABBIAN     |             |          | Permeate      | Pressure<br>(psig)         | 0     | 0         | 0     | 0         | 0         | 0     |            |
| Filter Inlet<br>Pressue<br>(psig)      | 0 2      | 0 2      | 0 2      | 0 2      | 2 0      | 0 2      | 0 2    | mine B            | Bind o         | 141000      | Filter   | / Outlet      | Pressure<br>(psig)         | MM 9  | 4 NM      | NMN 9 | WN 9      | WW P      | WW 9  |            |
| Filter<br>Outlet<br>Pressure<br>(psig) | 2        | 0        | 8        | 9 2      | 5        | 1 2      | 1      | TUC               | A.4            | mdg (       | Slurry   | Loop Hidw     | (gpm)                      | 3.71  | 3.6       | 3.6   | 3.6       | 3.6       | 3.6   |            |
| Slurry<br>Loop Flow<br>Rate<br>(gpm)   | 0.86     | 1.02     | 1.1      | 6.0      | 0.96     | 0.94     | 0.94   | - 011200          | - 010000       | 0.96        |          |               | Slumy<br>Temp C            | 24.3  | 24.8      | 25    | 25.2      | 26.1      | 25.2  |            |
| Total Time<br>Elapsed<br>(Min)         | 00:0     | 0:02     | 0:10     | 0.15     | 0:20     | 0:25     | 0:30   | Averane D         | L offininau    | urry Flow = |          |               | Chiller<br>Temp C          | 22    | 22        | 21    | 22        | 22        | 21    |            |
| Time                                   | 16:40    | 16:45    | 16:50    | 16.55    | 17:00    | 17:05    | 17:10  |                   |                | Average SI  |          |               | Time                       | 12:30 | 12:40     | 12:45 | 12:51     | 12:56     | 13:00 | Aeasured   |
| Condition<br>Number                    | 80       | 85       | 8b       | 8b       | 8b       | 8b       | 8b     |                   |                | RAW         |          |               | Test<br>Number             | 80    | <b>GB</b> | QB    | <b>Gb</b> | <b>GB</b> | 80    | NM = Not A |

τ.

# 0.1 micron Liquid- Service Mott Filter

### C-106 Filtration Simulant at 8 wt% Solids Loading Cuf Testing

High Axial Velocity and Transmembrane Pressure Conditions

| ammeability<br>gpm/ft2/psi)          | 0.012083 | 0.004986 | 0.003904 | 0.003405 | 0.003077 | 0.000765 | Providence of | 0.000389 | 0.003809 | 0.003085 | 0.002849 | 0.002698 |               |               |                        |                |                                |                     |                    |       |       |       |       |       |       |       |       |         |       |       |       |        |   |              |                          |
|--------------------------------------|----------|----------|----------|----------|----------|----------|---------------|----------|----------|----------|----------|----------|---------------|---------------|------------------------|----------------|--------------------------------|---------------------|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|--------|---|--------------|--------------------------|
| Filtrate<br>Flux<br>(gpm/ft2)        | 0.583002 | 0.248468 | 0.195359 | 0.170355 | D 153930 | 0.138335 | D 128300      | D 110161 | 0.190609 | 0.155927 | 0.142552 | 0.135059 |               |               |                        |                |                                |                     |                    |       |       |       |       |       |       |       |       |         |       |       |       |        |   |              |                          |
| Permaability<br>(m/day/bar)          | 30.296   | 4.228    | 3.324    | 2 899    | 2.619    | 2.354    | 2 180         | 2.038    | 3 243    | 2.627    | 2.426    | 2.297    |               |               |                        |                |                                |                     |                    |       |       |       |       |       |       |       |       |         |       |       |       |        |   |              |                          |
| Filtrate Flux<br>(m3/m2/day)         | 34,785   | 14.575   | 11.460   | 9.993    | 9.030    | B 115    | 7527          | 6:990    | 11 181   | 9.147    | 8.362    | 7,958    |               |               |                        |                |                                |                     |                    |       |       |       |       |       |       |       |       |         |       |       |       |        |   | 1            | _                        |
| Slurry Temp C                        | 24.1     | 24.1     | 24.6     | 24.7     | 24.9     | 24.12    | 0.40          | 23.9     | 21.9     | 22.1     | 22.2     | 22.7     |               |               |                        |                |                                | Cheve Down          | Rate (mL/sec)      | 7 160 | 3 000 | 0.960 | 2 082 | 1 901 | 1 706 | 1 554 | 1431  | 102220  | 2.161 | 1.778 | 1 630 | 4 27.4 | 1 | AN SALEBOOK  | vs. Time at              |
| Filtrate<br>Flow Rate<br>(mU/sec)    | 7/160    | 3.000    | 2.392    | 2.092    | 1.901    | 1,708    | 1.554         | 1.431    | 2.161    | 1.778    | 1.830    | 1.574    |               |               |                        |                |                                | Time of             | Collection         | 4.19  | 10    | 12 54 | 14 34 | 15.78 | 17.58 | 19.31 | 20.97 | 1025202 | 13.88 | 16.87 | 18.4  | 10.00  | 0 | 1000         | neability<br>nd 9.4 ft/s |
| Time of<br>Collection<br>(Sec)       | 4,19     | 10       | 12.54    | 14.34    | 15.78    | 17.56    | 15.21         | 20.97    | 13.88    | 16.87    | 18.4     | 19.06    |               |               |                        |                |                                | Fitrato             | Volume             | R     | 05    | 9     | 30    | 9     | 30    | 30    | 06    | 8       | 30    | 30    | 30    | Line . | ł |              | 50.0 psig a              |
| r itrate<br>Sample<br>Volume<br>(mL) | 30       | 8        | 8        | R        | 8        | 30       | 8             | 98       | 30       | 30       | 8        | 30       |               |               |                        |                |                                | Fiber inlet         | Pressue (psid)     | 53    | 63    | 12    | 29    | 13    | 12    | 52    | 0     | R.      | 23    | 3     | 52.5  | 10.02  | 7 |              | -106 Simu                |
| Pressure<br>Drop (psig)              | 4        | 4        | ¥        | 4        | 4        | 4        | 4             | 4        | 4        | 5        | 10       | 4.5      | 9.4           |               |                        |                |                                | Permente            | Pressure<br>(psid) |       |       |       |       |       |       |       |       |         |       |       |       |        |   | 9            | 0                        |
| Fitter Intert<br>Pressue<br>(psig)   | 19       | 23       | 8        | 23       | 3        | 3        | 3             | 22       | 3        | 13       | 52.5     | 52.6     | #18 +         |               |                        |                |                                | Filter<br>Outliet   | Pressure<br>(psid) | 47    | AL    | 44    | 48    | 19    | 84    | 48    | 107   | 1000    | 48    | 48    | 47.5  | -      | ł |              |                          |
| Pressure<br>(psig)                   | 47       | 48       | <b>早</b> | 40       | 84       | 48       | 48            | 44       | 4.0      | 48       | 47.5     | 48       | 3.23          | 40.00         |                        | 2.437          | 0.196                          | Slurry<br>Looo Flow | Rate<br>(com)      | 3.23  | 3 32  | 0.0   | 3 27  | 3.23  | 3 23  | 325   | 3.28  | Sec.    | 3.22  | 3 17  | 3.23  | 10.00  |   | 1000         | Time                     |
| Slurry<br>Loop Flow<br>Rate<br>(gpm) | 3.23     | 3.22     | 3.2      | 327      | 3 23     | 3.23     | 325           | 3.28     | 3.22     | 3.17     | 3.23     | 3.26     |               |               |                        | = 285          | AL2 =                          |                     | Sturry<br>Temp C   | 24.1  | 24.4  | 24.8  | 24.7  | 24.9  | 24.9  | 24.2  | 23.9  |         | 21.9  | 22.1  | 22.2  | 1.55   | ī | C. North Com | Flux vs.<br>nd 9.4 ft/s  |
| otal Time<br>lapaed<br>An)           | 0.00     | 0.04     | 60.0     | 0.14     | D-19     | D:24     | 0.29          | 0.34     | 0:44     | 0:49     | 154      | 0:59     | v Flow apm    | sure rout -   | - number of the second | the Flow mill  | the Fluck gpm                  |                     | hiller<br>amp C    | 15    | 51    | ţ     | 14    | 15    | 1     | 12    | 1     |         | 11    | 12    | 1     | \$     | 1 | 0.00000      | t 50 psig an             |
| Time                                 | 3:36     | 3:40     | 3,45     | 3.50     | 3.55     | 4:00     | 4.05          | 4.10     | 4.20     | 4.25     | 430      | 4:35     | Average Sturr | Average Dreet | and a second second    | Average Filtra | Average Filtra<br>Average Perm | e                   | Time 10            | 3.36  | 3-40  | 3.45  | 3.50  | 3.65  | 4:00  | 4:05  | 4.10  | 4:15    | 4:20  | 4.25  | 4.30  | A-95   |   | 1000         | C-106                    |
| Condition                            | +        | F        | -        | +        | +        | -        | ÷             | -        | -        |          | Ŧ        | +        | 1             |               |                        |                |                                |                     | Number             | -     | -     |       |       | 1     | -     | 4     |       |         | -     | -     |       |        |   |              |                          |

ie.



1:12

0:57

0:43

0.14

00:0

1.12

0.57

0.43 0.28 0.43 Time (hr:min)

0.14

000

•••••

••••••

Time (hr:min) 0.28

Permeability (mudatybar) (mudatybar) (00 00 • •

| 'ermeability<br>gpm/ft2/psi)            | 0.003542 | 0.002851 | 0.002597 | 0.002417 | 0.002206 | 0.002005 | 0.001991 | 0.001741 | 0.001752 | 0.001731 | 0.001679 | 0.001551 |              |              |                |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |          |       |       |       |              |       |       |       |       |       |       |       |
|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|----------------|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|----------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|
| Filtrate Flux (                         | 0.106342 | 0.085684 | 0.077969 | 0.072565 | 0.066225 | 0.080191 | 0.058287 | 0.052718 | 0.052560 | 0.061969 | 0.050416 | 0.048111 |              |              |                |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |          |       |       |       |              |       |       |       |       |       |       |       |
| Permeability<br>(m/day/bar)             | 3.016    | 2.427    | 2.211    | 2.058    | 1.878    | 1 707    | 1.096    | 1 483    | 1491     | 1.474    | 1.430    | 1.320    |              |              |                |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |          |       |       |       |              |       |       |       |       |       |       |       |
| Filtrate Flux<br>m3/m2/day)             | 6.238    | 5.020    | 4.574    | 4,257    | 3.885    | 3.531    | 3.419    | 3.092    | 3 085    | 3.049    | 2.957    | 2.822    |              |              |                |                |               | in the second se |               |               |          |       |       |       |              |       |       |       |       |       |       |       |
| Slury Temp C                            | 2.82     | 22.3     | 21.6     | 22.1     | 23.1     | 24.1     | 24.6     | 24.6     | 24       | 22.9     | 23.2     | 22.8     |              |              |                |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fillenta Flow | Rate (mL/sec) | 2,667    | 1 500 | 1.348 | 1.248 | 1,265        | 1.255 | 1.151 | 1.161 | 1.110 | 1.092 | 1.100 | 1.102 |
| Fitrate<br>Flow Rate<br>(mL/sec)        | 1.252    | 0.982    | 0.882    | 0.828    | 0.777    | 0.727    | 0.714    | 0.648    | 0.633    | 0.606    | 0.593    | 0.560    |              |              |                |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time of       | Collection    | 11.26    | 2     | 22.25 | 24.03 | 23.72        | 23.91 | 26.06 | 25.84 | 27.03 | 27.47 | 27.28 | 27.22 |
| Time of<br>Collection<br>(Sec)          | 23.87    | 30.55    | 34.03    | 36.25    | 38.5     | 41.28    | 42.03    | 45.47    | 47.38    | 49.47    | 50.66    | 53.59    |              |              |                |                |               | Clinical of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample        | Valume        | 8        | R     | 30    | 30    | 30           | 8     | 8     | 8     | 8     | 92    | 30    | 8     |
| Filtrate<br>Ssmple<br>Volume<br>(mL)    | 30       | 8        | 30       | 30       | 30       | 30       | 30       | 30       | 30       | 30       | 30       | 30       |              |              |                |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Filter Inlet  | pression      | CE IBand | R     | 51    | 32    | 33           | 2     | He I  | 32.5  | 33    | 22    | 32    | 33    |
| Pressure<br>Drop (psig)                 | 4        | 4        | 4        | 4        | 4        | 4        | 3.5      | म म      | 4        | 4        | 4        | 4        | 7.6          |              |                |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Permerade     | Pressure      | (Field   |       |       |       |              |       |       |       |       |       |       |       |
| Fitter Inlet<br>Pressue<br>(psig)       | 32       | 32       | 27       | 32       | Pf       | 5        | 10       | 32.5     | 32       | 12       | No.      | 33       | 10's =       |              |                |                |               | Citor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Outlet        | Pressure      | 19mm     | 13    | 28    | 8     | 28           | 28    | 27.5  | 28    | 28    | 28    | 28    | 29    |
| Fifter<br>Outliet<br>Pressure<br>(psig) | 8        | 13       | R        | 28       | R        | 58       | 27,5     | 28       | 18       | 28       | 82       | 59       | 2.60         | 30.04        | 0.767          | 0.065          | 0.002         | Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Loop Flow     | Rate          | 2.72     | 2.55  | 2.58  | 2.51  | 2.62         | 2.64  | 26    | 2.64  | 2,62  | 2.47  | 2.59  | 2.6   |
| lurry Loop<br>low Rate<br>Ipm)          | 2.72     | 2,65     | 2.68     | 2.51     | 2.62     | 2.64     | 20       | 2.64     | 2.82     | 2.47     | 2,69     | 2.6      | н            |              | H Date         | m2 =           | n/ff2/psi =   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | luny          | 22.3     | 21.9  | 21.5  | 21.9  | 22.5         | 22.7  | 137   | 23.2  | 23.3  | 23.4  | 23.5  | 23.5  |
| atal Time S<br>lapsed F<br>Min) ((      | 0.00     | 0.04     | 0.09     | 0.14     | 0.19     | 0.24     | 0:29     | 0,34     | 0:39     | 0.49     | 155      | 0:20     | y Flow gpm   | sure psid =  | the Flow mL    | de Flux gpm    | neability gpr |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | hiller S      | 11       | 13    | 74    | 11    | 18           | 18    | 18    | 12    | 21    | 24    | 17    | 18    |
| Time                                    | 921      | 9.25     | 9.30     | 9-35     | 9.40     | 945      | 9.50     | 9.55     | 10:00    | 10.10    | 10:15    | 10.20    | Average Shur | Average Pres | Average Filtra | Average Filtra | Average Perm  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | O.F           | 921      | 9.25  | 9:30  | 9-35  | 9.40         | 9.45  | 9.50  | 916   | 10.00 | 10.10 | 10:15 | 10.20 |
| Condition                               | IN       | P.       | 24       | P4       | PN .     | N        | 04       | CN.      | N        | 14       | en       | D4       | 2            | t's          | EV.            | 74             | Pe            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Test          | 17       | N     | N     | 14    | <sup>N</sup> | N.    | N     | 0     | C4    | 2     | CH.   | es.   |



| Permeability<br>(gpm/ti2/psi)          | 0.006346 | 0.002098 | 0.001740 | 0.001625 | 0.001475 | 0.001451     | 0.001452 | 0.001380 | 0 001345 | 0.001304 | 0.001289 | 0.001262 | 0.001211 |                                                             |             |                   |            |       |       |       |       |       |       |       |       |       |       |       |       |       |  |
|----------------------------------------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|-------------------------------------------------------------|-------------|-------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Filtrate Flux<br>(gpm/#2)              | 0.374501 | 0 146106 | 0.121454 | 0 113448 | 0.102944 | 0 10 10 1831 | 0.101696 | 0.098291 | 0.094557 | 0.091359 | 0.069616 | 0.068430 | 0.084847 |                                                             |             |                   |            |       |       |       |       |       |       |       |       |       |       |       |       |       |  |
| Permeability<br>(m/day/bar)            | 4.552    | 1.778    | 1481     | 1.384    | 1,256    | 1 235        | 1 2345   | 1.175    | 1.145    | 1,110    | 1 097    | 1.075    | 1.031    |                                                             |             |                   |            |       |       |       |       |       |       |       |       |       |       |       |       |       |  |
| Fitrate Flux<br>(m3/m2/day)            | 21.968   | B.571    | 7.124    | 6.655    | 6.009    | 5.962        | 5.965    | 5.648    | 5.547    | 5.359    | 5257     | 5.187    | 4.977    |                                                             |             |                   |            |       |       |       |       |       |       |       |       |       |       |       |       |       |  |
| Stury Temp C                           | 24.5     | 24.3     | 24.2     | 242      | 24.3     | 24.3         | 24.5     | 24.7     | 24.9     | 25.1     | 25       | 24.9     | 24.9     |                                                             |             | Fitrate Flow Rate | (ml.) sec) | 4.573 | 1.774 | 1/4/1 | 1.374 | 1,250 | 1,234 | 1.242 | 1.182 | 1.158 | 1,135 | 1.110 | 1.082 | 1.048 |  |
| Fitnate<br>Flow Rate<br>(mL/sec)       | 4.573    | 1.774    | 1.471    | 1.374    | 1,250    | 1234         | 1.242    | 1.182    | 1.168    | 1,135    | 1.110    | 1.092    | 1.048    |                                                             |             | Time of           | (Sec)      | 0.56  | 16.91 | 20.4  | 21.84 | 24    | 24.31 | 24,16 | 25.37 | 25.69 | 26.44 | 27.03 | 27.47 | 28.63 |  |
| Time of<br>Collection<br>(Sec)         | 0.56     | 16.91    | 20.4     | 21.84    | 24       | 24.31        | 24.18    | 25.37    | 25.69    | 26.44    | 27.03    | 27.47    | 28.63    |                                                             | 2           | Sample            | m()        | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    |  |
| Fitrate<br>Sample<br>Volume<br>(mL)    | 30       | 30       | 30       | 30       | 30       | 30           | 30       | 30       | 30       | 30       | 30       | 8        | 8        |                                                             |             | Fitter Inlet      | (pisig)    | 22    | 72    | 71.5  | 71.5  | 715   | 12    | 12    | 715   | 22    | 22    | F     | 22    | 72    |  |
| Pressure<br>Drap (psig)                | 4        | *        | 3.6      | 3.5      | 3.5      | ч            | 4        | 3.5      | 前の       | **       | 10       | 4        |          | 7.2                                                         |             | Permeate          | (pisig)    |       |       |       |       |       |       |       |       |       |       |       |       |       |  |
| Filter Intet<br>Pressua<br>(psig)      | 72       | 72       | 212      | 71.5     | 71.5     | 12           | 72       | 2115     | 12       | 2        | 2        | 12       | 12       | - 52                                                        |             | Filter            | (psig)     | 昭     | 8     | 8     | 8     | 8     | 89    | 8     | 8     | 68.5  | 69    | 68    | 68    | 89    |  |
| Filter<br>Outlet<br>Pressure<br>(psig) | 68       | 88       | 60       | 89       | 89       | 88           | 68       | 69       | 683      | 8        | 8        | 8        | 8        | 2.47<br>69.90<br>1.512<br>0.124                             | 0,000       | Surry             | Rate (gpm) | 26    | 2.6   | 24    | 2.45  | 2.48  | 2.47  | 2.52  | 2.52  | 2.47  | 2.42  | 2.4   | 2.42  | 2.43  |  |
| Slurry<br>Loop Flaw<br>Rate (gpm)      | 2.6      | 25       | 2.4      | 2.45     | 2.48     | 2.47         | 2.52     | 2.52     | 2.47     | 2.42     | 24       | 2.42     | 2.43     | 1 =<br>/566 =<br>n/ft2 =                                    | - Hedrohum  |                   | Temp C     | 24.5  | 24.3  | 242   | 24.2  | 243   | 24.3  | 24.5  | 24.7  | 24.9  | 12    | 53    | 24.9  | 24.9  |  |
| Total Time<br>Elapsed<br>Mini          | 00:0     | 0.05     | 0.10     | 0.15     | 0.20     | 0.25         | 0.30     | 0.35     | 0:40     | 0:45     | 0:50     | 0,55     | 1.00     | rry Flow gpr<br>ssure psid =<br>ate Flow ml<br>ate Flox gpr | di Ammeri   | 1                 | Temp C     | 13    | 11    | 19    | 12    | ę     | 12    | ţ2    | 12    | 13    | 13    | EF    | 12    | 12    |  |
| Time                                   | 10.25    | 10:30    | 10.35    | 10/40    | 10:45    | 10:50        | 10:55    | 11:00    | 11:05    | 11.10    | 11.15    | 11:20    | 11:25    | Average Slu<br>Average Pro<br>Average Filt<br>Average Filt  | www.age.r.m | ,                 | Time       | 10.25 | 10:30 | 10.35 | 10.40 | 10.45 | 10:50 | 10.55 | 11:00 | 11:05 | 11:10 | 11:15 | 11:20 | 11:25 |  |
| Candilian                              | 10       | 0        | 63       | 10       | 20       | 19           | 17       | ei.      | 175      | 0        | n        | m        | <i>m</i> | 0000                                                        | 9           | Taxet             | Number     | 10    | n     | r).   | n     | 0     | n     | ri.   | m     | 97    | n     | n     | m     | 67    |  |

ε,



| 0.034                                  |          |          |           |          |          |          |          |          |          |          | -        |          |                                                                              |                                          |                                   |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------------------------------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Fittrate<br>Flux<br>(com/h2)           | 0.154608 | 0 117247 | 0.118553  | 0.106409 | 0.103706 | 0.101288 | 0 100129 | 0.095921 | 0.092692 | 0.090778 | 0.087825 | 0.088331 |                                                                              | 12                                       |                                   |       |       |       |       |       |       |       |       |       |       |       |       |
| Permeability<br>(m/day/bar)            | 4.459    | 3.325    | 3.305     | 2.969    | 2.893    | 2.849    | 2.840    | 2,766    | 2.719    | 2.018    | 2.485    | 2.505    |                                                                              |                                          |                                   |       |       |       |       |       |       |       |       |       |       |       |       |
| Filtrate Flux<br>(m3/m2/day)           | 090.6    | 6.878    | 6.837     | 6.183    | 6.003    | 5.942    | 5.874    | 5.627    | 5.437    | 5.325    | 5.140    | 5.182    |                                                                              |                                          |                                   |       |       |       |       |       |       |       |       |       |       |       |       |
| Stury Temp C                           | 22.5     | 22       | 22.3      | 22.6     | 8        | 53       | 23.1     | 23.1     | 23.2     | 23.3     | 23.2     | 23.1     |                                                                              |                                          | Fitrate Flow<br>Rate (mU/sec)     | 1.784 | 1.333 | 1.337 | 1.220 | 1.214 | 1,185 | 1,175 | 1.128 | 1.091 | 1.071 | 1.031 | 1.037 |
| Filtrate<br>Flow Rate<br>(mL/sac)      | 1 784    | 1.333    | 1.337     | 1.220    | 1.214    | 1 185    | 1.175    | 1.120    | 1.091    | 1.071    | 1.031    | 1.037    |                                                                              |                                          | Time of<br>Collection<br>(Sec)    | 18.82 | 22.5  | 22 44 | 24,6  | 24.72 | 25.31 | 25.53 | 26.65 | 27.5  | 82    | 29,09 | 28.94 |
| Time of<br>Collection<br>(Sec)         | 16.82    | 22.5     | 22.44     | 246      | 24.72    | 25.31    | 25.53    | 20.65    | 27.5     | 28       | 29.09    | 28.84    |                                                                              | and the second                           | Sample<br>Volume<br>(mL)          | 8     | 99    | 02    | 30    | 98    | 30    | 30    | 30    | 30    | 30    | 8     | 30    |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 8        | 8        | 8         | 5        | 8        | 8        | 2        | 92       | 30       | 8        | 30       | 30       |                                                                              |                                          | Filter triet<br>Pressue<br>(psid) | 31    | 22    | 22    | 32    | 33    | 32    | 27    | 31    | 31    | 31    | 32    | R     |
| Pressure<br>Drop (psig)                | e        | ч        | 4         | 4        | +0       | 3.5      | 4        | 0        | 4        | m        | 4        | 7        | 7.8                                                                          |                                          | Permeate<br>Pressure<br>(psid)    |       |       |       |       |       |       |       |       |       |       |       |       |
| Fitter Injet<br>Pressue<br>(palg)      | 31       | 21       | 14<br>171 | 27       | EE       | 32       | 13       | 10       | 31       | 31       | 32       | 32       | 10.5 =                                                                       | C. C | Pressure<br>(psic)                | 28    | 28    | 28    | 28    | 28    | 28.5  | 28    | 28    | 27    | 28    | 28    | 12    |
| Filter<br>Outlet<br>Pressure<br>(psig) | 28       | 28       | 13日       | 28       | 2        | 28.5     | 2        | 28       | 27       | 28       | 28       | 28       | 2 69<br>29 85<br>1.217<br>0.105<br>0.003                                     | 1000                                     | Loop Flow<br>Rate<br>(apmi)       | 2.65  | 27    | 2.83  | 2.57  | 2.8   | 2.75  | 2.68  | 29    | 2.76  | 2,44  | 2.75  | 25    |
| Sturry<br>Loop Flow<br>Rate<br>(gpm)   | 2,65     | 2.7      | 2.83      | 2.57     | 28       | 2.75     | 2,68     | 2.9      | 2.76     | 2.44     | 2.75     | 2.5      | m =<br>=<br>i(Lisac =<br>om/t2 =<br>pm/t2/psi =                              |                                          | Sturry<br>Temp C                  | 22.5  | 22    | 22.3  | 22.6  | 23    | EN I  | 23.1  | 23.1  | 23.2  | 23.3  | 23.2  | 23.1  |
| Total Time<br>Elapsed<br>(Min)         | 0:00     | 0.07     | 0:10      | 0.15     | 0.22     | 0.25     | 0:30     | 0.35     | 0.42     | 0.50     | 0.55     | 1.00     | urry Flow gp<br>essure psid<br>trate Flow m<br>trate Flux gs<br>rmeability o |                                          | Chiller<br>Temp C                 | 12    | 10    | 15    | 16    | 49    | 11    | 11    | 17    | 18    | 44    | 11    | 18    |
| Time                                   | 11,35    | 11:42    | 11:45     | 11:50    | 11:57    | 12:00    | 12.05    | 12:30    | 12.17    | 12.25    | 12-30    | 12.35    | Average St<br>Average Fil<br>Average Fil<br>Average Fil                      |                                          | Time                              | 11.35 | 11:42 | 11:45 | 11.50 | 11:57 | 12:00 | 12.06 | 12:10 | 12:17 | 12:25 | 12:30 | 12:35 |
| Condition                              | 4        | 4        | 4         | य        | च        | 4        | 4        | *        | 4        | 4        | 4        | 4        | *****                                                                        |                                          | Test<br>Number                    | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | *     | *     |



Permarbili ty (gpm/ft2/p st) C

| P > 20                                 | -        |          |          |          |          |          |          |          |          |                                         |          |             |                             |                              |                              |            |       |        |       |       |       |        |       |       |       |       |             |                          |                                                                    |                     |                         |           |             |    |                                    |        |
|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------|----------|-------------|-----------------------------|------------------------------|------------------------------|------------|-------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------------|--------------------------|--------------------------------------------------------------------|---------------------|-------------------------|-----------|-------------|----|------------------------------------|--------|
| Fibrate<br>Flux<br>(opm/#2)            | 0.192418 | 0.134885 | 0.121236 | 0.113265 | 0.106856 | 0.106982 | 0.102859 | 0.101407 | 0.095324 | 0.094907                                | D.089897 |             |                             |                              |                              |            |       |        |       |       |       |        |       |       |       |       |             |                          |                                                                    |                     |                         |           |             |    |                                    |        |
| Permeability<br>(m/day/bar)            | 3.274    | 2 295    | 2.063    | 1.927    | 1.852    | 1.853    | 1,750    | 1.728    | 1.022    | 1,023                                   | 1530     |             |                             |                              |                              |            |       |        |       |       |       |        |       |       |       |       |             |                          |                                                                    |                     |                         |           |             |    |                                    |        |
| Filtrate Flux<br>(m3/m2/dav)           | 11.287   | 7.912    | 7,111    | 6.644    | 0.386    | 6.387    | 6.034    | 5.949    | 286.6    | 0.001                                   | 5273     |             |                             |                              |                              |            |       |        |       |       |       |        |       |       |       |       | -           |                          |                                                                    |                     |                         | ~         |             | ĨŦ |                                    |        |
| Shrry Temp C                           | 24.8     | 24.8     | 24.2     | 24.5     | 25.1     | 0.92     | 24.7     | 24.7     | 0.7      | 24                                      | 18       |             |                             | e                            | Filtrate Flow Rate           | (man man)  | 2.370 | 1001   | 1 383 | 1 352 | 1.345 | 1,263  | 1,245 | 1,184 | 1,182 | 1,116 | vs. Time at |                          |                                                                    |                     |                         | 0.57 1.12 |             |    | rs. Time at                        |        |
| Filtrate<br>Flow Rate<br>(mL/bec)      | 2370     | 1.661    | 1 468    | 1 383    | 1.352    | 1345     | 1,263    | 1.245    | 101.1    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.116    |             |                             |                              | Time of<br>Collection        | (Bec)      | 12,66 | 201.01 | 37.83 | 22.19 | 22.31 | 223.75 | 24.08 | 20.20 | 時間    | 28.87 | meability   | and 8.6 fb/s<br>ition 6) |                                                                    | :                   | 3                       | 28 0.43   | ne (hr:min) |    | neability v<br>nd 8.6 Ms           | -      |
| Time of<br>Collection<br>(Sec)         | 12.08    | 18.06    | 20.44    | 21.69    | 22.19    | 22.31    | 21.52    | 24.09    | 10.45    | 25,25                                   | 26.87    |             |                             |                              | Filtrate<br>Sample<br>Volume | (Jul)      | 90    | 00     | R     | 30    | 30    | 30     | R     | 00    | 8 9   | 88    | ulant Por   | 50.0 psig :<br>(Cond     |                                                                    |                     |                         | 14 0.2    | μ,          |    | 50.0 psig a                        |        |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 30       | 30       | 30       | 30       | 8        | 8        | 8        | 8.3      | 8.9      | 8 9                                     | 28       |             |                             |                              | Filter Inlet<br>Pressue      | (Brad)     | 12    | 2 2    | 1 2   | 123   | 23    | 3      | 2     | 21 1  | 2 5   | 2 2   | -106 Sim    |                          | . 0                                                                | •••••               | 0                       | 0:00 0    |             |    | 106 Simu                           | 900    |
| Pressure<br>Drop (psig)                | 4        | 4        | 4        | 10       | 4        | τ.·      | 4.       | * *      | 1.4      | n H                                     | 4        | 8.6         |                             |                              | Permeate                     | (pisig)    |       |        |       |       |       |        |       |       |       |       | 0           |                          | (JE<br>(JE                                                         | ideet<br>diya<br>ci | 0)<br>(U)<br>(U)<br>(U) | d         |             |    | Ċ                                  | 2      |
| Filter Intet<br>Pressue<br>(psig)      | 25       | 52       | 23       | 3        | 8        | 21       | 8        | 3 5      | 8 2      | 2 5                                     | 1 28     | = 5/1       |                             |                              | Filter<br>Outlet<br>Pressure | (psig)     | Ş :   | 9 S    | 1     | \$    | 4     | 49     | 8     | 8     | 4     | ₽ ₩   |             |                          | Î                                                                  |                     | 1                       | 1.12      |             | 11 |                                    | ſ      |
| Filter<br>Outlet<br>Prossure<br>(psig) | 48       | 48       | 48       | 8        | Ş :      | 17 S     | Ş :      | φ 4      | 47.5     | 100                                     | \$       | 2.95        | 49.98                       | 0 113                        | Shurry<br>Loop Flaw          | Rate (gpm) | 3.00  | AR C   | 307   | 2.89  | 2.94  | 2.92   | 2.87  | 2.94  | 18    | 3.03  | Time        |                          |                                                                    | :                   |                         | 0.57      |             |    | Time                               |        |
| Sluny<br>Loop Flow<br>Rate (gpm)       | 3.08     | 2.91     | 2.68     | 10.5     | 2.69     | 194      | 200      |          | 100      | 23.62                                   | 102      | I.          | - 1990 m                    | mft2 =<br>m/ft2/psi =        | Surv                         | Temp C     | 24.8  | 24.2   | 24.5  | 25.1  | 24.9  | 24.7   | 24.7  | 25.1  | N N   | 25.1  | Flux vs.    | and 8.6 ft/s<br>tion 6)  |                                                                    | :                   |                         | 0.43      | e (hr:min)  |    | Flux vs.<br>and 8.6 ft/s<br>ion 6) |        |
| Total Time<br>Elapsed<br>(Min)         | 0.00     | 0.05     | 0110     | 0.15     | 0.20     | 0.24     | 0.30     | 020      | 140      | 0.50                                    | 1.01     | my Flow gpn | - bise and a set            | rate Flux gp<br>meability gp | Chiller                      | Temp C     | ¥ :   | 2 [2   | 9     | 16    | 14    | 15     | 10    | ₽ 1   | 2 4   | 2 ¥1  | Simulant    | it 50.0 psig.<br>(Condit |                                                                    | :                   |                         | 4 0.28    | Tim         |    | Simulant<br>50.0 psig /            |        |
| Tate                                   | 12.45    | 12-50    | t2:55    | 13:00    | 13.05    | 13,09    | 0        | 12.20    | UP-ST    | 13.35                                   | 13:46    | Average Stu | Average Pro<br>Average Filb | Average Filt<br>Average Per  |                              | Time       | 12.45 | 12-46  | 13:00 | 13:05 | 13.09 | 13:15  | 13:20 | 13.25 | 10.00 | 13:46 | C-106       |                          |                                                                    | •                   |                         | 00 0.14   |             |    | C-106                              |        |
| Condition                              | 'n       | in.      | M2)      | 90.1     | 0.3      | DN       | 0.4      | n u      |          | 1 10                                    | 10       | ŝ           | un in                       | in in                        | Test                         | Number     | 40.4  | 0.40   | -0    | -     | 10    | 0      | 0.1   | D 4   | n v   | 5 v2  |             |                          | and<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>and | H eda<br>Marka      | 100 mil                 | 0.6       |             |    |                                    | x 0.30 |

1:26

0:28 0:57 Time (hr:min)

0.00

12

0:57

0.28 0.43 Time (hr:min)

0.14

000

0.002 \* \* \* \* \* \* \* \* \* \*

Yillidsemne9 (isq\Sfimqg)

. . . . . . . . . .

٠

xulf atstiff (gm/g) 0.20 0.10 0.00 0.00 0.00 0.00

r

Permentbill y y (http://lpts 0.0025696 0.0002696 0.0002778 0.0002778 0.0002778 0.0002778 0.0002778 0.0002778 0.0002778 0.0002766 0.0002778 0.0007907 0.0007906

| -                                      | 1         | 5        |         | 1       |         | ÷.,      | 1        | 1        |           | 10       |          | -        |               |               |             |              |                    |                 |       |              |       |       |       |       |       |       |       |       |             |                         |             |                       |                  |           |          |    |                                       |        |         |            |                |           |
|----------------------------------------|-----------|----------|---------|---------|---------|----------|----------|----------|-----------|----------|----------|----------|---------------|---------------|-------------|--------------|--------------------|-----------------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|-------------------------|-------------|-----------------------|------------------|-----------|----------|----|---------------------------------------|--------|---------|------------|----------------|-----------|
| Ethrate Flux<br>(com/#2)               | C strange | 100221-0 | 0.11003 | 0.10990 | n 40000 | 0.102800 | C CORRER | 0.100830 | 0.0997690 | 0.098750 | 0.100271 | 0.097832 |               |               |             |              |                    |                 |       |              |       |       |       |       |       |       |       |       |             |                         |             |                       |                  |           |          |    |                                       |        |         |            |                |           |
| Permesbility<br>(m/day/har)            | 0 608 ·   | 10000    | 000 0   | 0000    | 1.400   | 118.2    | 2 790    | 2.862    | 2.829     | 2.801    | 2820     | 2774     |               |               |             |              |                    |                 |       |              |       |       |       |       |       |       |       |       |             |                         |             |                       |                  |           |          |    |                                       |        |         |            |                |           |
| Fittrate Flux<br>m3/m2/dav)            | 7 105     | 1000     | 10404   | 10000   | a nut   | 1000     | 5 771    | 5.921    | 5.852     | 5.780    | 5.882    | 5.739    |               |               |             |              |                    |                 |       |              |       |       |       |       |       |       |       |       |             |                         |             |                       |                  |           |          | -1 | -                                     |        |         |            |                |           |
| Stury Temp C                           | 36        | 1 2      | D MC    | 1.25    |         | 26.4     | 32       | 55       | 12        | 5        | 25.1     | 24.8     |               |               |             |              | Filtrate Flow Rate | (mL/sec)        | 1.519 | 1.369        | 1345  | 1 205 | 1 242 | 1.219 | 1,250 | 1.236 | 1,223 | 1,205 | vs. Time at |                         |             | ••••                  |                  | 0-57 1-12 |          |    | s. Time at                            | Ī      |         |            |                | 0:57 1:12 |
| Fibrate<br>Ficw Rate<br>(mL/sec)       | 1 510     | 1000     | 1 145   | 1 335   | 1 202   | 1 242    | 1219     | 1.250    | 1.238     | 1.223    | 1245     | 1.205    |               |               |             |              | Time of            | (Sec)           | 19.75 | 28.22        | 22.31 | 21.22 | 24.15 | 24.62 | 24    | 24.28 | 24.53 | 24.9  | neability - | nd 13.1 ft/s<br>tion 6) |             | •                     |                  | 8 0.43    | thrmin   |    | d 13,1 f/s<br>on 60                   |        |         |            |                | 28 0:43   |
| Time of<br>Collection<br>(Sec)         | 10.76     | 20.00    | 12 00   | TA CC   | 24.22   | 24.15    | 24.62    | 24       | 24.28     | 24.53    | 24.09    | 24.9     |               |               |             |              | Filtrate<br>Sampie | Volume<br>(mlL) | 8     | <del>1</del> | 8.8   | 8.8   | 8     | 8     | 90    | 8     | 8     | 8.8   | ulant Perm  | 30.00 psig a<br>(Condi  |             |                       |                  | 14 0.2    | L.       |    | lant Perm<br>30.0 psig an<br>(Conditi |        |         | E E        |                | 0:14 02   |
| Fittrate<br>Sample<br>Volume<br>(mL)   | OF        | 4D       | 28      | 19      | COE.    | 2.6      | 8        | 00       | 8         | 8        | 8        | 8        |               |               |             |              | Filter Inlet       | (psig)          | 32    | R            | 8     | 8 2   | R     | 33    | 33    | 33    | 33    | 33.0  | -106 Sim    |                         |             | •                     |                  | 0:00      |          |    | 106 Simu                              | 005    | 004 .   | 003        | 001            | 00:00     |
| Pressure<br>Drop (psig)                | -         | 10       |         |         |         | 2.0      | Ð        | 9        | 9         | φ        | 6.6      | 9        | 13.1          |               | 1           |              | Permeate           | (psig)          |       |              |       |       |       |       |       |       |       |       | 0           |                         | (JB<br>(4)) | ni (<br>qife)<br>qee) | me9<br>(mid<br>/ |           |          |    | Ú                                     | 0 (1 % | sd/2    | iem<br>Mma | 0<br>16)<br>9d |           |
| Filter Intet<br>Pressue<br>(psig)      | 32        | EE.      | 19      | 1       | R       | 8 8      | 12       | 8        | 8         | 33       | 33.5     | 2        | = 5jU         |               |             |              | Filter             | (Drad)          | 8     | 12           | 1     | 9 14  | 22    | 27    | R     | 12    | 12    | 11    | 11          |                         | 1           | 1                     |                  | 1:12      |          |    |                                       | Γ      | T       | Т          | T              | 1:12      |
| Filtor<br>Outlet<br>Pressure<br>(psig) | 92        | 22       | 10      | 28      | 27      | 1        | 12       | 27       | 27        | 27       | 12       | 27       | 4,49          | 20.02         | 0 454       | 0.003        | Slurry             | Rate (gpm)      | 4.55  | 4.44         | 19.61 | 4.48  | 4.47  | 4.46  | 4.48  | 4     | 4     | 4.48  | Time        |                         | :           |                       |                  | 0.57      |          |    | Time                                  |        | ••••    |            | -              | 0:57      |
| Slurry<br>Loop Flow<br>Rate (gpm)      | 4.54      | 4.44     | 4.47    | 4.55    | 4.48    | 4.87     | 4.48     | 4.48     | 4.52      | 4.52     | 4.52     | 4.45     | 1             | fame of       | = caput     | m/f2/pai =   |                    | Temp C          | 2     | 22           | 2.52  | 255   | 25.1  | 10    | 193   | 81    | 1     | 24.8  | Flux vs.    | tion 6)                 | :           |                       |                  | 0.43      | (hr:min) |    | Flux vs.<br>nd 13.1 ft/s<br>ion 6)    |        | -       |            |                | 8 0:43    |
| Total Time<br>Elapsed<br>(Min)         | 000       | 0.05     | 0-10    | 0.15    | 0.21    | 0:30     | 0:35     | 0:40     | 0,45      | 0:50     | 0.55     | 1:00     | irry Flow gpt | assume paid - | rate Flix m | meability op |                    | Temp C          | 2     | 2.3          | t t   | 2.15  | 14    | 4     | 12    | 2     | 4     | 19    | Simulant    | (Condit                 | İ           |                       |                  | 0:28      | Time     |    | Simulant<br>30.0 psig a<br>(Condit    |        | •       |            | -              | 14 0.2    |
| Ē                                      | 1.55      | 2.00     | 2.05    | 2.10    | 2.16    | 2-25     | 2:30     | 2:35     | 2:40      | 2:45     | 2.50     | 3.52     | verage Sil    | verage PN     | versens Fai | verage Pe    |                    | em              | 1:65  | 8.7          | 01.4  | 2.16  | 2:25  | 2:30  | 2.35  | 240   | 142   | 2.55  | C-106       |                         |             |                       |                  | 0:14      |          |    | C-106                                 | 1      | •       |            |                | 000       |
| Condison<br>Number Ti                  | 9         | 9        | 9       | -ip     | ¢       | 0        | ¢        | φ        | φ         | ω        | φ        | Ð        | 6 A1          | 1 4 B         |             | N D          |                    | Number Ti       | 9     | D G          | 0 4   | 0     | 9     | 9     | 0     | 0     | 0 1   | φ.    |             |                         | 1 290 H     | 1314                  |                  | 0.00      |          |    |                                       | x 0.15 | E 10.10 | 10.05 m    | LE 0.00        | 0         |

0.004226 0.003662 0.003627

Permeability (gpm/ft2/psi) 003446 003426 003332

0.003362

0.003323

0.003312

# 0.5 micron Liquid- Service Mott Filter

#### C-106 Filtration Simulant at 8 wt% Solids Loading Cuf Testing

Low Axial Velocity and Transmembrane Pressure Conditions

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                             |                        |                 |                               |                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|------------------------|-----------------|-------------------------------|----------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
| Permeabili<br>1970<br>1970<br>1000000<br>10000001<br>10000001<br>100000011<br>1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
| - 225-8889<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17474<br>17474<br>53532<br>53532<br>00174<br>15423<br>55603        |                             |                        |                 |                               |                                              |  |
| 0.000 000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0590<br>0.0523<br>0.0478<br>0.0478<br>0.0478<br>0.0476<br>0.0476 |                             |                        |                 |                               |                                              |  |
| R.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10<br>0.15<br>0.25<br>0.20<br>0.20                               |                             |                        |                 |                               |                                              |  |
| mesblit<br>day/bit<br>3.920<br>2.472<br>2.056<br>1.936<br>1.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             |                        |                 |                               |                                              |  |
| Per (mu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                             | 111                    | 0.28            |                               | 0:28                                         |  |
| Flux<br>May)<br>Aday)<br>Ada<br>835<br>835<br>835<br>835<br>835<br>835<br>835<br>835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flow<br>(L/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345<br>345<br>284<br>283<br>283<br>283                             | ne at                       | •                      |                 |                               |                                              |  |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Filtrate<br>Rate (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000000                                                             | vs. Tit                     |                        | 0.21            | 10 at                         | 0.21                                         |  |
| y<br>272<br>281<br>233<br>231<br>231<br>231<br>231<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of<br>dion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.1<br>26.1<br>31.03<br>34.07<br>35.63<br>35.63<br>35.63          | bility<br>o fus<br>minute   |                        | 14<br>rcmin)    | s. Tim                        | + 14<br>hrmin                                |  |
| Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time<br>Colle<br>(Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    | ermea<br>g and 6            |                        | 0.1<br>Lime (h  | 0 fVs<br>minutes              | Time (                                       |  |
| mirale<br>ow Rat<br>0.404<br>0.243<br>0.130<br>0.171<br>0.173<br>0.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ttrate<br>simple<br>olume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    | ant P.<br>20.1 ps           |                        | 20:0            | rmeat<br>1ard 6.<br>1st 30    | 0:01                                         |  |
| f Film Film (17)<br>37.1<br>37.1<br>37.1<br>37.1<br>2.55<br>2.55<br>2.55<br>4.67<br>4.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 의 비원<br>이 사진 이 기<br>이 사진 이 기                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 8 8 8 3 3 8                                                      | Simul<br>(Cor               | •                      |                 | int Per<br>0.0 psig           |                                              |  |
| Collect<br>(Sec)<br>2 2<br>5 5<br>5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed<br>Filter (<br>Pressu<br>(psig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    | 3-106                       | 000                    | 0:00            | limula<br>22<br>(Conc         | 006                                          |  |
| 하여 여 여 여 여 여 여 여 여 여 여 여 여 여 여 여 여 여 여                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.02<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>Removir<br>R | 000000                                                             | U                           | (day/bar)<br>(day/bar) | nag<br>m)       | -106 S                        | Permeability<br>(gpm/ft2/psi<br>(gpm/ft2/psi |  |
| Filtr<br>Sam<br>Volt<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Parr<br>Parr<br>(psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    | _                           |                        |                 | 0                             |                                              |  |
| ther Infe<br>ressue<br>faig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | It's<br>Alth Fire<br>Iter<br>ressure<br>NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |                             | (TTT                   | 0.28            | 1                             | 0.28                                         |  |
| E SESSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.68<br>00.14<br>0.222<br>0.222<br>0.048 V<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.74<br>3.73<br>3.63<br>3.65<br>3.66<br>3.66<br>3.69<br>3.69       |                             | •                      | 41.00           |                               | •                                            |  |
| Press<br>N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sturry<br>Earte<br>(gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    | Time<br>es)                 |                        | 0.21            | Time<br>es)                   | 0.2                                          |  |
| 7<br>p Flow<br>3.74<br>3.78<br>3.63<br>3.69<br>3.69<br>3.69<br>3.69<br>3.69<br>3.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | npsi =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23,3 23,3 23,3 23,3 23,3 23,3 23,3 23,3                            | UX VS.<br>L0 ft/s           |                        | (uim            | IX VS.<br>0 f/vs<br>minute    | e<br>rrmin)                                  |  |
| Sur 1000<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pm =<br>1=<br>mL/sec<br>pm/m2<br>gpm/m2<br>gpm/m2<br>fer<br>Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112 112 112 112 112 112 112 112 112 112                            | nt Flu<br>g and 6           | •                      | 0:14<br>me (hr: | nt Flu<br>1 and 6.<br>1 st 30 | D-1                                          |  |
| antime<br>cocococo<br>cococococo<br>cococococo<br>cocococo<br>cocococo<br>cocococo<br>cocococo<br>cocococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>cococo<br>coco<br>cococo<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>coco<br>co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flow g<br>ure psk<br>a Flow<br>ability<br>flar Ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    | imula<br>0.1 psi<br>itton 1 |                        | F               | imula<br>0.1 psig             | - 20                                         |  |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e Filtrab<br>Filtrab<br>Perma<br>Perma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 288889                                                             | 106 S<br>(Cond              |                        | 0.02            | 106 S<br>2<br>(Cond           | •                                            |  |
| and<br>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average<br>Average<br>Average<br>Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 222222                                                             | U U                         |                        |                 | ů .                           | 8                                            |  |
| E a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Contraction of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                             | 000                    | - 8<br>- 8      | 0.10                          | (71)/wd6)                                    |  |
| ta a contract a contra | 1a<br>1a<br>1a<br>1a<br>1a<br>1a<br>1a<br>1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tastas j                                                           | Ē                           | xul3 eter              | #II:H           | x                             | Flitrate Flu                                 |  |

| Filtrate Flux<br>(gpm/tt2)             | 0.0560 | 0.0450 | 0.0409 | 0.0391 | 0.0415 | 0.0397 | 0.0351 |              |              |               |                |               |                     |                    |       |       |       |       |       |       |       |
|----------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------------|--------------|---------------|----------------|---------------|---------------------|--------------------|-------|-------|-------|-------|-------|-------|-------|
| Permeability<br>(m/day/bar)            | 2.384  | 1.868  | 1.739  | 1.665  | 1.764  | 1.649  | 1.493  |              |              |               |                |               |                     |                    |       |       |       |       |       |       |       |
| Filtrate Flux<br>(m3/m2/day)           | 3.287  | 2.640  | 2.397  | 2.296  | 2.432  | 2.330  | 2.058  |              |              |               |                |               | Filtrate Flow       | Rate (mL/sec)      | 0.387 | 0.352 | 0.327 | 0.321 | 0.296 | 0.294 | 0.270 |
| Slumy<br>Temp C                        | 24.2   | 24.1   | 24.2   | 24.4   | 24.8   | 25     | 25     |              |              |               |                |               | Time of             | (Sec)              | 25.81 | 28.43 | 30.62 | 31.16 | 33.81 | 34.07 | 36.97 |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.226  | 0.181  | 0.165  | 0.159  | 0.170  | 0.164  | 0.145  |              |              |               |                |               | Filtrate<br>Sample  | (mL)               | 10    | 10    | 10    | 10    | 10    | 10    | 10    |
| Time of<br>Collection<br>(Sec)         | 39.79  | 49.68  | 54,56  | 56.65  | 52.88  | 54.88  | 62.13  |              |              |               | ed             |               | Filter Inlet        | Pressue<br>(psig)  | 20    | 20.5  | 20.5  | 20.5  | 20    | 20.5  | 20    |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 6      | 6      | 0      | 6      | 0      | a      | 6      | 6.1          |              |               | Point Remov    |               | Permeate            | Pressure<br>(psig) | -     | 1     | 7     | 7     | -     | -     | 1     |
| Filter Inlet<br>Pressue<br>(psig)      | 20     | 20.5   | 20     | 20     | 20     | 20.5   | 20     | 1 ft/s =     |              |               | 0 With First I | 2             | Filter<br>Outlet    | Pressure<br>(psig) | MN 1  | MM    | MN    | MN    | MN    | MN    | MN    |
| Filter<br>Outlet<br>Pressure<br>(psig) | MM     | NM     | NM     | NN     | NN     | NN     | MM     | 3.7          | 20.14        | 0.173         | 0.04(          | 0.00          | Skurry<br>Loop Flow | (gpm)              | 0,85  | 0.93  | 0.96  | 0.98  | 0.6   | 0.85  | 0.86  |
| Slurry<br>Loop Flaw<br>Rate<br>(gpm)   | 3,77   | 3.66   | 3.7    | 3.69   | 3.67   | 3.66   | 3.82   | 11           |              | /sec =        | n/ft2 =        | m/ft2/psi =   | i                   | Temp C             | 23.8  | 24.2  | 24.6  | 24.9  | 25    | 25.1  | 25.5  |
| Fotat Time<br>Elapsed<br>Min)          | 00:00  | 0:05   | 0:10   | 0:15   | 0:20   | 0:25   | 0:30   | rry Flow gpm | ssure psid = | ate Flow mL   | ate Flux gpr   | meability gpr |                     | Chiller Temp       | 18    | 18    | 18    | 20    | 20    | 19    | 19    |
| Time                                   | 14:55  | 15:00  | 15.05  | 15:10  | 15:15  | 15.20  | 15.25  | Average Slur | Average Pret | Average Filtr | Average Filtr  | Average Pen   |                     | Time               | 14:55 | 15:00 | 15:05 | 15:10 | 15:15 | 15:20 | 15:25 |
| Condition<br>Number                    | 1b     | 1b     | 1b     | 1b     | 1b     | 4      | đ      | 1b           | 10           | 1b            | 1b             | <del>1</del>  | 2                   | Number             | 1b    | 1b    | 11    | 1b    | 11    | 11    | 1b    |

0.002194 0.002042 0.001956 0.001956 0.001936 0.001936

ty (gpm/ft2/p si) 0.0028

Permeabili

NM = Not Measured





| Permeability<br>(gpm/ft2/psi)          | 0.003567 | 0.002382 | 0.002252 | 0.002092 | 0.002185 | 0.002106 |              |             |              |               |              |          |                         |                 |       |       |       |       |       |       |            |                                              |                    |          |                |            |         |             |                                              |         |                  |                  |            |
|----------------------------------------|----------|----------|----------|----------|----------|----------|--------------|-------------|--------------|---------------|--------------|----------|-------------------------|-----------------|-------|-------|-------|-------|-------|-------|------------|----------------------------------------------|--------------------|----------|----------------|------------|---------|-------------|----------------------------------------------|---------|------------------|------------------|------------|
| Fitrate Flux<br>(gpm/ft2)              | 0.0464   | 0.0298   | 0.0282   | 0.0262   | 0.0284   | 0.0253   |              |             |              |               |              |          |                         |                 |       |       |       |       |       |       |            |                                              |                    |          |                |            |         |             |                                              |         |                  |                  |            |
| Permeability<br>(m/day/bar)            | 3,037    | 2.028    | 1.917    | 1.781    | 1.861    | 1.793    |              |             |              |               |              |          |                         |                 |       |       |       |       |       |       |            |                                              |                    |          |                | T          | 0.36    |             |                                              |         | -                |                  | 0:36       |
| Filtrate Flux<br>(m3/m2/day)           | 2.722    | 1.748    | 1,652    | 1.535    | 1,668    | 1.484    |              |             |              |               |              |          | Filtrate Flow           | Indertili autou | 0.203 | 0.129 | 0.120 | 0 111 | 0.121 | 0.110 |            | vs. Time at                                  |                    |          | •              |            | 0:28    |             | vs. Time at                                  |         |                  | •                | 1 0:28 (   |
| Sturry<br>Temp C                       | 27.1     | 26.6     | 26.2     | 25.9     | 26       | 27       |              |             |              |               |              |          | Time of<br>Collection   | (Sec)           | 73.84 | 69.97 | 74.84 | 81 22 | 74.56 | 81.5  |            | rmeability<br>and 4.46 ft/s<br>1st 30 minute |                    |          | •              |            | 14 0.21 | me (hr:min) | rmeability<br>and 4.46 ft/s<br>1st 30 minute |         |                  | •                | 0:14 0:2   |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.203    | 0.129    | 0.120    | 0.111    | 0.121    | 0.110    |              |             |              |               |              | Filtrate | Sample                  | (mL)            | 11    | 6     | G     | 1.07  | 0     | 6     |            | 12.6 psig<br>Condition 2,                    |                    |          | •              |            | 0.07    | H           | nulant Pe<br>12.6 psig<br>Condition 2.       |         |                  | •                | 0:07       |
| Time of<br>Collection<br>(Sec)         | 73.84    | 69 97    | 2 74.84  | 9 81.22  | 9 74.56  | 9 81.5   | 12           |             |              | par           |              |          | Filter Inlet<br>Pressue | (Disig)         | 13    | 12.5  | 12.5  | 12.5  | 13    | 12    |            | C-106 Sin                                    | 0.0                | •        | 2.0            | 0.0        | 0.00    |             | C-106 Sin                                    |         | 0.004            | 0000             | 0:00       |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 11       |          |          |          |          |          | 4.40         |             |              | oint Remov    |              |          | Permeate                | (pisig)         |       |       |       |       |       | 0     |            |                                              | ()<br>(4)          | eq       | кер)<br>ееш    | ner<br>Per |         |             |                                              |         | (isq)            | tsemn<br>Stit/mo | d6)<br>Iðd |
| Filter Inlet<br>Pressue<br>(psig)      | 13       | 12.5     | 12.5     | 12.5     | 133      | 12       | = S/4        |             |              | With First P  |              | Filter   | Outlet                  | (pisig)         | NM    | NM    | NMN   | NM    | NN    | MM    |            |                                              | Γ                  | T        |                | 0.36       | 000     |             |                                              |         | Π                |                  | 0:36       |
| Filter<br>Outlet<br>Pressure<br>(psig) | NM       | MM       | MM       | MN       | MM       | MN       | 2.74         | 12.58       | 0.132        | 0.028         | 0.002        | Slumy    | Loop Flow<br>Rate       | (mdb)           | 2.76  | 2.76  | 27    | 2.5   | 2.75  | 2.77  |            | Time<br>s                                    |                    |          | •              | 80-0       | 07.0    |             | Time                                         |         |                  |                  | 0:28       |
| Slurry Loop<br>Flow Rate<br>(gpm)      | 2.76     | 2.76     | 2.7      | 2.5      | 2.75     | 2.77     | = 00         | 1           | iL/sec =     | m/ft2 =       | pm/ft2/psi = |          | Slurv                   | Temp C          | 27.1  | 26.6  | 26.2  | 25.9  | 26    | 27    |            | t Flux vs.<br>and 4.46 ft/<br>1st 30 minut   |                    |          | •              | +0.0       | 17.0    | o (hr;min)  | t Flux vs.<br>and 4.46 ft/s<br>st 30 minuth  |         |                  | •                | 14 0.21    |
| Total Time<br>Elapsed<br>(Min)         | 00:0     | 0:05     | 0:10     | 0.20     | 0.25     | 0:30     | irry Flow ap | essure psid | trate Flow m | trate Flux gp | rmeability g |          | Chiller                 | Temp C          | 13    | 12.5  | 12.5  | 12.5  | 13    | 12    |            | 5 Simulan<br>at 12.6 psig<br>andition 2, '   |                    |          |                | 0.14       | 1.0     | III.        | Simulant<br>tt 12.6 psig<br>ndition 2, 1     |         |                  | •                | 0:07 0:    |
| Time                                   | 16:10    | 16.15    | 16:20    | 16.30    | 16.35    | 16:40    | Average Sh   | Average Pn  | Average Fil  | Average Fil   | Average Pe   |          | 1                       | Time            | 16:10 | 16:15 | 16:20 | 16:30 | 16:35 | 16:40 | leasured   | C-10(                                        |                    | •        |                | cu-u u     | 0.0     |             | C-106                                        |         | 9 4              | 2                | 0:00       |
| Condition                              | 2a           | 2a          | 2a           | 2a            | 2a           |          | Test                    | Number          | 2a    | 2a    | 2a    | 2a    | 2a    | 2a    | NM = Not N |                                              | • 0.0<br>(AE<br>XN | FT 122.0 | sterte<br>3/mz | + 0.01     | 2.2     |             |                                              | ALC: NO | xul7 s<br>(271/1 | (gpm<br>(gpm     | 4          |

Time (hr:min)

| Permeability<br>(gpm/ft2/psi)          | 0.003827 | 0.002524 | 0.002421 | 0.002339 | 0.002336 | 0.002269 | 0.002212 |               |               |              |               |                |                     |               |         |       |       |       |       |       |       |       |             |              |               |                 |                                                                                                  |                   |                  |        |             |   |             |                               |             |            |            |                      |
|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|---------------|---------------|--------------|---------------|----------------|---------------------|---------------|---------|-------|-------|-------|-------|-------|-------|-------|-------------|--------------|---------------|-----------------|--------------------------------------------------------------------------------------------------|-------------------|------------------|--------|-------------|---|-------------|-------------------------------|-------------|------------|------------|----------------------|
| Filtrate Flux<br>(dom/ft2)             | 0.0479   | 0.0316   | 0.0303   | 0.0283   | 0.0292   | 0.0284   | 0.0277   |               |               |              |               |                | 10                  |               |         |       |       |       |       |       |       |       | 3           |              |               |                 |                                                                                                  |                   |                  |        |             |   |             |                               |             |            |            |                      |
| Permeability<br>(m/day/bar)            | 3.259    | 2.149    | 2.061    | 1.991    | 1.989    | 1.932    | 1,883    |               |               |              |               |                |                     |               |         |       |       |       |       |       |       |       |             |              |               |                 |                                                                                                  |                   | -                | 128    |             | Ĩ |             |                               | 1           |            |            | ).28                 |
| Filtrate Flux<br>(m3/m2/dav)           | 2.808    | 1,852    | 1.776    | 1.716    | 1.714    | 1.665    | 1.623    |               |               |              |               |                | Cilentes Close      | Rate (mL/sec) |         | 0,199 | 0,131 | 0.125 | 0.120 | 0.120 | 0.116 | 0.113 | vs. Time at | 10 01001 104 | 5)            |                 |                                                                                                  | •                 |                  | 0.21 0 |             |   | vs. Time at | es)                           |             |            | •          | 0:21 (               |
| Sturry<br>Temp C                       | 25.2     | 25.2     | 25       | 24.9     | 24.7     | 24.7     | 24.7     |               |               |              |               |                | Time of             | Collection    | (Sec)   | 45.28 | 68,66 | 72    | 74.72 | 75.25 | 77.47 | 79.47 | meability   | and 4.5 ft/s | , 2nd minutes |                 |                                                                                                  | •                 |                  | 0:14   | me (hr:min) |   | rmeability  | and 3.15 gpm<br>2nd 30 minute |             |            | •          | 0:14<br>Time (hr:min |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.199    | 0.131    | 0.125    | 0.120    | 0.120    | 0.116    | 0,113    |               |               |              |               |                | Filtrate            | Volume        | (mL)    | đ     | 8     | σ     | a     | σ     | 6     | 6     | ulant Per   | 12.5 psig    | Condition 2   |                 |                                                                                                  |                   |                  | 0:07   | T           |   | ulant Per   | 30.4 psig a<br>ondition 2,    |             |            | •          | 0:07                 |
| Time of<br>Collection<br>(Sec)         | 45.28    | 68.66    | 72       | 74.72    | 75.25    | 77.47    | 19.47    |               |               |              | p             |                | Filter Inlet        | Pressue       | (bisd)  | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  | 12.5  | 2-106 Sim   |              | ·             |                 | •                                                                                                | 0                 | 0                | 0:00   |             |   | 2-106 Sim   | 0                             | 006         | 004 +      | 002        | 0:00                 |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 6        | 6        | 6        | 6        | 8        | 6        | 71       | 4,51          |               |              | oint Remove   |                | Permeste            | Pressure      | (bisd)  | 0     | 0     | 0     | 0     | 0     | 0     | 0     |             | ,            |               | 4               | ed/                                                                                              | ∾i<br>Kep/<br>eeu | (m/              | 0      |             |   | 0           |                               | ei)<br>lity | d/Z1       | burlt      | 5<br>16)<br>84       |
| Filter Inlet<br>Pressue<br>(psia)      | 12.5     | 12.5     | 12.5     | 12.5     | 12.5     | 12.5     | 12.0     | = \$/¥        |               |              | With First P  |                | Filter 0            | Pressure      | (pisig) | MM    | NM    | MM    | MM    | MM    | WW    | MM    |             |              |               | [               |                                                                                                  |                   | T                | 0:28   |             |   |             |                               |             |            |            | 0:28                 |
| Filter<br>Outlet<br>Pressure<br>(psia) | MN       | MM       | WN       | MN       | MN       | MN       | MN       | 2.76          | 12.50         | 0.132        | 0.029         | 222.2          | Slurry<br>Loon Flow | Rate          | (mdg)   | 2.87  | 2.64  | 2.69  | 2.79  | 2.82  | 277   | 273   | Time        |              | es)           |                 | •                                                                                                |                   | 1                | 0:21   |             |   | Time        | is)                           |             |            |            | 0:21                 |
| Slurry Loop<br>Flow Rate<br>(apm)      | 2.87     | 2.64     | 2.69     | 2.79     | 2.82     | 2.77     | 2.13     | = u           |               | L/sec =      | m/ft2 =       | - 100/27113114 |                     | Slurry        | Temp C  | 25.2  | 25,2  | 25    | 24.9  | 24.7  | 24.7  | 24.7  | Fliry vs    | and 4.5 ft/s | nd 30 minut   |                 | •                                                                                                |                   | -                | 0:14   | e (hr:min)  |   | Flux vs.    | and 9.2 ft/s<br>nd 30 minute  |             | •          |            | 0:14<br>me (hr:min)  |
| Total Time<br>Elapsed<br>(Min)         | 0:00     | 0:05     | 0:10     | 0:15     | 0.22     | 0.25     | 05.0     | irry Flow gpr | essure psid = | rate Flow m  | rrate Flux gp | ff Amosim      |                     | Chiller       | Temp C  | 19    | 17    | 18    | 17    | 18    | 18    | 18    | Simulan     | at 12.5 psig | ndition 2, 2  |                 | •                                                                                                |                   |                  | :01    | Tim         |   | Simulant    | nt 30.4 psig<br>ndition 2, 21 |             | •          |            | 0:07<br>Ti           |
| Time                                   | 10:53    | 10:58    | 11:03    | 11:08    | 11:15    | 11:18    | 11.23    | Average Slu   | Average Pri   | Average Fill | Average Fill  | or agoint      |                     |               | Time    | 10:53 | 10:58 | 11:03 | 11:08 | 11.15 | 11:18 | 11:23 | C.106       |              | (Co           |                 | •                                                                                                |                   |                  | 0      |             |   | C-106       | (Col                          |             |            | 0          | 0:00                 |
| Condition                              | 2b       | 25       | 20       | 20       | 30       | 25       | 9        | 2b            | 2b            | 20           | 84            | 7              |                     | Test          | Number  | 2b    | 29    | 2b    | 2b    | 2b    | 2b    | 29    |             |              | - SUS         | •<br>(//a<br>xn | 日<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ateri<br>2<br>0   | + 0.00)<br>+ 111 | 0:0    |             |   |             |                               | xul7<br>(Sf | ete<br>hmi | 10)<br>10) |                      |

| Permeabilit<br>y<br>(gpm/ft2/psi<br>0.003333<br>0.003333<br>0.003335<br>0.003335<br>0.003335<br>0.003035        | *.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Filtrate Flux<br>(gpm/ft2)<br>0.0777<br>0.0665<br>0.0665<br>0.0665<br>0.0608<br>0.0607                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| Permeability<br>(m(day/bar)<br>3.305<br>2.335<br>2.685<br>2.685<br>2.584<br>2.581                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 136                                                                              |
| Filtrate Flux<br>(m3/m2/day)<br>4.557<br>3.909<br>3.842<br>3.644<br>3.559<br>3.559                              | Filtrate Flow<br>Rate (mL/sec)<br>0.324<br>0.276<br>0.245<br>0.245<br>0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vs. Time at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vs. Time at<br>es)<br>• • •<br>21 0:28 0                                         |
| <sup>a</sup> Sturry<br>Temp C<br>25.4<br>24.1<br>24.1<br>24.1<br>24.2<br>24.2<br>24.2                           | Time of<br>Collection<br>(Sec)<br>32.65<br>9 33.85<br>9 33.65<br>9 35.63<br>9 36.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ermeability<br>g and 9.1 ft/s<br>1st 30 minute<br>• •<br>14 (<br>Time (hr.mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | armeability<br>g and 9.1 ft/s<br>g, 1st 30 minut<br>e<br>0.14 0.2<br>Time (hr.mi |
| Filtrate<br>Flow Rath<br>(mL/sec)<br>5 0.324<br>5 0.265<br>3 0.265<br>3 0.245<br>5 0.245                        | Filtrate<br>Sample<br>Volume<br>(mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Condition 2<br>(Condition 2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Condition 3<br>(Condition 3<br>(0.07                                             |
| Time of<br>Collection<br>(Sec)<br>27.77<br>33.8<br>33.8<br>35.6<br>35.6<br>36.8<br>36.77                        | ed<br>Filter Inlet<br>Pressue<br>(psig)<br>20<br>20<br>20<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-106 Sir<br>(m/day/bar) C-106 Sir<br>0.00 0<br>0.00 0<br>0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C-106 Sir<br>(9pm/r2/9s) 0.006<br>(9pm/r2/9s) 0.002<br>(9pm/r2/9s) 0.002         |
| Sample<br>Volume<br>(mL)                                                                                        | 9.06<br>Permeate<br>Pressure<br>(psig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Permeability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Permeability                                                                     |
| Filter Inlet<br>Pressue<br>(psig)<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | ft/s =<br>ther<br>filter<br>Outliet<br>Pressure<br>(psig)<br>NM<br>NM<br>NM<br>NM<br>NM<br>NM<br>NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0:36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0:36                                                                             |
| Priter<br>Outlet<br>Pressure<br>(psig)<br>NM<br>NM<br>NM<br>NM<br>NM<br>NM<br>NM                                | 5.54<br>20.00<br>0.268<br>0.063<br>0.003<br>0.003<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0003<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.0063<br>0.00630000000000 | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es)<br>es)<br>0:28                                                               |
| Slurry<br>Loop Flow<br>Rate<br>5.55<br>5.54<br>5.54<br>5.54<br>5.54<br>5.54<br>5.54<br>5.5                      | n =<br>L'sec =<br>m/ft2 =<br>m/ft2/psi =<br>sm/ft2/psi =<br>25.4<br>25.4<br>25.4<br>24.1<br>24.2<br>24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flux vs.<br>and 9.1 ft/s<br>st 30 minut<br>et 30 minut<br>et 30 minut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flux vs.<br>and 9.1 ft/s<br>st 30 minuti<br>e<br>0.21                            |
| Total Time<br>Elapsed<br>(Min)<br>0:00<br>0:11<br>0:21<br>0:21<br>0:231                                         | rry Flow gpi<br>rate Flow m<br>rate Flow gpi<br>rate Flux gp<br>meability gg<br>Temp C<br>18<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Simulant<br>t 20.0 psig<br>ndition 3, 1<br>0:14<br>Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Simulant<br>t 20.0 psig<br>idition 3, 1<br>e<br>7 0:14                           |
| Time<br>11:59<br>12:10<br>12:10<br>12:25<br>12:25                                                               | Average Slu<br>Average Prit<br>Average Fitt<br>Average Peit<br>Average Pei<br>11:59<br>12:05<br>12:20<br>12:20<br>12:25<br>12:25<br>12:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C-106<br>(Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C-106<br>(Col<br>0 0:0:                                                          |
| Condition<br>Number<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a                                             | 3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3a<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xura atsuria<br>(yean 2000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(100) | Filtrate Flux<br>(m3/m2/day)<br>0.00                                             |

| Permeabilit<br>y<br>(gpm/ft2/psi       | 0.003934 | 0.003338 | 0.003254 | 0.002959 | 0.003048 | 0.002826 |                               |                |               |                               |        |          |         |              |       |         |         |   |               |                                   |               |                                       |                      |        |              |                                                    |                       |                           |           |
|----------------------------------------|----------|----------|----------|----------|----------|----------|-------------------------------|----------------|---------------|-------------------------------|--------|----------|---------|--------------|-------|---------|---------|---|---------------|-----------------------------------|---------------|---------------------------------------|----------------------|--------|--------------|----------------------------------------------------|-----------------------|---------------------------|-----------|
| Filtrate Flux<br>(gpm/ff2)             | 0 0787   | 0.0668   | 7090.0   | 0.0592   | 0.0610   | 0.0566   |                               |                |               |                               |        |          |         |              |       |         |         |   |               |                                   |               |                                       |                      |        |              |                                                    |                       |                           |           |
| Permeability<br>(m/day/bar)            | 3.350    | 2.842    | 2.1/1    | 2.519    | 2.595    | 2.406    |                               |                |               | 5                             |        |          |         |              |       |         |         | [ |               |                                   |               |                                       |                      | :43    |              |                                                    |                       |                           | .36       |
| Filtrate Flux<br>(m3/m2/dav)           | 4.619    | 3.919    | 3.460    | 3 474    | 3.578    | 3.318    |                               |                |               | Filtrate Flow<br>Rate (mUsec) |        | 125.0    | 0/7/0   | C3C U        | 0.247 | 0.254   | 0.233   |   | vs. Time at   | (50                               |               | •                                     |                      | 0.28 0 | (u           | vs. Time at                                        |                       |                           | 1 0:28 0  |
| Slurry<br>Temp C                       | 24.6     | 24.9     | C 76     | 25.3     | 25.3     | 24.9     |                               |                |               | Time of<br>Collection         | (Sec)  | 87 50 50 | 71.70 0 | 14.00 B      | 385   | 9 35.44 | 9 38.65 |   | ermeability v | g and 9.0 tris<br>, 2nd 30 minute |               | •                                     |                      | 14 0   | Time (hr:mir | armeability v<br>g and 9.0 ft/s<br>. 2nd 30 minute |                       |                           | 0:14 0:2  |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.321    | 0.275    | 0.265    | 0.247    | 0.254    | 0.233    |                               |                |               | Filtrate<br>Sample<br>Volume  | (mL)   |          |         |              |       |         |         |   | nulant Pe     | condition 3                       |               | •                                     |                      | 0      |              | 20.0 psi<br>20.0 psi<br>20.0 dition 3              |                       |                           | 0:07      |
| Time of<br>Collection<br>(Sec)         | 9 28     | 32.12    | 25.75    | 36.5     | 35.44    | 38.65    |                               | . 8            | Day           | Filter Inlet<br>Pressue       | (big)  | 000      |         | 200          | 20    | 20      | 20      |   | C-106 Sin     | 0)                                | (18)<br>0.4 c | 0.0.0<br>10.0<br>10.0<br>10.0         | 0.0<br>p/ш           | 00:0   |              | C-106 Sin                                          | 2 0.006               | (gpm/r                    | 0:00      |
| Filtrate<br>Sample<br>Volume<br>(mL)   |          |          |          |          |          | - Di     | 9.02                          |                | NOLISAVI TURI | Permeate                      | (Bisd) |          | 2 0     | 5.0          | , .   |         | 0       |   |               |                                   | (1)IFY        | dea                                   | ແມອ                  | đ      |              |                                                    | Yillida               | Perme                     |           |
| Fitter Inlet<br>Pressue<br>(psia)      | 20       | 07       | 200      | 02       | 20       | 20       | 11/5 =                        | Athen Plant P  |               | Filter<br>Outlet<br>Pressure  | (psig) | MIN      | NIN N   | MM           | MM    | WW      | MM      |   |               |                                   | [             |                                       |                      | 0:36   |              |                                                    |                       |                           | 0:36      |
| Filter<br>Outlet<br>Pressure<br>(psig) | MN       | MN       | MIN      | MN       | NMN      | MN       | 5.52                          | 0.264          | 0.003         | Slurry<br>Loop Flow<br>Rate   | (mdg)  | 10,0     | 0.0     | 40'0<br>40'0 | 5.52  | 5.55    | 5.52    |   | Time          | es)                               |               | •                                     |                      | 0:28   |              | Time<br>es)                                        |                       |                           | 0:28      |
| Slurry<br>Loop Flow<br>Rate<br>(gpm)   | 5.51     | 0.0      | 40.0     | 222      | 5.55     | 5.52     | =                             | L/sec =        | m/ft2/psi =   | Slurry                        | Temp C | 0.67     | 2.4.2   | 25.2         | 26.3  | 26.3    | 24.9    |   | Flux vs.      | and 30 minut                      |               | •                                     |                      | 0:21   | (hr:min)     | Flux vs.<br>and 9.0 ft/s                           |                       |                           | 0:21      |
| otal Time<br>(lapsed<br>Min)           | 0:00     | 0.04     | 0.14     | 0.19     | 0.24     | 0-29     | ry Flow gpr<br>sure psid :    | ate Flow m     | neability gp  | chiller                       | emp C  | D1       | 2 1     | 191          | 17    | 16      | 15      |   | Simulant      | dition 3, 2r                      |               | •                                     |                      | 0:14   | Time         | Simulant<br>20.0 psig                              |                       |                           | 0:14      |
| Time E                                 | 12:41    | 12.45    | 12.50    | 13:00    | 13:05    | 13:10    | Average Sturi<br>Average Pres | Average Filtra | Average Per   | 0                             | Time T | 14/21    | 12.40   | 12-55        | 13.00 | 13:05   | 13:10   |   | C-106         | (Con                              |               |                                       |                      | 0:07   |              | C-106 S<br>at<br>(Conc                             |                       |                           | 0:00 0:07 |
| Condition                              | 3b       | 30       | 100      | 3 8      | 3b       | 3b       | 99                            | 181            | 2.6           | Test                          | Number | 00       | 0 10    | 90           | 8     | 30      | 30      |   |               |                                   | X 26.0 T      | 0.<br>5<br>5<br>1<br>4<br>0<br>1<br>4 | m/sri<br>m/sr<br>0 0 | 0:00   |              |                                                    | Flux<br>(day)<br>0.10 | Filtrate<br>m3/m2<br>0.00 | 0:0       |

0:36

0:28

0:14 0:21 Time (hr:min)

0:01

0:00

0:14 0:21 Time (hr:min)

 $T_i^i$ 

| Permeabili<br>ty<br>montrol             | 0.0619 0.001768 | 0.0341 0.000988 | 0.0339 0.000969 | 0.0328 0.000938 | 0.0318 0.000907 | 0.0313 0.000895 | 0.0297 0.000849 |              |              |               |                |                |               |           |       |       |       |       |       |       |             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |             |                      |                     |                                              |             |    |
|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------|--------------|---------------|----------------|----------------|---------------|-----------|-------|-------|-------|-------|-------|-------|-------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|----------------------|---------------------|----------------------------------------------|-------------|----|
| Permeability<br>(m/day/bar) Filt        | 1 505           | 0.842           | 0.825           | 0.798           | 0.772           | 0.762           | 0.722           |              |              |               |                |                |               |           |       |       |       |       |       |       |             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |             | Inter                | 28                  |                                              |             |    |
| Filtrate Flux                           | 3.632           | 2.002           | 1.991           | 1.927           | 1,863           | 1.839           | 1.743           |              |              |               |                |                | Rate (mL/sec) | 0.276     | 0.154 | 0.154 | 0.145 | 0.146 | 0.144 | 0.136 | vs. Time at | (88)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | •           |                      | 0.21 0.             | vs. Time at<br>es)                           |             |    |
| Slurry<br>Termo C                       | 27.7            | 28.3            | 28.5            | 27.3            | 29              | 28.8            | 28.8            |              |              |               |                |                | Collection    | 37 BR     | 58.28 | 58.28 | 62.25 | 61.44 | 62.57 | 66    | meability   | and 6.0 ft/s<br>1st 30 minute |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | •           |                      | 0:14<br>me (hr:min) | rmeability<br>and 6.0 ft/s<br>, 1st 30 minut |             |    |
| Filtrate<br>Flow Rate<br>(mL/sec)       | 0.276           | 0.154           | 0.154           | 0.145           | 0.146           | 0.144           | 0.136           |              |              |               |                | Filtrate       | Volume        | (1111)    | 6     | 0     | 8     | 6     | 8     | 6     | ulant Per   | 34.9 psig                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | •           | 10100                | 0:07<br>Tii         | nulant Pe<br>35.0 psig                       |             |    |
| Time of<br>Collection                   | 32.66           | 58.28           | 58.28           | 62.25           | 61.44           | 62.57           | 99              |              |              | 3             | De             | Fritado Latera | Pressue       | SE /Ried) | 34.5  | 35    | 35    | 35    | 35    | 35    | C-106 Sim   | 9)                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                        | 0. 4        | 00                   | 0:00                | C-106 Sir                                    | 002         |    |
| Fittrate<br>Sample<br>Volume            | 0               | 0               | Ø               | đ               | 0               | đ               | 6               | 5.98         |              | and Damage    | NOLIEN ILIED.  |                | Pressure      | 0 (Ried)  | 0     | 0     | 0     | 0     | 0     | 0     |             |                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (hed)                                    | kep/<br>sou | u)<br>bei            |                     |                                              | o o<br>lity | 1  |
| Filter Inlet<br>Pressue                 | 98              | 34.5            | 35              | 35              | 35              | 35              | 35              | fl/s =       |              | Web Class D   | VNICH FILIST F | Filter         | Pressure      | WN        | MN    | MN    | MM    | MM    | MN    | MM    |             |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |             |                      | 0:28                |                                              |             |    |
| Filter<br>Outlet<br>Pressure<br>(resia) | MN              | MM              | MN              | MM              | MM              | MM              | MM              | 3.66         | 34,93        | 0.165         | 0.001          | Slumy          | Rate<br>(mm)  | 3.63      | 3.68  | 3,68  | 3,63  | 3.62  | 3,69  | 3.67  | Time        | om<br>es)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |             |                      | 0:21                | Time                                         |             |    |
| Sturry<br>Loop Flow<br>Rate<br>(nom)    | 3.63            | 3.68            | 3.68            | 3.63            | 3.62            | 3.69            | 3.67            | = L          |              | L/sec =       | mmz/psi =      |                | Slumy         | 2.22      | 28.3  | 28.5  | 27.3  | 29    | 28,8  | 28.8  | Flux vs.    | d 6.0 ft/s gt<br>st 30 minut  | Control States of the states o |                                          |             | 10                   | 0.14<br>b (hr:min)  | Flux vs.<br>d 6.0 ft/s gp<br>ion 4)          |             |    |
| Total Time<br>Elapsed<br>Mint           | 0:00            | 0:02            | 0:10            | 0:15            | 0.20            | 0.25            | 0:30            | rrv Flow apr | ssure psid = | rate Flow mi  | meability gp   |                | Chiller       | 15        | 15    | 16    | 11    | 16    | 16    | 16    | Simulant    | 4.9 psig an<br>idition 4. 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | •           | 6                    | 07 Time             | Simulant<br>4.9 psig and<br>(Conditi         |             |    |
| Time                                    | 13.30           | 13.35           | 13.40           | 13:45           | 13.50           | 13:55           | 14:00           | Average Slur | Average Pre- | Average Filtr | Average Fen    |                |               | 13-30     | 13:35 | 13:40 | 13:45 | 13.50 | 13:55 | 14:00 | C-106       | at 3.                         | ALC: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | •           |                      | 0                   | C-106 2<br>at 34                             |             |    |
| Condition                               | 4a              | 0               | 43              | 4a              | 4a              | 43              | 4a              | 4a           | 43           | 49            | 43             |                | Test          | 48        | 4a    | 4a    | 4a    | 4a    | 4a    | 4a    |             |                               | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (10<br>(10<br>(10<br>(10<br>(10<br>(10)) | ate F       | Filtra<br>(m3/i<br>5 | 000                 |                                              |             | 11 |

0:28

0:07 Time (hr:min) 0:21

0:00

0:28

0:14 0:21 Time (hr:min)

0:07

00:0

| Permeabili<br>ty<br>(gpm/ft2/p     | C ON A ADO | 0.0014000  | 0.001100.0 | 0.00100 | D ANAGRE | 0.000939 |   |             |              |               |               |          |              |          |       |       |       |       |       |       |       |              |               |            |      |               |               |             |   |             |                                |           |                       |              |                        |
|------------------------------------|------------|------------|------------|---------|----------|----------|---|-------------|--------------|---------------|---------------|----------|--------------|----------|-------|-------|-------|-------|-------|-------|-------|--------------|---------------|------------|------|---------------|---------------|-------------|---|-------------|--------------------------------|-----------|-----------------------|--------------|------------------------|
| Fitrate Flux                       | 1201010    | 10000      | 0.000      | 0.0363  | N D346   | 0.0329   |   |             |              |               |               |          |              |          |       |       |       |       |       |       |       |              |               |            |      |               |               |             |   |             |                                |           |                       |              |                        |
| Permeability<br>(m/day/bar)        | 101        | 12 C P C C | 0.002      | 0 850   | 0.847    | 0.799    |   |             |              |               |               |          |              |          |       |       |       |       |       |       |       |              |               | ſ          |      |               | .36           |             | 1 |             |                                |           |                       |              | 0                      |
| Filtrate Flux<br>(m3/m2/dav)       | Loo L      | 200.2      | 01212      | 2072    | 2 031    | 1.929    |   |             |              |               |               | e        |              |          |       |       |       |       |       |       |       | /s. lime at  | (2)           |            | •    |               | 0:28 0        |             |   | s. Time at  | (5)                            |           |                       |              | 28 0.4                 |
| Slurry<br>Termn C                  | a we       |            | 24.6       | 24.5    | 24.6     | 24.7     |   |             |              |               |               | - ALAN A | Flow Rate    | (mL/sec) | 0.200 | 0.158 | 0.152 | 0.144 | 0.141 | 0.135 | 1.114 | and 6.0 ft/s | Zhđ 30 minute |            |      |               | 14 0.21       | me (hr:min) |   | meability v | and 6.0 ft/s<br>ind 30 minutes |           |                       |              | 14 0.                  |
| Filtrate<br>Flow Rate<br>(mL/sec)  | vuc u      | 0.450      | 0.150      | 0 144   | 0 141    | 0.135    |   |             |              |               |               |          | Time of      | (Sec)    | 45    | 57.06 | 59.34 | 62.59 | 63.69 | 66.85 |       | 34.8 psig    | ondition 4,   |            | •    |               | 0.07 0        | F           |   | ulant Per   | 34.8 psig a                    |           |                       |              | 0.                     |
| Time of<br>Collection              | AF         | 80 13      | 20.00      | 62.63   | 63.60    | 66.85    |   |             |              | ed            |               | Filtrate | Sample       | (mL)     | 6     | đ     | G     | 0     | a     | 6     |       | TIC 001-0    | 2             | .5         | •    | 5.0           | 00:00         |             |   | -106 Sim    | (0                             | 0.002     | 0.001                 | 0.001        | 00:0                   |
| Volume<br>(mL)                     | o /min     | h d        | b. 0       |         | 1.0      | 6        |   | 00.9        |              | oint Remov    |               |          | Filter Inlet | (Dsid)   | 35    | 35    | 35    | 35    | 35    | 36    |       |              |               | 9L)<br>(JE | q/fi | ep/u          | ,<br>n)<br>94 |             |   | 0           |                                | (is<br>() | ilide<br>q\27         | thm/f        | 5)<br>d                |
| Filter Inlet<br>Pressue<br>(risio) | 18 Roods   | 200        | 2 4        | 35      | 35       | 35       |   | = 8/11      |              | With First P  |               | Filter   | Outlet       | (DSig)   | MN    | MN    | NM    | MM    | MM    | WN    |       |              |               |            | 1    |               | 0:36          |             |   |             |                                |           | Т                     |              | 0:36                   |
| Pressure<br>(osia)                 | WWW IReads | NIN        | NIM        | NIM     | NIN      | MM       |   | 35.00       | 0.155        | 0.036         | 0.001         | Slurry   | Loop Flow    | (mon)    | 3.69  | 3.67  | 3.63  | 3.64  | 3.69  | 3.67  | ł     | lime         | (sa)          |            | •    |               | 0:28          |             |   | Time        | es)                            |           | •                     |              | 0:28                   |
| Loop Flow<br>Rate<br>(com)         | 1 COL      | 19.0       | 2.9.5      | 3.64    | 3.69     | 3.67     |   | =<br>E =    | 1 lear =     | m/ft2 =       | pm/ft2/psi =  |          | Churrent     | Temp C   | 24.5  | 24.5  | 24.6  | 24.5  | 24.6  | 24.7  | ī     | and 6.0 ft/s | nd 30 minu    |            |      |               | 0:21          | e (hr:min)  |   | Flux vs.    | and 6.0 ft/s<br>nd 30 minut    |           |                       |              | 14 0:21<br>me (hr:min) |
| Total Time<br>Elapsed<br>(Min)     | 00-00      | 1000       | 010        | 0.15    | 0.25     | 0:30     | ĩ | urry How gp | trate Flow m | trate Flux op | ermeability g |          | Challen      | Temp.C   | 16    | 16    | 16    | 16    | 16    | 17    |       | at 34.8 psig | indition 4, 2 |            | •    |               | 7 0:14        | Tim         |   | Simulant    | at 34.8 psig<br>ndition 4, 21  |           |                       |              | 0.07 D.                |
| Time                               | 14.45      | 10.11      | 14-25      | 14-30   | 14.40    | 14.45    |   | Average SI  | Average Fil  | Average Fill  | Average Pe    |          |              | Time     | 14:15 | 14:20 | 14:25 | 14:30 | 14:40 | 14:45 | 007.0 | C-10         | (C0           |            | •    |               | 0 0:03        |             |   | C-106       | (Col                           | 1 9       | 4                     | 0            | 0:00                   |
| Condition                          | Ab.        |            | 14         | 40      | 44       | 4b       | 3 | 40          | 44           | 4             | 4b            |          | Taul         | Number   | 4b    | 4b    | 4b    | 4b    | 4b    | 4b    |       |              | 0.7           | (AE)       | te F | 6, 0<br>1/2/0 | н (F          |             |   |             |                                | xn)<br>(2 | 17 ett<br>17/m<br>0.0 | (3b)<br>(3b) |                        |

| Permeabili<br>ty<br>(gpm/ft2/p<br>si)  | 0.002924 | 0.001836 | 0.001791 | 0.001817 | 0.001611 | 0.001655 |                                                                                  |                                        |       |       |       |       |       |       |
|----------------------------------------|----------|----------|----------|----------|----------|----------|----------------------------------------------------------------------------------|----------------------------------------|-------|-------|-------|-------|-------|-------|
| Filtrate Flux<br>(gpm/ft2)             | 0.0585   | 0.0367   | 0.0358   | 0.0364   | 0.0322   | 0.0331   |                                                                                  |                                        |       |       |       |       |       |       |
| Permeability<br>(m/day/bar)            | 2.490    | 1.563    | 1.525    | 1.547    | 1.372    | 1.409    |                                                                                  |                                        |       |       |       |       |       |       |
| Filtrate Flux<br>m3/m2/day)            | 3.433    | 2.156    | 2.103    | 2.134    | 1.892    | 1.943    |                                                                                  |                                        | 0.253 | 0.146 | 0.141 | 0.142 | 0.127 | 0.130 |
| Slurry<br>Temp C                       | 26.6     | 23.6     | 23.2     | 23.1     | 23.3     | 23.3     |                                                                                  | Filtrate<br>Flow Rate<br>(mL/sec)      | 35.62 | 61.72 | 64    | 63.25 | 70.94 | 69.06 |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 0.253    | 0.146    | 0.141    | 0.142    | 0.127    | 0.130    |                                                                                  | Time of<br>Collection<br>(Sec)         | 6     | 0     | 8     | đ     | 8     | 6     |
| Time of<br>Collection<br>(Sec)         | 35.62    | 61.72    | 64       | 63.25    | 70.94    | 69.06    | R                                                                                | Filtrate<br>Sample<br>Volume<br>(mL)   | 20    | 20    | 20    | 20    | 20    | 20    |
| Filtrate<br>Sample<br>Volume<br>(mL)   | G        | 6        | σι       | 0        | o        | a        | 5.94<br>aint Remove                                                              | Filter Inlet<br>Pressue<br>(psig)      | 0     | 0     | 0     | 0     | 0     | 0     |
| Filter Inlet<br>Pressue<br>(psig)      | 20       | 20       | 20       | 20       | 20       | 20       | ft/s =<br>With First P                                                           | Filter<br>Outlet<br>Pressure<br>(psig) | MM    | MM    | MM    | MM    | MM    | MN    |
| Filter<br>Outlet<br>Pressure<br>(psig) | MM       | MM       | MM       | MM       | MM       | MN       | 3.63<br>20.00<br>0.156<br>0.035<br>0.035                                         | Slurry<br>Loop Flow<br>Rate<br>(gpm)   | 3.5   | 3.64  | 3.67  | 3.67  | 3.63  | 3.64  |
| Slurry<br>Loop Flow<br>Rate<br>(gpm)   | 3.5      | 3.84     | 3.67     | 3.67     | 3.63     | 3.64     | m =<br>L/sec =<br>m/ft2 =<br>m/ft2/psi =                                         | Slurry<br>Temp C                       | 26.6  | 23.6  | 23.2  | 23.1  | 23.3  | 23.3  |
| Total Time<br>Elapsed<br>(Min)         | 00:00    | 0:10     | 0:15     | 0:20     | 0.25     | 0:30     | urry Flow gpi<br>essure psid :<br>trate Flow mi<br>trate Flux gp<br>meability gp | Chiller<br>Temp C                      | 16    | 14    | 4     | 15    | 15    | 16    |
| Time                                   | 18:40    | 18.50    | 18:55    | 19.00    | 19:05    | 19.10    | Average Sil<br>Average Pri<br>Average Filt<br>Average Pel                        | Time                                   | 18:40 | 18:50 | 18:55 | 19:00 | 19:05 | 19:10 |
| Condition<br>Number                    | 5a       | 5a       | 5a       | 5a       | 5a       | 5a       | ភ្លេស ភ្លេស<br>ភ្លេស ភ្លេស<br>ភ្លេស ភ្លេស                                        | Test<br>Number                         | 5a    | 5a    | 5a    | 5a    | 5a    | 5a    |



| Permeabili<br>ty<br>(gpm/ft2/p<br>si)  | 0.002908 | 0.001716 | 0.001690 | 0.001703 | 0.001580 | 0.001564 |                                                |                                | R :                                    |       |       |       |       |       |       |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
|----------------------------------------|----------|----------|----------|----------|----------|----------|------------------------------------------------|--------------------------------|----------------------------------------|-------|-------|-------|-------|-------|-------|----------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Filtrate Flux<br>(gpm/ft2)             | 0.0582   | 0.0343   | 0.0338   | 0.0341   | 0.0316   | 0.0313   |                                                |                                |                                        |       |       |       |       |       |       |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| Permeability<br>(m/day/bar)            | 2.476    | 1.461    | 1.439    | 1.450    | 1.346    | 1.332    |                                                |                                |                                        |       |       |       |       |       |       |          |                                       | P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| Filtrate Flux<br>(m3/m2/day)           | 3.414    | 2.015    | 1.984    | 2.000    | 1.855    | 1.836    |                                                |                                |                                        | 0.183 | 0.136 | 0.134 | 0.135 | 0.127 | 0.127 |          | i at 34.8 psig<br>is)                 | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                          |
| Slurry<br>Temp C                       | 23.3     | 23.5     | 23.5     | 23.6     | 24       | 24.3     |                                                |                                | Filtrate<br>Flow Rate<br>(mL/sec)      | 49.31 | 66.22 | 67.25 | 66.53 | 70.9  | 71.04 |          | 5.0 ft/s<br>ond 30 minute             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                          |
| Filbate<br>Flow Rate<br>(mL/sec)       | 0.229    | 0,136    | 0.134    | 0.135    | 0.127    | 0.127    |                                                |                                | Time of<br>Collection<br>(Sec)         | 6     | đ     | 0     | 6     | 6     | σı.   |          | ant Permea<br>and (<br>condition 4, 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                          |
| Time of<br>Collection<br>(Sec)         | 39.31    | 66.22    | 67.25    | 66.53    | 70.9     | 71,04    |                                                | pa                             | Filtrate<br>Sample<br>Volume<br>(mL)   | 20    | 20    | 20    | 20    | 20    | 20    | 0.000.00 | (C                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                        |
| Fittrate<br>Sample<br>Volume<br>(mL)   | 6        | 8        | 6        | 6        | đ        | 6        | 5.98                                           | oint Remov                     | Filter Inlet<br>Pressue<br>(psig)      | 0     | 0     | 0     | 0     | 0     | D     |          |                                       | y/bar)<br>(Noar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eb\m)                      |
| Filter Inlet<br>Pressue<br>(psig)      | 20       | 20       | 20       | 20       | 20       | 20       | this =                                         | With First P                   | Filter<br>Outlet<br>Pressure<br>(psig) | MM    | MM    | MN    | MM    | MN    | WN    |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| Filter<br>Outlet<br>Pressure<br>(psig) | NM       | MM       | MMN      | MM       | MM       | MM       | 3.66<br>20.00<br>0.148                         | 0.033                          | Slurry<br>Loop Flow<br>Rate<br>(gpm)   | 3,68  | 3.63  | 3.67  | 3,64  | 3.7   | 3,65  |          | me<br>es)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| Slurry<br>Loop Flow<br>Rate<br>(gpm)   | 3.68     | 3,63     | 3.67     | 3.64     | 3.7      | 3.65     | m =<br>=<br>L/sec =                            | m/ft2 =<br>pm/ft2/psi =        | Slurry<br>Temp C                       | 23.3  | 23.5  | 23.5  | 23.6  | 24    | 24.3  | 1        | and 6.0 ft/s<br>and 30 minute         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| Total Time<br>Elapsed<br>(Min)         | 0:00     | 0:10     | 0.15     | 0.20     | 0.25     | 0:30     | urry Flow gpi<br>essure psid :<br>trate Flow m | trate Flux gp<br>rmeability gi | Chiller<br>Temp C                      | 15    | 15    | 16    | 15    | 16    | 16    |          | at 34.8 psig<br>andition 4, 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| Time                                   | 19:25    | 19:35    | 19:40    | 19:45    | 19:50    | 19:55    | Average Slu<br>Average Pri<br>Average Fitt     | Average Fil<br>Average Pe      | Time                                   | 19:25 | 19:35 | 19:40 | 19:45 | 19:50 | 19:55 |          | 2 0                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| Condition                              | 55       | 5b       | 5b       | 5b       | 55       | 5b       | 6 6 9                                          | 5b<br>5b                       | Test<br>Number                         | 50    | 50    | 50    | 50    | 50    | 29    |          |                                       | X) 48<br>2) 48<br>2) 48<br>2) 49<br>2) 49 | tertiif<br>شکریت<br>را جار |



| Permeabili<br>ty<br>(gpm/ft2/p<br>si)<br>0.002999<br>0.001868<br>0.001713<br>0.001713<br>0.001715<br>0.001715<br>0.0011606              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Filtrate Flux<br>(gpm/th2)<br>0.0825<br>0.0505<br>0.0505<br>0.0443<br>0.0443<br>0.0445<br>0.0389<br>0.0387                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                             |
| Permeability<br>(m/day/bar)<br>2.554<br>1.591<br>1.352<br>1.290<br>1.290<br>1.233                                                       | <i>k</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 538                                                                   | 8                                                                           |
| Filtrate Flux<br>(m3/m2/day)<br>4.842<br>2.961<br>2.261<br>2.261<br>2.263<br>2.563<br>2.253<br>2.339<br>2.233                           | Filtrate Flow<br>Rate (mL/sec)<br>0.194<br>0.174<br>0.174<br>0.160<br>0.160<br>0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s at 34.8 psig<br>ss)<br>• •                                          | s)<br>(21 0.21 0.2                                                          |
| Slurry<br>Temp C<br>22 4<br>22 4<br>23 5<br>23 5<br>23 9<br>23 9<br>23 9<br>23 9<br>23 9                                                | Time of Time of Collection 1 (Sec) 28.6 48.5 48.4 5.12 66.41 65.12 66.41 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 66.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.41 1 65.12 65.11 1 65.12 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.11 1 65.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0 ft/s<br>6.0 ft/s<br>2nd 30 minute<br>0.14<br>0.14<br>Ime (hr.min) | 5.0 ft/s<br>5.0 ft/s<br>2nd 30 minutes<br>0.14                              |
| Filtrate<br>Flow Rate<br>(mL/sec)<br>0.194<br>0.194<br>0.174<br>0.169<br>0.169<br>0.169<br>0.155                                        | Fittrate<br>Sample<br>(mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ant Perme<br>and<br>ondition 4,<br>0:07                               | Int Permeal<br>and 6<br>and 4, 2<br>0.07                                    |
| Time of<br>Collection<br>(Sec)<br>28.6<br>48.5<br>49.84<br>51.65<br>53.12<br>55.41<br>57.94                                             | ed<br>Fitter Inlet<br>Pressue<br>(psig) 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C-106 Simul                                                           | -106 Simula<br>0.004 (Cc<br>0.003 0.002 0.002 0.001 0.000                   |
| Filtrate<br>Sample<br>Volume<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                    | 7.44<br>oint Removi<br>Permeate<br>(psig) 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Permesbility<br>(m/day/bar)<br>© N ← O                                | Permeability<br>Permeability                                                |
| Filter Inlet<br>Pressue<br>(psig)<br>27,5<br>27,5<br>27,5<br>28,5<br>28,5<br>27,5<br>27,5<br>27,5<br>27,5<br>27,5<br>27,5<br>27,5<br>27 | tt/s =<br>With First P<br>Filter<br>Custet<br>Pressure<br>NM<br>NM<br>NM<br>NM<br>NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.28                                                                  | 0:28                                                                        |
| Pressure<br>Outlet<br>Pressure<br>(psig)<br>NM<br>NM<br>NM<br>NM<br>NM<br>NM<br>NM<br>NM<br>NM                                          | 4.55<br>27.43<br>27.43<br>0.192<br>0.044<br>0.002<br>Slury<br>Loop Flow<br>4.54<br>4.55<br>4.55<br>4.55<br>4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | me<br>35)<br>•<br>0:21                                                | ne<br>s)<br>0.21                                                            |
| Slurry<br>Loop Flow<br>Rate<br>(gpm)<br>4.55<br>4.55<br>4.55<br>4.55<br>4.55                                                            | m =<br>Lisec =<br>m/ft2 =<br>m/ft2 si =<br>22.4<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t Flux vs. Tr<br>and 6.0 fbs<br>of 30 minut<br>e<br>0.14<br>0.14      | Flux vs. Til<br>and 6.0 ft/s<br>of 30 minute<br>0:14<br>0:14<br>me (hr:min) |
| Total Time<br>Elapsed<br>(Min)<br>0:00<br>0:15<br>0:15<br>0:21<br>0:22<br>0:22                                                          | rry Flow gp<br>ssure psid<br>rate Flow m<br>rate Flux gp<br>meablity gr<br>17<br>17<br>17<br>18<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o6 Simulant<br>at 34.8 psig<br>ndition 4, 2<br>•<br>07 Time           | 06 Simulant<br>tt 34.8 psig<br>ndition 4, 2r<br>e<br>0.07                   |
| Time<br>23.25<br>23.30<br>23.40<br>23.46<br>23.46<br>23.50<br>23.55                                                                     | Average Slu<br>Average Fit<br>Average Fit<br>Average Fit<br>Average Pel<br>23:35<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40<br>23:40 | • (Co                                                                 | 0:00 CC CC CC                                                               |
| Condition<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a                                                                               | 7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7a<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Filthate Flux                                                         | xul7 atetil7<br>(Sff/mqg)<br>5.00.000<br>5.00.000<br>5.00000                |

0.14 Time (hr.min)

| Permeabil<br>ty<br>lux (gpm/ft2/p<br>si) | 21 0.004604 | 81 0.002903 | 49 0.002138 | 37 0.002184 | 07 0.002032 | 32 0.001658 | 19 0.001595 |                                                              |                |                                        |       |       |       |       |       |       |       |
|------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------------------------------|----------------|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Filtrate F<br>(gpm/ft2)                  | 0.092       | 0.058       | 0.047       | 0.043       | 0.040       | 0.033       | 0.03        |                                                              |                |                                        |       |       |       |       |       |       |       |
| Permeability<br>(m/day/bar)              | 3.920       | 2.472       | 1.820       | 1.859       | 1.730       | 1.412       | 1.358       |                                                              |                |                                        |       |       |       |       |       |       |       |
| -litrate Flux<br>m3/m2/day)              | 5.405       | 3.408       | 2.635       | 2.564       | 2.386       | 1.947       | 1.872       |                                                              |                |                                        | 0.404 | 0.243 | 0.181 | 0.172 | 0.159 | 0.131 | 0.127 |
| Slurry<br>Temp C                         | 27.2        | 25.4        | 24.1        | 23.3        | 23.1        | 23.5        | 23.7        |                                                              |                | Filtrate<br>Flow Rate<br>(mL/sec)      | 22.25 | 37.1  | 49.78 | 52.34 | 56.55 | 68.53 | 70.87 |
| Filtrate<br>Flow Rate<br>(mL/sec)        | 0.404       | 0.243       | 0.181       | 0.172       | 0.159       | 0.131       | 0.127       |                                                              | 8              | Time of<br>Collection<br>(Sec)         | 6     | 0     | 0     | 6     | 8     | 6     | G     |
| Time of<br>Collection<br>(Sec)           | 22.25       | 37.1        | 49.78       | 52.34       | 56.56       | 68.53       | 70,87       | g                                                            |                | Filtrate<br>Sample<br>Volume<br>(mL)   | 20    | 20    | 21    | 20    | 20    | 20    | 20    |
| Filtrate<br>Sample<br>Volume<br>(mL)     | 0           | 6           | CT          | 8           | 6           | 6           | 6           | 6.00<br>oint Remove                                          |                | Filter Inlet<br>Pressue<br>(psig)      | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Filter Inlet<br>Pressue<br>(psig)        | 20          | 20          | 21          | 20          | 20          | 20          | 20          | ft/s = With First P                                          |                | Filter<br>Outlet<br>Pressure<br>(psig) | MM    | MM    | MM    | MM    | MM    | NM    | MN    |
| Filter<br>Outlet<br>Pressure<br>(psig)   | IMN         | MM          | MN          | MM          | MMN         | MM          | MN          | 3.68<br>20.14<br>0.202<br>0.042                              | 100.0          | Slurry<br>Loop Flow<br>Rate<br>(gpm)   | 3.67  | 3.74  | 3.7   | 3.63  | 3.66  | 3,69  | 3.69  |
| Slurry<br>Loop Flow<br>Rate<br>(gpm)     | 3.67        | 3.74        | 3.7         | 3.63        | 3.66        | 3.69        | 3.69        | m =<br>=<br>hL/sec =<br>sm/ft2 =<br>sm/ft2/nei =             | - iod or i sud | Slumy<br>Temp C                        | 27.2  | 25.4  | 24.1  | 23.3  | 23.1  | 23.5  | 23.7  |
| Total Time<br>Elapsed<br>(Min)           | 0:00        | 0:04        | 0:08        | 0:14        | 0.19        | 0.24        | 0:29        | urry Flow gp<br>essure psid<br>trate Flow m<br>trate Flow gp | R function R   | Chiller<br>Temp C                      | 18    | 14    | 15    | 16    | 17    | 18    | 19    |
| Time                                     | 14:11       | 14:15       | 14:20       | 14:25       | 14:30       | 14:35       | 14:40       | Average SI<br>Average Fit<br>Average Fit<br>Average Fit      | - african      | Time                                   | 14.11 | 14:15 | 14.20 | 14:25 | 14:30 | 14:35 | 14:40 |
| Condition                                | 10          | 7b          | 42          | 7b          | 2p          | 7b          | 75          | 66666                                                        | 2              | Test<br>Number                         | 7b    |



| Permeabili<br>ty<br>(gpm/ft2/p<br>si)<br>0.002596   | 0.001/25<br>0.001742<br>0.001661<br>0.001561<br>0.001534 |                                                                                          |                                                                                 |                                                                                   |                                                                                      |
|-----------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Filtrate Flux<br>(gpm/tt2)<br>0.0520                | 0.0349<br>0.0332<br>0.0332                               | 2                                                                                        |                                                                                 |                                                                                   |                                                                                      |
| Permeability<br>(m/day/bar)<br>2.210<br>1.903       | 1,409<br>1,414<br>1,329<br>1,326                         |                                                                                          |                                                                                 | 0.28                                                                              | 8                                                                                    |
| (m3/m2/day)<br>3.048<br>2.625                       | 2.12/<br>2.045<br>1.950<br>1.832<br>1.801                | Filtrate Flow<br>Rate (mL/sec)                                                           | 0.209<br>0.160<br>0.169<br>0.145<br>0.146<br>0.146<br>0.141<br>0.141<br>0.141   | es)                                                                               | at 34.8 psig                                                                         |
| Slurry<br>Temp C<br>24                              | 24.4<br>24.6<br>25.1<br>25.1                             | Time of<br>Collection                                                                    | 43 16<br>56 22<br>56 56<br>61 15<br>61 16<br>63 81<br>63 81                     | 20105<br>2nd 30 minute<br>0.14<br>ime (hr.min)                                    | bility vs. Time<br>5.0 fbs<br>ind 30 minute<br>e<br>0:14<br>Time (hr.min)            |
| Filtrate<br>Flow Rate<br>(mL/sec)<br>0.209<br>0.180 | 0.147<br>0.142<br>0.136<br>0.129<br>0.127                | Filtrate<br>Sample<br>Volume                                                             | ant Permea                                                                      | 0.07                                                                              | nt Permeal<br>and 6<br>and 6                                                         |
| Time of<br>Collection<br>(Sec)<br>50.12<br>50.12    | 01.10<br>63.6<br>66.34<br>69.6<br>70.81                  | d<br>Filter Inlet<br>Pressue                                                             | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |                                                                                   | 106 Simula<br>(Cc<br>0003<br>0002<br>0002<br>0001<br>0001<br>0000<br>0:00            |
| Filtrate<br>Sample<br>Volume<br>(mL)<br>9           |                                                          | 6.00<br>bint Remove<br>Permeate<br>Pressure                                              | 000000                                                                          | Permeability<br>(m/day/bar)<br>Permeability                                       | Permeabulity<br>(isplation)                                                          |
| Filter Inlet<br>Pressue<br>(psig)<br>20             | 52 52 52                                                 | Nth First Po<br>Mith First Po<br>Dutlet<br>Pressure                                      | WN WN WN WN                                                                     | 0.28                                                                              | 0.28                                                                                 |
| Filter<br>Outlet<br>Pressure<br>NM<br>NM            | WN WN                                                    | 3.69<br>20.14<br>0.153<br>0.035<br>0.002<br>Slurry<br>Loop Flow                          | 3.72<br>3.68<br>3.68<br>3.66<br>3.69<br>3.67<br>3.77<br>3.77<br>3.77<br>3.77    | s)<br>•<br>0.21                                                                   | ne<br>6.0                                                                            |
| Slumy<br>Loop Flow<br>Rate<br>(gpm)<br>3.72<br>3.68 | 3.68<br>3.69<br>3.67<br>3.77                             | n =<br>L'sec =<br>m/ft2/psi =<br>Slurry                                                  | 24.4<br>24.4<br>24.6<br>24.6<br>24.6<br>24.6<br>25.1<br>25.1<br>25.1<br>25.1    | of 30 minute<br>0.14<br>(hr.min)                                                  | Flux vs. Tir<br>and 6.0 ft/s<br>an 0.0 ft/s<br>an 0.0 ft/s<br>an 0.14<br>be (hr.min) |
| Total Time<br>Elapsed<br>(Min)<br>0:04<br>0:04      | 0.14<br>0.19<br>0.24<br>0.28                             | rrry Flow gpi<br>sssure psid :<br>rate Flow m<br>rate Flow gp<br>meablifty gr<br>Tomiler | 20<br>21<br>20<br>20<br>20<br>21<br>21<br>21<br>21<br>21<br>21                  | at 04:0 psg<br>ndtton 4, 2<br>07<br>Time                                          | 06 Simulant<br>at 34.8 psig<br>ndition 4, 2n<br>e                                    |
| Time<br>14:11<br>14:15                              | 14:35<br>14:35<br>14:35                                  | Average Slu<br>Average Filt<br>Average Filt<br>Average Per                               | 14.11<br>14.25<br>14.25<br>14.25<br>14.35<br>14.35<br>14.35<br>14.40            | •                                                                                 | C-11                                                                                 |
| Condition<br>Number<br>8a<br>8a                     | 68<br>88<br>88<br>88                                     | 8a<br>8a<br>8a<br>8a<br>8a<br>8a<br>8a                                                   | 80 80 80 80 80 80 80 80 80 80 80 80 80 8                                        | xula eistina<br>(∰3/m2(day) ≜<br>0 0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 | xulf etertiif<br>(Sthimgg)<br>0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0               |
| Permeabilit<br>y<br>0,0pm/ft2/ps        | 0.002626 | 5 0.001924 | 7 0.001558 | 2 0.001511 | 7 0.001382 |        |   |              |              |                           |          |                     |            |       |       |       |       |          |       |                                               |                   |                 |               |               |              |                                               |            |                                 |                      |
|-----------------------------------------|----------|------------|------------|------------|------------|--------|---|--------------|--------------|---------------------------|----------|---------------------|------------|-------|-------|-------|-------|----------|-------|-----------------------------------------------|-------------------|-----------------|---------------|---------------|--------------|-----------------------------------------------|------------|---------------------------------|----------------------|
| Filtrate Flu<br>(apm/#21)               | 0.0521   | 0.038      | 0.032      | 0.0301     | 0,027      | A NA A |   |              |              |                           |          |                     |            |       |       |       |       |          |       |                                               |                   |                 |               |               |              |                                               |            |                                 |                      |
| Permeability<br>(m/day/bar)             | 2 236    | 1.638      | 1.327      | 1.287      | 1.176      |        |   |              |              |                           |          | 100                 |            |       |       |       |       |          |       | _                                             | -                 |                 |               | 36            |              | 1                                             |            |                                 |                      |
| Filtrate Flux<br>m3/m2/dav)             | 3.084    | 2.259      | 1.921      | 1.774      | 1.622      | 2      |   |              |              |                           |          | Filtrate Flow Rate  | (Include)  | 0.462 | 0,345 | 0.317 | 0.290 | 0.204    | 0.253 | /s. Time at<br><sup>ss)</sup>                 |                   |                 | •             | 0:28 0:       |              | s. Time at                                    |            |                                 |                      |
| Slurry<br>Temp C                        | 27.2     | 25.4       | 24.1       | 23.3       | 23.5       |        |   |              |              |                           |          | Time of Collection  | (Sec)      | 19.5  | 26.1  | 28.37 | 31.03 | 35.63    | 35,63 | rmeability v<br>and 6.0 ft/s<br>2nd 30 minute |                   |                 |               | 14 0.21       | ime (hr:min) | meability v<br>and 6.0 ft/s<br>ind 30 minutes |            | •                               |                      |
| Filtrate<br>Flow Rate<br>(mL/sec)       | 0.231    | 0.161      | 0.132      | 0.119      | 0.109      | -      |   |              |              |                           | Citeria  | Sample              | (mL)       | 6     | a     | 6     | 09 C  | 21 10    | n di  | ulant Per<br>34.8 psig                        |                   |                 |               | 0.07 0.       | F            | Jant Peri<br>34.8 psig a                      |            | ÷                               |                      |
| Time of<br>Collection<br>(Sec)          | 39       | 55.97      | 68.29      | 75.63      | 82.25      |        |   |              |              | p                         |          | Filter Inlet        | (pisig)    | 20    | 20    | 23    | 20    | 02       | 39    | -106 Sim                                      | 0                 | • • •           | 0.0           | 00:00         |              | -106 Simu                                     | 0.003      | 0.002                           | 0000                 |
| Filtrate<br>Sample<br>Volume<br>(mL)    | 6        | ch.        | a          | đ          | a a        | E.     |   | 6.10         |              | aint Remove               |          | Permeate            | (pisig)    | 0     | 0     | 0     | 0 0   | 0 0      |       | 0                                             | ص<br>بنه<br>الإلم | ∧<br>A\p<br>spj | eb/m          | 5<br>1)<br>8d |              | Ŭ                                             | (is<br>Ity | ideem<br>1/271/mo               | iß<br>ə <sub>c</sub> |
| Filter Inlet<br>Pressue<br>(psia)       | 20       | 20         | 21         | 20         | 202        | i.     |   | 11/8 =       |              | With First Pi             | Citize . | Outlet              | (pisig)    | MM    | MN    | WN    | MN    | MN       | WN    |                                               | Π                 | T               |               | 0:36          |              |                                               | Γ          |                                 |                      |
| Filter<br>Outlet<br>Pressure<br>(rosia) | WN       | MM         | MM         | WN         | MM         |        |   | 3.70         | 0.142        | 0.031                     |          | Shurry<br>Loon Flow | Rate (gpm) | 3.67  | 3.74  | 3.7   | 3.63  | 3.60     | 3.69  | Time<br>es)                                   |                   |                 |               | 0:28          |              | Time es)                                      |            | •                               |                      |
| Slurry<br>Loop Flow<br>Rate (com)       | 3.68     | 3.69       | 3.74       | 3.7        | 3.69       |        |   | "<br>E "     | L/sec =      | m/ft2 =<br>pm/ft2/psi =   | 2        | Shurry              | Temp C     | 27.2  | 25.4  | 24.1  | 23.3  | 7.62     | 23.7  | t Flux vs.<br>and 6.0 ft/s<br>nd 30 minut     |                   |                 |               | 0:21          | e (hr:min)   | Flux vs.<br>and 6.0 ft/s<br>of 30 minut       |            |                                 |                      |
| Total Time<br>Etapsed<br>(Min)          | 0:00     | 0:04       | 0:00       | 0.14       | 0.24       |        | 1 | arry Flow gp | trate Flow m | trate Flux gp             |          | Childer             | Temp C     | 18    | 14    | 15    | 91    | 18       | 6     | Simulant<br>at 34.8 psig<br>ndition 4, 2      |                   | •               |               | 7 0:14        | Tim          | Simulant<br>at 34.8 psig<br>ndition 4, 21     |            | •                               |                      |
| Time                                    | 14.11    | 14:15      | 14:20      | 14:25      | 14:35      |        |   | Average Sil  | Average Filt | Average Fil<br>Average Pe | 0        |                     | Time       | 14:11 | 14:15 | 14:20 | 14:25 | 14.30    | 14:40 | C-106<br>(Co                                  |                   | •               |               | 0:0 00        |              | C-106                                         | • •        |                                 |                      |
| Condition                               | 86       | 8b         | 8b         | 8b         | 00         | 3      |   | 89<br>89     | 8b           | 88<br>88                  |          | Test                | Number     | 8b    | dB    | 8b    | OD IS | OB<br>48 | 8 8   |                                               | N N N             | 191<br>191      | 11111<br>1121 | н (F          |              |                                               | (z<br>xn)  | l etertii<br>fi\mqg)<br>9 9 9 9 | IL U.                |

0:14 0:28 Time (hr:min)

.

# 0.1 micron Liquid- Service Mott Filter

AZ-101/102 Filtration Simulant at 5 wt% Solids Loading Cuf Testing

| Permeability<br>(gpm/ft2/psi)        | 0.012093 | 0.004560 | In Infranties | 0.002077 | T POPOLICE I | 0.0002000 | CBECOULD | 0.000and | 0.00000F | 0 000840 | 0.002698 |             |                |                                               |             |                            |       |       |       |       |       |       |       |      |       |       |       |       |            |              |         |          |                |      |             |            |           |               |
|--------------------------------------|----------|----------|---------------|----------|--------------|-----------|----------|----------|----------|----------|----------|-------------|----------------|-----------------------------------------------|-------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|------------|--------------|---------|----------|----------------|------|-------------|------------|-----------|---------------|
| Filtrate<br>Flux<br>(gpm/ft2)        | 0.583002 | 0.245400 | 0 170965      | 0 163030 | 120225       | 0.130/300 | 0.140401 | 0.100600 | 0.165027 | 0.142652 | 0.135659 |             |                |                                               |             |                            |       |       |       |       |       |       |       |      |       |       |       |       |            |              |         |          |                |      |             |            |           |               |
| Permeability<br>(m/day/bar)          | 10.296   | 077.6    | 0.000         | 2.619    | 2 16.4       | 0 183     | 900 0    | EPC E    | 2 837    | 2 4296   | 2.297    |             |                |                                               |             |                            |       |       |       |       |       |       |       |      |       |       |       |       |            |              |         |          |                |      |             |            |           |               |
| ritrate Fiux<br>m3/m2/day)           | 34,785   | 14,0/0   | 000           | 0.030    | 10 + 4 K     | 7637      | 6.900    | 11 181   | 147      | B. 362   | 7.958    |             |                |                                               |             |                            |       |       |       |       |       |       |       |      |       |       |       |       |            |              |         |          |                |      |             |            | 17        |               |
| Stury Temp C                         | 24.1     | 1.47     | 7.90          | 24.9     | 0.40         | 0.70      | 1000     | 210      | 1 02     | 222      | 22.7     |             |                |                                               |             | Fata Flow<br>Rate (mL/sec) | 7,160 | 3,000 | 2.392 | 2.092 | 1001  | 1001  | 1.431 |      | 2,161 | 1.778 | 1,630 | 4/01  | ability on | fils         |         |          |                | •••  | 0-57 1-12   |            | 100 mm    | ability vs.   |
| Fibrate<br>Filow Rate<br>(mL/sec)    | 7.160    | 000.0    | 2 002         | 1.901    | 1 708        | 1 554     | 1431     | 2 161    | 1778     | 1830     | 1,574    |             |                |                                               | 1           | Collection<br>(Sec)        | 4.19  | 01    | 12.54 | 14.34 | 10.12 | 10 11 | 20.97 |      | 13.88 | 16.87 | 10.4  | 18,00 | of Domo    | usig and 9.4 | tion 1) |          |                | •    | DE 0.43     | ne (hr:min | 1         | It Permea     |
| Time of<br>Collection<br>(Sec)       | 4 19     | 12.64    | 14.34         | 15.78    | 17 140       | 19.31     | 20.87    | 13 88    | 16.87    | 18.4     | 10.06    |             |                |                                               | Filtrate    | Volume<br>(mil.)           | 8     | 30    | 8     | 99    | 89    | 8.9   | 88    |      | 90    | 90    | 8     | R     | clumb 00   | me at 50.0 p | (Condi  |          |                | •••• | 0.14 0.2    | ET.        |           | 2 Simular     |
| Filtrate<br>Sample<br>Volume<br>(mL) | 89       | 8.9      | 3 9           | 8        | 08           | 98        | 30       | F        | 30       | 98       | 30       |             |                |                                               | China Indea | Pressue<br>ptsig)          | 51    | 52    | 2     | 21    | 25    | 12    | 1 21  |      | 52    | 13    | 8 8   | 2     | 101101     | TIT          |         | 0        | + 0            | •    | 000         |            |           | DL/LOL-Z      |
| Pressure<br>Drop (psig)              | 4 1      | 1        | 4             | 1        |              | 2         |          | 1        | 10       | - 40     | 4        | 9.4         |                |                                               | Tanna and a | Pressure<br>psig)          | Ē     |       |       |       |       |       |       |      |       |       |       |       |            |              |         | (Jan 19) |                | ep/u | )<br>비<br>년 |            |           | 4             |
| Ther Inlet                           | 50       | ¥ 2      | 1 21          | 3        | 65           | 12        | 12       | 3        | 173      | 52.5     | 52.5     | = 5,Q       |                |                                               | the second  | Pressure F                 | 47    | 48    | 48    | 48    | 8     | 48    | 48    |      | 48    | 14 A  | 4     | ŧ.    |            |              |         |          |                |      | 1.12        |            |           |               |
| Outlet<br>Pressure<br>(psig)         | 14       | 100      | 4             | 40       | 48           | 48        | 48       | 48       | 48       | 47.5     | 48       | 3.23        |                | 0.198<br>0.004                                | Slurry F    | Rate F                     | 3.23  | 3.22  | 32    | 3.27  | 222   | 50.6  | 3.28  |      | 3.22  | 3.17  | 27.5  | 07-0  | e Timo     |              |         |          |                | •    | 0:57        |            |           | . 11110       |
| Sluny<br>Loop Flow<br>(gpm)          | 3.23     | 2.0      | 327           | 3.23     | 3 23         | 3.25      | 3.28     | 322      | 3.17     | 3.23     | 3.26     |             |                | sec =<br>M2 =<br>vM2/psi =                    |             | Sturry<br>Temp C           | 24.1  | 24.1  | 24.8  | 24.7  | 8.67  | 140   | 23.9  |      | 21.9  | 22.1  | N N N | ž     | of Elay o  | d 9.4 ft/s   | on 1)   |          | •              |      | 0:43        | hrmin)     |           | N. FJUX VI    |
| otal Time<br>lapsed<br>An)           | 000      | 500      | 0.14          | 0.19     | 0.24         | 0.29      | 0.34     | 0.44     | 0.49     | 0.54     | 0.59     | y Flow gpm  | - nod anno     | te Flux gpm<br>reability gpm                  |             | viller<br>amp C            | 15    | 12    | 4     | 1     | 2:    | i p   | 12    |      | =     |       | 2     | 2     | 2 Simula   | t 50 psig ar | Conditi |          |                | :    | 0.28        | Time       | · chandra | ternine 2     |
| ami<br>ami                           | 3.36     |          | 3.50          | 3:55     | 4.00         | 4.05      | 4-10     | 4.20     | 4.25     | 4:30     | 4:35     | verage Stur | waite a figura | werage Filtra<br>werage Filtra<br>werage Pern |             | 0 F                        | 3:36  | 3:40  | 3.45  | 3.50  | 100-1 | 4.05  | 4.10  | 4.15 | 4.20  | 4 20  | 4.90  | 00%   | A7-404/140 |              |         |          |                |      | 0.14        |            | OFFICE CA | 10 11 11 - 7W |
| Condition<br>Number                  |          |          | +             | ÷        | +            | +         |          | -        |          | -        |          | 1.1         |                |                                               | 12          | Test<br>Number T           | *     | -     | -     |       | • •   |       | -     | -    |       |       | .,    | 65    |            | 0.04         | e out   | end of   | e contracter a |      | 0.00        |            |           |               |



| Permeability<br>(gpm/ft2/psi)      | 0.0035   | 0.0028   | 0.00256  | 0.0024   | 0.0022(  | 0.00200  | 0.00196  | 0.00174  | 0.00175  | 0.00173  | 0.00167  | 0.00155  |              |              |              |              |              |   |              |                                |         |       |       |       |       |       |       |       |       |       |       |       |
|------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|--------------|--------------|--------------|---|--------------|--------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Filtrate Flux<br>(gpm/ft2)         | 0.106342 | 0.065584 | 0.077969 | 0.072565 | 0.086225 | 0.060191 | 0.058287 | 0.052718 | 0.052590 | 0.051969 | 0.050416 | 0.048111 |              |              |              |              |              |   |              |                                |         |       |       |       |       |       |       |       |       |       |       |       |
| Permeability<br>(m/day/bar)        | 3.016    | 2.427    | 2.211    | 2.058    | 1.878    | 1.707    | 1 695    | 1.483    | 1.491    | 1.474    | 1.430    | 1.320    |              |              |              |              |              |   |              |                                |         |       |       |       |       |       |       |       |       |       |       |       |
| Fittrate Flux<br>(m3/m2/day)       | 6.236    | 5.020    | 4.574    | 4.257    | 3.885    | 3.531    | 3.419    | 3.092    | 3.085    | 3.049    | 2.957    | 2.822    |              |              |              |              |              | 1 |              |                                |         |       |       |       |       |       |       |       |       |       |       |       |
| Sturry Temp C                      | 23.2     | 22.3     | 21.8     | 22.1     | 23.1     | 24.1     | 24.6     | 24,6     | 24       | 22.9     | 23.2     | 22.8     |              |              |              |              |              |   | 100 m 000    | Filtrate Flow<br>Rate (mU/sec) | 2.687   | 1.500 | 1.348 | 1 248 | 1,205 | 1.255 | 1.155 | 1.161 | 1.110 | 1.092 | 1.100 | 1.102 |
| Filtrate<br>Flow Ratin<br>(mU/sec) | 1.252    | 0.982    | 0.882    | 0.828    | 0.777    | 0.727    | 0.714    | 0.648    | 0.633    | 0.606    | 0.593    | 0.560    |              |              |              |              |              |   | Taxat        | Collection                     | 11.25   | 20    | 22.25 | 24.03 | 23.72 | 23.91 | 26.06 | 25.84 | 27.03 | 27.47 | 27.28 | 27.72 |
| Time of<br>Collection<br>(Sec)     | 23.97    | 30.56    | 34.03    | 記留       | 38.6     | 41.28    | 42.03    | 46.47    | 47,38    | 49.47    | 50.56    | 53.59    |              |              |              |              |              |   | Fatrato      | Volume                         | R       | 8     | 8     | 8     | 8     | 8     | 8     | R     | 90    | 30    | 8     | R     |
| Volume<br>(mL)                     | 30       | 30       | 30       | B        | 99       | 8        | 8        | 8        | 8        | 8        | 8        | 8        |              |              |              |              |              |   | Citiza Indas | Pressue<br>Pressue             | CH.     | 32    | 32    | 8     | M     | 32    | 31    | 32.6  | R     | 32    | 32    | 100   |
| Pressure<br>Drop (psig)            | 4        | *        | 4        | 4        | 4        | 4        | 51 10    | 4.5      | 4        | 4        | 4        | 4        | 7.6          |              |              |              |              |   | Damana       | Pressure<br>Pressure<br>(nein) | (Rised) |       |       |       |       |       |       |       |       |       |       |       |
| Filter Intet<br>Pressue<br>(psig)  | 3        | 22       | 32       | 22       | R        | 32       | 17<br>17 | 32.5     | 32       | 22       | 32       | 3        | M/8 ==       |              |              |              |              |   | Filter       | Pressure                       | 26      | 28    | 38    | 28    | 28    | 38    | 27.5  | 26    | 28    | E     | 28    | 53    |
| Pressure<br>(psig)                 | 28       | 82       | 28       | 28       | BN       | 28       | 27.5     | 28       | 28       | 82       | 23       | 8        | 2.60         | 30.04        | 0.787        | 0.065        | 0.002        |   | Shrry        | Rate<br>Rate                   | 272     | 2.55  | 2.58  | 2.51  | 2.62  | 264   | 2.6   | 2.64  | 2.62  | 2.47  | 2.59  | 2.6   |
| Slumy Loop<br>Flow Rate<br>(gpm)   | 2.72     | 2.55     | 2.58     | 2.51     | 2.82     | 2.64     | 2.6      | 264      | 2.82     | 2.47     | 2.59     | 2.6      | = 5          |              | Lisec =      | m/12 =       | sm/fh2/psi = |   |              | Slurry<br>Temp C               | 22.3    | 21.9  | 11.12 | 21.9  | 22.5  | 22.7  | 23.1  | 23.2  | 23.3  | 23.4  | 23.5  | 522   |
| Total Time<br>Elapsed<br>(Min)     | 0000     | 0.04     | 60.0     | 0.14     | 0,19     | 0.24     | 0:29     | 100      | 0:30     | 0,49     | \$30     | 0.50     | rry Flow gpr | ssure psid - | ate Flow m   | ate Flux gp  | meability gp | 0 |              | Chiller<br>Temp C              | \$      | 13    | 4     | 14    | 18    | 18    | 10    | 24    | 17    | 17    | 17    | 18    |
| Time                               | 9.25     | 9.25     | 9:30     | 9:35     | 9:40     | B.45     | 9.50     | 9-55     | 10.00    | 10:10    | 10-15    | 10.20    | Average Stu  | Average Pre  | Average Fith | Average Fith | Average Per  |   |              | Time                           | 921     | 8:25  | 8:30  | 8:35  | 9:40  | 8:45  | 9:50  | 9-55  | 10:00 | 10.10 | 10:15 | 10.20 |
| Condision                          | ev.      | CV.      | τ¥.      | ¢4       | 64       | r.i      | RÌ.      | e¥.      | 14       | N        | N        | Ci l     | P4           | N            | 104          | IN           | 04           |   |              | Test<br>Number                 | CV.     | 114   | r.    | D4    | ev.   | EN.   | C)    |       | Pe.   | e¥.   | ri.   | 64    |

Ċ

0.003542 0.002851 0.002851 0.002597 0.002205 0.002205 0.001752 0.001752 0.001751 0.001751 0.001751 0.001751



| Pormeability<br>(gpm/ft2/ps()          | 0.005346 | 0.002066 | 0.001740 | 0.001625 | 0.001475 | 0.001451 | 0.001452 | 0.001380 | 0.001345 | 0.001304 | 0.001288 | 0.001262 | 0.001211 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |        |                                   |          |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|--------|-----------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Fitrate Flux<br>(ppm/ft2)              | 0.374501 | 0.146106 | 0.121454 | 0.113446 | 0.102944 | 0.101631 | 0.101686 | 0.096291 | 0.094557 | 0.091359 | 0.069616 | 0.088430 | 0.084847 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |        |                                   |          |       |       |       |       |       |       |       |       |       |       |       |       |
| Permeshility<br>(m/day/bar)            | 4.552    | 1.776    | 1.481    | 1.384    | 1.256    | 1.235    | 1.230    | 1.175    | 1.145    | 1.110    | 1,097    | 1.075    | 1,031    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |        |                                   |          |       |       |       |       |       |       |       |       |       |       |       |       |
| Filtrate Flux<br>(m3/m2/day)           | 21.968   | 8.571    | 7.124    | 0.655    | 6009     | 5.962    | 5.965    | 5.648    | 5.547    | 6.359    | 5.257    | 5.187    | 4.977    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |        |                                   |          |       |       |       |       |       |       |       |       |       |       |       |       |
| Stury Temp C                           | 24.5     | 24.3     | 242      | 242      | 24.3     | 24.3     | 24.5     | 24.7     | 24.9     | 25.1     | 25       | 24.9     | 24.9     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |        | Fitrate Flow Rale<br>(mL/sec)     | 4 573    | 1.774 | 1.471 | 1.374 | 1.250 | 1.234 | 1.242 | 1,182 | 1.168 | 1,135 | 1.110 | 1.082 | 1.048 |
| Filtrate<br>Flow Rate<br>(mL/soc)      | 4.573    | 1774     | 1,471    | 1.374    | 1.250    | 1234     | 1242     | 1.182    | 1.168    | 1,135    | 1.110    | 1.092    | 1.048    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |        | Time of<br>Collection             | 0.56     | 16.91 | 20.4  | 21.84 | 24    | 24 31 | 24.18 | 25.37 | 25.69 | 20.44 | 27.03 | 27.47 | 28.63 |
| Time of<br>Collection<br>(Sec)         | 6.56     | 16.91    | 20.4     | 21.84    | 24       | 24.31    | 24 16    | 25.37    | 25.69    | 13.44    | 27.03    | 27.47    | 28,63    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              | Thrate | Sample<br>Volume                  | 8        | 8     | 8     | 8     | 90    | 30    | 30    | 8     | 30    | 30    | 30    | 30    | 30    |
| Filtrate<br>Sample<br>Volume<br>(mL)   | 8        | 8        | 30       | 8        | 8        | 30       | 30       | 30       | 30       | 30       | 30       | 30       | 3D       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |        | Fitter Inlet                      | 22       | 12    | 71.5  | 71.5. | 71.5  | 12    | 22    | 71.0  | 72    | 2     | 11    | 2     | 22    |
| Pressure<br>Drop (psig)                | 7        | 4        | 50.00    | 3.6      | 3.5      | 4        | 4        | 3.5      | 3.5      | 4        | m        | 4        | 4        | 7.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |        | Permeate<br>Pressure<br>(main)    | (Really) |       |       |       |       |       |       |       |       |       |       |       |       |
| Filter Inlet<br>Pressue<br>(psig)      | 12       | 2        | 71.5     | 71.5     | 71.5     | 22       | 72       | 71.5     | 72       | 72       | 12       | 72       | 12       | N/8 =        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              | Filter | Oudet<br>Pressure<br>(nein)       | 68       | 68    | 68    | 68    | 68    | 88    | 68    | 88    | 68.5  | 68    | 80    | 68    | 88    |
| Filter<br>Oudlet<br>Pressure<br>(psig) | 89       | 68       | 68       | 89       | 89       | B        | 68       | 69       | 583      | 88       | 3        | 8        | 8        | 2.47         | 09.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.512         | 200.0        |        | Sturry<br>Loop Flow<br>Rate (onm) | 2.6      | 2.5   | 24    | 2.45  | 2.48  | 2.47  | 2.52  | 2.62  | 2.47  | 2.42  | 2.4   | 2.42  | 2.43  |
| Slurry<br>Loop Flow<br>Rate (gpm)      | 2.6      | 2.5      | 2.4      | 2.45     | 2.48     | 2.47     | 2.52     | 2.52     | 2.47     | 2.42     | 24       | 2.42     | 2.43     | =            | in the second se | - 198C =      | m/f/2/psi =  |        | Slumy<br>Tamo C                   | 24.5     | 24.3  | 24.2  | 24.2  | 24.3  | 54.3  | 24.5  | 24.7  | 24.9  | 25.1  | 8     | 24.9  | 24.9  |
| Total Time<br>Elapsed<br>(Mirt)        | 00:0     | 0.05     | 0.10     | 0.15     | 0.20     | 0.25     | 0:30     | 0.35     | 0.40     | 0:45     | 0:50     | 0:55     | 1:00     | rry Flow gpn | anne bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tate Flow Int | meability op |        | Chiller<br>Temp C                 | 13       | 1     | 12    | 5     | 12    | 12    | 12    | 12    | 1     | 13    | 13    | 4     | 12    |
| Tame                                   | 10.25    | 10:30    | 10.35    | 10:40    | 10:45    | 10,50    | 10:55    | 11:00    | 11:02    | 01111    | 11.15    | 11.20    | 11.25    | Average Slu  | and affermant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average Fils  | Average Per  |        | Time                              | 10:25    | 10:30 | 10:35 | 10:40 | 10:45 | 10:50 | 10.55 | 11:00 | 11:06 | 11:10 | 11.15 | 11.20 | 11.25 |
| Condition                              | 15       | 69       | 61       | (7)      | 0        | in.      | 0        | 71       | es.      | e.       | m.       | m        | 0        | 0 1          | 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.17          | 0 e9         |        | Test                              | -        | 11    | r1    | m     | n     | n     | m     | m     | n     | n     | m     | m     | n     |

r.



| F 5 2 8                                |          |          |          |          |          |          |          |          |          |          |          |          |             |                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |          |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Fitrate<br>Flux<br>(gpm/ft2)           | 0.154608 | 0.117247 | 0.116563 | 0.105409 | 0.103706 | 0.101288 | 0 100129 | 0.095921 | 0.092692 | 0.090778 | 0.087825 | 0.088331 |             |                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |          |       |       |       |       |       |       |       |       |       |       |       |       |
| Permeability<br>(m/day/bar)            | 4.459    | 3,325    | 3.305    | 2 989    | 2,893    | 2.849    | 2 840    | 2766     | 2.719    | 2.618    | 2.485    | 2.505    |             |                  |                                                               | È,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |          |       |       |       |       |       |       |       |       |       |       |       |       |
| Filtrate Flux<br>(m3/m2/day)           | 9.069    | 6.878    | 6.837    | 6.163    | 0.083    | 5.942    | 5.874    | 5.627    | 5.437    | 5.326    | 5 140    | 5.182    |             |                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |          |       |       |       |       |       |       |       |       |       |       |       |       |
| Stury Temp C                           | 22.5     | 22       | 22.3     | 22.6     | 23       | 52       | 23.1     | 23.1     | 23.2     | 23.3     | 23.2     | 23.1     |             |                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fittrate Flow<br>Rate (mUsec) |          | 1.784 | 1 333 | 1,337 | 1.220 | 1.214 | 1,185 | 1,175 | 1 126 | 1.091 | 1.071 | 1.031 | 1.037 |
| Filtrate<br>Flow Rate<br>(mU/sec)      | 1.784    | 1.333    | 1 337    | 1 220    | 1.214    | 1 186    | 1 175    | 1.126    | 1 091    | 1.071    | 1.031    | 1 037    |             |                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time of<br>Collection         | (Sec)    | 18.82 | 22.5  | 22.44 | 24.6  | 24.72 | 25.31 | 25.53 | 26.65 | 27.5  | 28    | 29.09 | 28.94 |
| Time of<br>Collection<br>(Sec)         | 16.82    | 22.5     | 22.44    | 246      | 24.72    | 25.31    | 25.53    | 26.65    | 27.5     | 28       | 29.09    | 28.94    |             |                  |                                                               | and have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fatrate<br>Sample<br>Volume   | (mL)     | 8     | 8     | 30    | 92    | 30    | 00    | 02    | 8     | 30    | 30    | 8     | 8     |
| Filtrate<br>Sample<br>Volume<br>(mL)   | Œ        | 30       | 30       | DE       | 30       | 8        | 8        | 8        | 8        | 8        | 8        | 8        |             |                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Filler Inlet<br>Pressue       | (Desd)   | 5     | 33    | Ħ     | 10    | 8     | 8     | 9     | ē     | 5     | 5     | 8     | M     |
| Pressure<br>Drop (psig)                | 5        | 4        | 4        | 4        | 40       | 3.5      | 4        | 17       | 4        | 11)      | 4        | 4        | 7.0         | 1                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Parmaata<br>Pressure          | (Dead)   |       |       |       |       |       |       |       |       |       |       |       |       |
| Filter Injet<br>Pressue<br>(psig)      | 33       | 22       | 8        | 32       | 12       | 32       | 22       | 31       | 31       | 31       | 32       | 32       | B/e =       | 1 1 1 1          |                                                               | and the second sec | Pressure                      | (Brad)   | 2     | 89    | 26    | 28    | 28    | 28.5  | 28    | 28    | 27    | 28    | 28    | 20    |
| Filter<br>Outlet<br>Pressure<br>(psig) | 28       | 28       | 28       | 28       | 28       | 28.5     | 28       | 28       | 27       | 28       | 2H       | 28       | 2.60        | 10. T            | 29.85<br>1.217<br>0.105<br>0.003                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Loop Flow<br>Rate             | (uudb)   | 2.60  | 2.2   | 2.83  | 2.57  | 2.8   | 2.75  | 2.68  | 2.9   | 2.76  | 2.44  | 2.75  | 25    |
| Sturry<br>Loop Flow<br>Rate<br>(gpm)   | 2.65     | 2.7      | 2 83     | 2.57     | 2.8      | 275      | 2.68     | 2.9      | 2.76     | 2.44     | 2.76     | 2.6      |             |                  | =<br>L/sec =<br>m/f2 =<br>pm/f2/psi =                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sturry                        | Temp C   | 22    | a     | 223   | 22.6  | R     | 2     | 23.1  | 23.1  | 23.2  | 23.3  | 23.2  | 23.1  |
| Total Time<br>Elapsed<br>(Min)         | 00/0     | 0:01     | 0:10     | 0.15     | 0.22     | 0:25     | 0:30     | 0:35     | 0.42     | 0:50     | 0.55     | 1:00     | erv Flow on | Will many 1 King | etsure psid<br>trate Flow m<br>trate Flux gp<br>rmeability ox |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chilter                       | Temp C   |       | 9     | 11    | 16    | 16    | 11    | 21    | 17    | 18    | 15    | 41    | 16    |
| Time                                   | 11:35    | 11:42    | 11.45    | 11.50    | 11.57    | 12:00    | 12.05    | 12-10    | 12-17    | 12.25    | 12:30    | 12,35    | Avarage Sh  | and affering of  | Average Pr<br>Average Fil<br>Average Fil<br>Average Po        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.000                        | emit     | 11.35 | 11.42 | 11.45 | 11.50 | 11.57 | 12:00 | 12:05 | 12.10 | 12.17 | 12.25 | 12:30 | 12.35 |
| Condition                              | 4        | *        | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 9           | F.S              | * * * *                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test                          | Murriber | e -   | •     | 4     | 4     | *     | 4     | 4     | 4     | 4     | 4     | 4     | 4     |

Permeabili Permeabili N (gpmAt2)P so 0.005537 0.0003082 0.0003046 0.0003346 0.0003346 0.0003346 0.0003346 0.0003346 0.0003249 0.0002919 0.0002919 0.0002919 0.0002919 0.0002919 0.0002919 0.0002919



| Filtrate<br>Flux<br>(com/ft2)        | 0.192418 | 0.134885 | 0.121216 | 0.113265 | 0.108856 | 0.108882 | 0.102859   | 0.101407       | 0.095324 | 0.094907 | 0.069897 |             |               |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |       |       |       |          |            |       |       |       |       |       |       |             |             |         |       |      |             |             |   |            |                        |            |                |               |      |           |
|--------------------------------------|----------|----------|----------|----------|----------|----------|------------|----------------|----------|----------|----------|-------------|---------------|--------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|-------|-------|----------|------------|-------|-------|-------|-------|-------|-------|-------------|-------------|---------|-------|------|-------------|-------------|---|------------|------------------------|------------|----------------|---------------|------|-----------|
| Permeability<br>(m/day/bar)          | 3.274    | 2.295    | 2,063    | 1.927    | 1,852    | 1.853    | 1.750      | 1.72/6         | 1.622    | 1.023    | 1,530    |             |               |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |       |       |       |          |            |       |       |       |       |       |       |             |             |         |       |      |             |             |   |            |                        |            |                |               |      |           |
| Rhrate Flux<br>m3/m2/day)            | 11.287   | 7.912    | 7.111    | 6.644    | 6.300    | 0.387    | 6.034      | 0.949          | 5.592    | 1000     | 5.273    |             |               |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |       |       |       |          |            |       |       |       |       |       |       | 1           |             |         |       |      |             |             |   |            |                        |            |                |               |      |           |
| Shirry Temp C                        | 24.8     | 24.8     | 24.2     | 24.5     | 25.1     | 24.9     | 1 42       | 24.7           | 191      | 2.07     | 3 12     |             |               |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Filtrate Flow Rate<br>(mL/sec)    | 2.370 | 1.681 | 1.468 | 1 383    | 1.302      | 12021 | 1.245 | 1.184 | 1.182 | 1.168 | 1.116 | ability vs. |             |         |       |      | C1-1 12-0 E | 1           | 2 | bility vs. |                        |            |                | •             |      | 0:57 1:12 |
| Filuste<br>Flow Rate<br>(mL/sec)     | 2.370    | 1.661    | 1.468    | 1.2403   | 1,352    | 1,245    | 1.203      | 1.245          | 1.164    | 1.162    | 1116     |             |               |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time of<br>Collection<br>(Sec)    | 12.66 | 18.06 | 20.44 | 21.09    | 10.02      | 23.75 | 24.09 | 25.34 | 25.38 | 25.25 | 20.87 | int Perme   | and 8.6 fus | (gun 5) |       | •    | 0.28 0.4    | Time (hr:mi |   | it Permea  | 00                     | 100 D)     | 10.000 M       |               |      | 8 0:43    |
| Time of<br>Collection<br>(Sec)       | 12.66    | 18.06    | 20.44    | 21.09    | 22 19    | 15.22    | 27.52      | 24.00          | 20.22    |          | 26.87    |             |               |              |                             | - Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume<br>Volume<br>(mil.)        | 30    | 30    | 30    | 8 9      | 8.8        | 8.8   | 8     | 8     | 8     | 30    | 8     | 02 Simula   | 50.0 psig   | Cond    |       | :    | 0.14        |             |   | 2 Simular  | TIT                    | (Condit    |                |               |      | 14 0.2    |
| Fittrate<br>Sample<br>Volume<br>(mL) | 30       | 8        | 8        | 8        | RI       | 8 8      | DR DR      | 22             | DR I     | 202      | 38       |             |               |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Filter Inlet<br>Pressue<br>(psia) | 23    | 23    | 22    | 88       | 3 2        | 8 23  | 25    | 52    | 21    | 24    | 23    | AZ-101/1    |             |         | 540 × | 0 co | (m)         |             |   | AZ-101/10  | 5                      |            | •              | N F           | . 0  | 0:00      |
| Pressure<br>Drop (psig)              | 4        | 4        | 4        | *        | 4        | ¢.,      | 10         | ¢.,            | 4 14     | 0.1      | ्यः      | 90          |               |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Permeale<br>Pressure<br>(rosid)   |       |       |       |          |            |       |       |       |       |       |       |             |             | 3       | HEQ   | vem. | 19d         |             |   |            | 0.00                   | 000<br>111 | dear           | men<br>Brag   | 00.0 |           |
| Filter Infet<br>Pressue<br>(psig)    | 12       | 23       | 23       | 8        | 81       | 88       | 35         | 3 (            | 88       | 2 5      | 121      | = 54        |               |              |                             | Change of the second seco | Pressure<br>Pressure<br>(psici)   | 40    | 导     | 早     | 容 3      | 9 <b>9</b> | ₽ \$  | 48    | 48    | 47.5  | 48    | 48    |             |             | ſ       | 1     | 1    | 1.12        |             |   |            | ľ                      | T          |                | 1             | 1.12 |           |
| Cutlet<br>Prossure<br>(psig)         | \$       | 84       | ₽        | 4        | 8        | 4        | ₽ <b>₹</b> | <del>2</del> 4 | 124      | 0.76     | 4 4      | 2.95        | 49.98         | 1.386        | 0.113                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Slurry<br>Loop Flow<br>Rate (com) | 3.08  | 2.91  | 2.88  | 3.07     | 204        | 2.65  | 2.67  | 2.94  | 2.9   | 2.93  | 3.03  | /s. Time    |             |         |       |      | 0.57        |             |   | s. Time    |                        |            |                |               | 0.57 |           |
| Sturry<br>Loop Flow<br>Rate (gpm)    | 3.08     | 2.91     | 2.88     | 10E      | 2.08     | 44.7     | 287        | 107            | 65.7     | 2.0      | 3.03     | =           |               | L/sec =      | mutt2 =<br>mutt2/psi =      | 1010100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Slurry<br>Tamo C                  | 24.8  | 24.8  | 242   | 24.0     | 24.0       | 24.7  | 24.7  | 25.1  | 18.2  | 2     | 81    | ant Flux v  | tion 5)     |         |       |      | 0:43        | e (hrmin)   |   | int Flux v | and 8.6 fils<br>ion 51 |            |                | 2000 - 2000 I | 0.43 | (hrmin)   |
| Total Time<br>Elapsed<br>(Min)       | 0:00     | 90:02    | 0.10     | 0.15     | 070      | 47.0     | 1000       | 000            | 040      | 040      | 101      | my Flow apr | = pisd aurest | rate Flow m  | meability gp                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chiller<br>Tamp C                 | 18    | 13    | 13    | <u>0</u> | 0.2        | 1     | む     | 10    | 18    | 5     | ψ.    | 02 Simula   | (Condit     |         | • • • |      | 4 0:28      | Tim         |   | 02 Simula  | t 50.0 psig i          |            | •              |               | 0.28 | Time      |
| Time                                 | 12:45    | 12.50    | 12:55    | 13,00    | 13.03    | AD DI    | 2 9 9      | 13.20          | 12.69    | 10.00    | 13:46    | Average Stu | Avorage Pre   | Average Fill | Average Filt<br>Average Per |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time                              | 12:45 | 12.50 | 12:55 | 13:00    | 13,00      | 13:15 | 13:20 | 13.25 | 13.30 | 13:35 | 13:46 | AZ-101/1    |             |         | ••••• |      | 0.14        |             |   | AZ-101/10  | 4                      |            | :              |               | 0:14 |           |
| Constian                             | 10       | 40       | 0        | 0        | 0.4      | 0.4      | () U       | 6, N           | n e      | 9.4      | 143      | 50          | 10            | 47           | an an                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tast<br>Number                    | 41    | 4D    | 0     | en se    | ni w       | 9, 40 | 10    | 40    | 10    | 0     | a:    |             |             | x 215.0 |       | m/En | E (C)       |             |   |            | 0.25                   | ND 30      | eter<br>Binneg | E 405         | 0.00 |           |

0.003948 0.002696 0.0027594 0.0027594 0.002175 0.002175 0.002175 0.002179 0.001917 0.0011917 0.0011797

Permaabilit gpm/ft2/pri

| Permeability<br>apm/ff2/bail) |                    | 0.004226 | 0.003627 | 0.003446 | 0.003426 | 0.003332 | CIRCEDO D | 0.003323 | 0.003289 | a ap3312 | 0.003259 |             |               |                       |       |                       |            |       |          |       |       |       |       |       |       |       |   |                           |         |                      |              |           |           |            |              |             |         |               |                                                                    |       |                  |
|-------------------------------|--------------------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|-------------|---------------|-----------------------|-------|-----------------------|------------|-------|----------|-------|-------|-------|-------|-------|-------|-------|---|---------------------------|---------|----------------------|--------------|-----------|-----------|------------|--------------|-------------|---------|---------------|--------------------------------------------------------------------|-------|------------------|
| Fitrate Flux                  | (gpm/ft2)          | 0.122650 | 0.108882 | 0.106897 | 0.102985 | 0.100022 | 0.100930  | 0.099766 | 0.098750 | 0.100271 | 0.097832 |             |               |                       |       |                       |            |       |          |       |       |       |       |       |       |       |   |                           |         |                      |              |           |           |            |              |             |         |               |                                                                    |       |                  |
| Permeability<br>(midewiber)   |                    | HHOT Y   | 3.089    | 2.934    | 2,917    | 1007 0   | 2.862     | 2.829    | 2 801    | 2.820    | 2.174    |             |               | 15                    |       |                       |            |       |          |       |       |       |       |       |       |       |   |                           |         |                      |              |           |           |            |              |             |         |               |                                                                    |       |                  |
| Filtrate Flux                 | m3/m2/day)         | 0.484    | 6.387    | 6.271    | 100 0    | 5 774    | 5.921     | 5.852    | 5.793    | 5,882    | 80.0     |             |               |                       |       |                       |            |       |          |       |       |       |       |       |       |       | _ |                           |         |                      |              |           |           | í.         |              |             |         |               |                                                                    |       |                  |
| F.                            | Slury Temp C       | X 9      | 24.9     | 25.3     | 25.5     | 10       | 18        | 122      | 25       | 26.1     | 24.8     |             |               |                       |       | Filtrate Flow Rate    | (paecruu)  | 1.519 | 1.309    | 1,335 | 1 292 | 1 242 | 1 250 | 1 236 | 1.223 | 1,205 |   | ability vs.<br>1 ms       |         |                      |              | 0-47 1-12 | ()        |            | ability vs.  | 102         |         | •             |                                                                    |       | 0:57 1:12        |
| Filtrate<br>Flow Rate         | (Date of the other | 1 385    | 1,345    | 1.335    | 1.282    | 1 249    | 1250      | 1.230    | 1.223    | 1.245    | 0071     |             |               |                       |       | Time of<br>Collection | Sec)       | 19.75 | 12 22 22 | 22.47 | 23.22 | 24.15 | 22    | 24.28 | 24.55 | 24.9  |   | at Perme<br>sig and 13    | 10U (2) |                      |              | 0.40      | e (hr.mir | Porter of  | T Perme      | () and 13.1 |         | •             |                                                                    | -     | 0:43             |
| Time of<br>Collection         | (Sec)              | 28.22    | 22.31    | 22.47    | 23.22    | 24.00    | 24        | 24.28    | 24.53    | 24.09    | 5.67     |             |               |                       | trate | Sample                | mL)        | 90    | 88       | 8     | 8     | 8.8   | 3 8   | 8     | 88    | 8     |   | 2 Simular<br>e at 30 00 p | (Condi  | -                    |              | C-0 14    | 1         | cimina (   | C SIMUIAN    | (Conditi    |         | •             |                                                                    |       | 4 0.28<br>Time   |
| Filtrate<br>Sample<br>Volume  | (mil)              | 2.07     | 30       | 8        | 85       | 8.8      | 8         | 8        | 30       | 30       | De       |             |               |                       |       | Filter Inlet          | (Disd      | SF 8  | 8 8      | 2     | 22    | 88    | 3.25  | EE .  | 33.5  | 22    |   | MIT                       |         | •                    |              | 0 00:0    |           | 7 404140   | ULTIUT-2     |             |         |               |                                                                    |       | 00:00            |
| Pressure                      | Drop (psg)         | 0.0      | Ð        | (C) 1    | 0,6      | 2.40     | ) a       | Ð        | 0        | 0        |          | 1.21        |               |                       |       | Permeate              | (bisd)     |       |          |       |       |       |       |       |       |       |   |                           | 20.4    | indan<br>Isdiyi<br>G | eb/m<br>eb/m | -<br>-    |           |            | 1            | 900.0       | 111     | 689)<br>(689) | Perm<br>(\$002                                                     | 0.001 |                  |
| Filter Inlet<br>Pressue       | (firsd             | 33       | 12       | 5        | RR       | 3 8      | 8         | 8        | 8        | 33.5     | 8        | = 571       |               |                       | Ther  | Dutiet                | (Bisd      | 81    | NIN      | 28    | 27    | 27    | 12    | 12    | 12    | 27    | Γ |                           | 1       |                      | T            | 1.12      |           | 1          | 5            | ŕ           | T       |               | 1                                                                  |       | 1:12             |
| Filter<br>Outlet<br>Pressure  | (Disd)             | 8 5      | 27       | 28       | 10       | 10       | 27        | 22       | 27       | 12       |          | 10.00       | 1,290         | 0.104                 |       | Shurry<br>coop Flow   | Rate (gpm) | 4.54  | 4.47     | 4.55  | 4.48  | 4.45  | 4.48  | 4.52  | 4.52  | 4.48  |   | s. Time                   | 10.00   |                      |              | 0.57      |           | Time       |              |             | •       |               |                                                                    |       | 0:57             |
| Sturry<br>Dop Flaw            | (alle (gpm)        | 4.44     | 4.47     | 4 5 4    | 4.40     | 4 48     | 4.48      | 4.52     | 4.52     | 4.52     | 7        |             | = 2987        | uff2 =<br>n/ff2/psi = |       | Surv 1                | emp C      | 5     | 54.9     | 25.3  | 25.5  | R R   | 18    | 131   | G 19  | 24.8  |   | nt Flux v<br>nd 13.1 fus  | in in   |                      |              | 0.43      | (nrmin)   | t Flux vs. | od 13.1 ft/s | (g uc       | •••••   |               |                                                                    |       | 0:43<br>(hr:min) |
| otal Time                     | (Jum               | 500      | 0.10     | 0.15     | 120      | 0.35     | 0.40      | 0:45     | 0:50     | 550      | and and  | TION SUIT   | the Flow mil. | ate Flux gon          |       | hiller S              | emp C 1    | 23    | 2.2      | 16    | \$P ; | 4 12  | 1     | 4     | 2.2   | ţ     |   | 2 Simula<br>30.0 psig ar  | -       |                      |              | 0.28      | Time      | 02 Simular | 30.0 psig an | (Condition  | •       |               |                                                                    |       | 0.28<br>Time     |
|                               | 1100 + KK          | 200      | 2.05     | 2.40     | 20.02    | 2.30     | 2:35      | 2:40     | 2.45     | 2.50     |          | warage Crus | Warage Filtra | Average Fibr          |       | 0                     | Time 1     | 155   | 2.05     | 2:30  | 2,16  | 2.30  | 2.35  | 2.40  | 2.50  | 2.55  |   | AZ-101/10                 |         |                      |              | 0:14      |           | AZ-101/1   | H            |             | •       |               |                                                                    | -     | 0.14             |
| Cardtion                      | Number             | 0.00     | Φ        | ¢ 4      | 0.10     | 9        | 4D        | φ        | Ø        | ic i     | 5 6      |             | N 8           | 00                    |       | est                   | Number 1   | 00    | o xo     | 0     | 0.    | φ     | 0     | 10    | 0 10  | 8     |   | 0                         | - BO    | Sidey<br>Sidey       |              | 0:00      |           |            | 0.44         | × 0.12 +    | F133.10 | ate 08        | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 0.00  | 0:00             |

# 0.1 micron Liquid- Service Mott Filter

AZ-101/102 Filtration Simulant at 15 wt% Solids Loading Cuf Testing

| day/bar) Fitrate<br>day/bar) Fiux<br>(gpm/t2) | 5.071 0.29802 | 1 908 0 11288 | 1.647 0.09581 | 1.447 0.08500 | 1 285 0.06144 | MBP5/2 0 000-1 | 4 406 0 00600 | 1100 000 0000 | 1.0/3      | 1.011 0.059833 | 0.953 0.05598 | 0.903 0.903072 |             |             |               |              |                                        |       |       |       |            |       |       |       |       |       |       |       |   |                                        |       |                |                |               |             |
|-----------------------------------------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|------------|----------------|---------------|----------------|-------------|-------------|---------------|--------------|----------------------------------------|-------|-------|-------|------------|-------|-------|-------|-------|-------|-------|-------|---|----------------------------------------|-------|----------------|----------------|---------------|-------------|
| A (m                                          | 1             |               |               |               |               |                |               |               |            |                |               |                |             |             |               |              |                                        |       |       |       |            |       |       |       |       |       |       |       |   |                                        |       |                |                |               |             |
| Fitrate Flu<br>(m3/m2/da                      | 17.48         | 6.610         | 5.679         | 4.066         | A 776         | 010 4          | 1000          | 000010        | 0.138      | 3.510          | 3.285         | 111<br>11      |             |             |               |              |                                        |       |       |       |            |       |       |       |       |       |       |       | F | _                                      |       |                |                |               |             |
| Stury Temp C                                  | 24.6          | 24.7          | 24.0          | 24.9          | 24.6          | D. A.C.        | 3.46          | 1 1 1 1       |            | 24.5           | 24.6          | 24.6           |             |             |               |              | Fittrate Flow<br>Rate (mL/sec)         | 3.650 | 1.384 | 1,196 | 1.050      | 0.874 | 0.800 | 0.774 | 0.730 | 0.731 | 0.686 | 0.650 |   | ability vs.                            |       |                | • • •          | 0.57 1.12     |             |
| Flow Rate<br>(mL/sec)                         | 3,650         | 1.384         | 1.196         | 1.050         | 0 997         | 0.874          | 0.800         | A77.0         | 11.14      | 0.731          | 0.0865        | 0.650          |             |             |               | 1            | Time of<br>Collection<br>(Sec)         | 8.22  | 21.68 | 52 08 | 10.02      | AU.UC | 37.09 | 22 28 | 41.07 | 41.00 | 43.75 | 46.16 |   | nt Perme<br>big and 7.8                | 1000  |                | •••            | 8 0.43        | te (hr:min) |
| Time of<br>Collection<br>(Sec)                | 822           | 21.68         | 25.09         | 28.57         | 30.09         | 112.012        | 27 00         | 20,100        | 20.00      | 41.00          | 43.75         | 46.16          |             |             |               |              | Fibrate<br>Sample<br>Volume<br>(mL)    | 98    | 8     | 8     | De of      | 8.8   | 30    | 30    | 30    | 30    | DE    | 30    |   | 2 Simula<br>te at 50.1 p               |       |                | •              | 14 0.2        | Tim         |
| Volume<br>Volume<br>(mL)                      | 30            | 30            | 30            | 30            | 30            | 90             |               | 00            | 00         | DR I           | R             | 8              |             |             | P             | 1            | Filter Inlet<br>Pressue<br>(psig)      | 23    | 52.6  | 21 1  | 2.2        | ¥ 24  | 13    | 52.5  | 23    | 52    | 52    | 8     |   | AZ-101/10<br>Tim                       |       |                | •              | 0 00 0        |             |
| Pressure<br>Drop (psig)                       | 4             | 4.5           | Ŧ             | ्य            | 4             | 4              | 4             | 1             | n 4<br>F c | 2              | ¢)            | e.             | 7,8         |             | and Remove    |              | Permeate<br>Pressure<br>psig)          |       |       |       |            |       |       |       |       |       |       |       |   |                                        | ( A   | nediy<br>nediy | emis           | i<br>u)<br>≇d |             |
| Fitter Inlet<br>Pressue<br>(psig)             | 13            | 52.5          | 55            | 25            | 25            | 12             | 12            | 10            |            | 81             | 81            | 2              | = 5/1       |             | With First Po |              | Fitter<br>Outliet<br>Pressure<br>psig) | 4     | \$    | æ :   | <b>P</b> 9 | ₽ ₽   | 4     | 48    | 4     | 48.5  | 48    | 48    |   |                                        | Î     | 11             |                | 1:12          |             |
| Pressure<br>Pressure<br>pisig)                | 48            | 24            | 8             | 89            | 48            | 48             | 00            |               | f q        | 0.04           | Ş !           | 4              | 270         | 50.16       | 0.075         | 0.002        | Jurry<br>oop Flow<br>tate<br>tate      | 2.71  | 271   | 2.64  | 1.4        | 12    | 2.73  | 2.76  | 2.67  | 2.72  | 2.67  | 2.87  |   | . Time                                 |       |                | •              | 10.57         |             |
| Tate<br>Tate<br>gpm)                          | 2.71          | 2.71          | 2.04          | 2.71          | 2.7           | 273            | 273           | 276           |            | 212            | 107           | 2.07           |             |             | mc =          | mid/psi =    | shurry F                               | 24.6  | 24.7  | 24.9  | 2.9.2      | 24.4  | 24.5  | 24.5  | 24.5  | 24.5  | 24.6  | 24.6  |   | nt Flux vs<br>ad 7.8 ft/s<br>in 1)     |       |                |                | 0:43          | Department) |
| there (n                                      | 000           | 0.05          | 0.10          | 0.15          | 0.20          | 0.30           | 0.35          | 0.40          | the state  | 200            | 00.0          | 1:00           | Flow gpm    | ure paid =  | 9 Flux com/   | eability gpm | fler 5<br>TPD C T                      | 19    | 4     | = \$  | E ¥        | 2 12  | 5     | \$2   | 15    | 10    | 1     | ŧ     |   | 2 Simular<br>90.1 psig ar<br>(Conditio |       |                | •              | 0.28          | Time        |
| 2012<br>8                                     | 9.50          | 9.55          | 10:00         | 10:05         | 10.10         | 10:20          | 10-25         | 10.30         | 04.04      | 10.40          | 10,40         | 09:01          | erage Stury | erage Press | arage Filbah  | erage Permi  | e<br>Ter                               | 9.50  | 9:55  | 00.01 | 0000       | 10.20 | 10.25 | 10.30 | 10.35 | 10:40 | 10:45 | 05.01 |   | Z-101/102                              |       |                | •              | 0:14          |             |
| 5<br>2                                        | -             | ÷             | ÷             | +-            | -             | +              | ÷             | ÷             | .,         | ÷              | .,            |                | 1 AV        | NY L        | 1 AV          | 1 Av         | E                                      | -     | + 1   |       | 4          | 4     |       | -     | ÷     | -     | -     |       |   | 4                                      |       |                | 0.0            | 00:00         |             |
| mber                                          |               |               |               |               |               |                |               |               |            |                |               |                |             |             |               | 1            | Test<br>Number                         |       |       |       |            |       |       |       |       |       |       |       |   |                                        | N 200 | ep/gu          | entil<br>mitra | 4)<br>11      |             |

1:12

0.57

1.12

0.57

0:28 0:43 Time (hr:min)

0.14

00:0

AZ-101/102 Simulant Flux vs. Time at 50.1 psig and 7.8 ft/s (Condition 1)

Time (hr:min)

Permeability 0:00 0:14 0:28 0:43

AZ-101/102 Simulant Permeability vs. Time at 50.1 psg and 7.8 Ms (Condition 1)

 $2^{\circ}$ 

0.005956 0.002241 0.002241 0.001935 0.001935 0.001939 0.001298 0.001298 0.001298 0.001298 0.001199 0.001199

| ability<br>(20)ss()                    | 0.003633 | 0.002851 | 0.002597 | 0.002417 | 0.002135 | 0.002005 | 0.001942 | 0.001756 | 0.001752 | 0.001731 | 0.001679 | 0.001603 |             |              |               |                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |       |
|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|--------------|---------------|-------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|
| Perme                                  |          |          |          |          |          |          |          |          |          |          |          |          |             |              |               |                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |       |
| Fittrate Flux<br>(gpm/ft2)             | 0.106342 | 0.085584 | 0.077969 | 0.072565 | 0.066225 | 0.060191 | 0.058287 | 0.052718 | 0.052580 | 0.051909 | 0.050416 | 0.048111 |             |              |               |                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |       |
| Permeability<br>(m/day/bar)            | 3.093    | 2.427    | 2.215    | 2.058    | 1.618    | 1,707    | 1,653    | 1.495    | 1491     | 1.474    | 1.430    | 1 364    |             |              |               |                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |       |
| Fitrate Flux<br>(m3/m2/day)            | 6.238    | 5.020    | 4.574    | 4.257    | 3,865    | 3.531    | 3.419    | 3.082    | 3.085    | 3.049    | 2.957    | 2.822    |             |              |               | D.                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |       |
| Sturry Temp C                          | 23.2     | 22.3     | 21.8     | 22.1     | 23.1     | 24.1     | 24.6     | 24.6     | 24       | 22.9     | 23.2     | 22.8     |             |              |               |                               | Fâtrate Flow<br>Rata (mL/sec) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.376 | 0.826 | 0.706 |
| Fibrate<br>Flow Rate<br>(mL/Sec)       | 1.252    | 0.982    | 0.682    | 0.828    | 0.777    | 0.727    | 0.714    | 0.646    | 0.633    | 0.606    | 0.593    | 0.560    |             |              |               |                               | Time of<br>Collection         | [nac]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.81 | 36.32 | 97.7K |
| Time of<br>Collection<br>(Sec)         | 23.97    | 30.56    | 34,03    | 87.98    | 38.6     | 41,28    | 42.03    | 46.47    | 47.38    | 49.47    | 50.55    | 53.59    |             |              |               |                               | fitrate<br>Sample<br>Volume   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8     | 8     | 92    |
| Fittrate<br>Sample<br>Volume<br>mL)    | 30       | 30       | 30       | 30       | 8        | R        | 8        | 8        | 8        | 8        | 8        | 8        |             |              |               |                               | ittor Iniat                   | IRent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.5  | 32    | 08    |
| Pressure<br>(pisq) (or                 | 4.5      | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 4        | e        | 4        | 4        | 8.8         |              |               | int Removed                   | Pressure F                    | (Past                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |       |
| Filter Inlet<br>Pressue<br>Psig)       | 31.5     | 32       | 32       | N        | 33       | 32       | 32       | 32       | 8        | 32       | 22       | R        | fh's =      |              |               | With First Po                 | Dutlet F                      | (Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27    | 87    | 36    |
| Filter<br>Outlet<br>Pressure<br>(psig) | 27       | 2        | 8        | 39       | 62       | 58       | 28       | 28       | 28       | 28       | 28       | 28       | 2.28        | 30.02        | 0.767         | 0.002                         | Sluny<br>Loop Flow            | (interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.15  | 2.29  | 2.38  |
| Slurry Loop<br>Row Rate<br>gpm)        | 2.15     | 2.28     | 2.38     | 235      | 2.47     | 2.15     | 2.09     | 2.27     | 23       | 2.3      | 2.24     | 2.32     | ÷           |              | 1 Uatr        | nft2 =<br>mft2/psi =          | , Lund                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.6  | 22.8  | 22.8  |
| dal Time S<br>lapsed R                 | 800      | 0.05     | 0110     | 0:15     | 0:20     | 0:25     | 0:30     | 0:35     | 0:40     | 0:46     | 0:50     | 0.55     | ry Flow gpm | ssure paid = | ate Flow mil. | ate Fluicigen<br>nestriky gpr | Tiller                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10    | 16    | 16    |
| aul                                    | 11.00    | 11:05    | 11.10    | 11.15    | 11:20    | 11.25    | 11:30    | 11.35    | 11:40    | 11.46    | 11.50    | 11-55    | werage Stur | Average Prei | Average Fittr | Werage Filtr<br>Werage Peri   |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11:00 | 11.05 | 11-10 |
| Condition                              | P4       | ¢4       | ¢4       | re       | <14      | P4       | N        | 64       | Ñ        | er e     | PN.      | N        | N           | ei i         | N             | NN                            | Test                          | in the second se | ni.   | r.v   | -     |

c



| termeability                           | 0.002183 | 0.000961 | 0 000037 | 0.000879 | 0.000828 | 0.0008022 | 0.000792 | 0.000742 | 0.000728 | 0.000704 | 0.000685 | 0.000982 | 0.000050 |             |                   |              |               |               |        |                                |       |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------------------------------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|-------------|-------------------|--------------|---------------|---------------|--------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Filtrate Flux (<br>(apm/tt2)           | 0.152884 | 0.067556 | 0.064736 | 0.061544 | 0.057998 | 0.057345  | 0.055448 | 0.051947 | 0.051155 | 0.049319 | 0.047518 | 0.046385 | 0.045507 |             |                   |              |               |               |        |                                |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Permeability<br>(m/day/bar)            | 1.858    | 0.818    | 0.789    | 0.748    | 0.705    | 0.699     | 0.674    | 0.631    | 0.620    | 0.550    | 0.583    | 0.564    | 0 553    |             |                   |              |               |               |        |                                |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Filtrate Flux<br>(m3/m2/day)           | 8.968    | 3.903    | 3,796    | 3.610    | 3.402    | 3,364     | 3.253    | 3.047    | 3.001    | 2.893    | 2.793    | 2.721    | 2.669    |             |                   |              |               |               |        |                                |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Sturry Temp C                          | 26.2     | 25.8     | 197      | 24.0     | 1.12     | 24.6      | 24.9     | 25.1     | 25.1     | 25.2     | 52       | 24.9     | 24.8     |             |                   |              |               |               |        | Filtrate Flow<br>Rate (mL/sec) | 1.958 | 0.856 | 0.806 | 0.760 | 0.712 | 0.702 | 0.685 | 0.645 | 0.635 | 0.614 | 0.590 | 0.573 | 0.560 |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 1.958    | 0.856    | 0.806    | 0.780    | 0.712    | 0.702     | 0.685    | 0,645    | 0,635    | 0.614    | 0.590    | 0.573    | 0.560    |             |                   |              |               |               |        | Colection<br>Sact              | 15.32 | 35.06 | 37.22 | 30.47 | 42.12 | 42.72 | 43.81 | 46.5  | 47.22 | 48.84 | 50,87 | 52.37 | 53.53 |
| Time of<br>Collection<br>(Sec)         | 15.32    | 35.06    | 37.22    | 143      | 42.12    | 42.72     | 43.81    | 48.5     | 47.22    | 48.84    | 50.87    | 52.37    | 53.53    |             |                   |              |               |               | 110015 | Anthe Volume                   | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 20    | 8     | 90    |
| Fibrate<br>Sample<br>Volume<br>(mL)    | 30       | 30       | 8        | 20       | 30       | 8         | 8        | 8        | 8        | 00       | 30       | 92       | 8        |             |                   |              | U             |               |        | Pressue                        | 22    | 72.5  | 71.5  | 71.5  | 71.5  | 71.5  | 12    | 22    | 22    | 72    | F     | 12    | 22    |
| Pressure<br>Drop (psig)                | 4        | 4        | 10.07    | -        | 10       | 3.5       | 4        | 4        | 3.5      | 4        | 0        | 4        | 4        | 9 5         |                   |              | aint Ramove   |               |        | Permoatio                      |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Filter Inlet<br>Pressue<br>(psig)      | 72       | 725      | 715      | 715      | 21.15    | 71.6      | 22       | P.       | 12       | 12       | E.       | 72       | 12       | 10,2 =      |                   |              | With First Po |               |        | Pressure                       | 3     | 8     | 8     | 88.5  | 68.5  | 68    | 88    | 88    | 68.5  | 99    | 88    | 89    | 88    |
| Filter<br>Outlet<br>Pressure<br>(phig) | 89       | 80       | 88       | 68.5     | 68.5     | 99        | 00       | 89       | 88.5     | 60       | 89       | 18       | 3        | 2.04        | 00.00             | 1110         | 0.055         | 100.0         | 1222   | Flow<br>Rate<br>(gpm)          | 2.05  | 2.07  | 2.03  | 2.02  | 2.05  | 1.95  | 2.08  | 2.03  | 2.08  | 2.07  | 5.8   | 2.05  | CN.   |
| Sturry<br>Loop Flow<br>Rate<br>(gpm)   | 2.05     | 2.07     | 2.03     | 2 02     | 2.05     | 1.95      | 2.08     | 2.03     | 2.08     | 2.07     | 82       | 2.05     | 11       |             |                   | I hear       | mm2 =         | pm/ft2/psi =  |        | Sturry<br>Temp C               | 26.2  | 25.8  | 25.2  | 24.9  | 24.7  | 24.6  | 24.9  | 25.1  | 25.1  | 25.2  | 25    | 24.9  | 24.8  |
| Total Time<br>Elapsed<br>(Min)         | 00:0     | 0:02     | 0:10     | 0:15     | 0.20     | 0.25      | 0.30     | 0.35     | 040      | 0.45     | 0.50     | 0.55     | 1.00     | my Flow go  | there are a start | rote Elevier | rate Flux gp  | rmeebility or |        | Chiller<br>Temp C              | 24    | 13    | 13    | 13    | 13    | 11    | 4     | 14    | 14    | 14    | 13    | 5     | 12    |
| Tme                                    | 12:35    | 12:40    | 12:45    | 12:50    | 12.55    | 13:00     | 13:05    | 13.10    | 13.15    | 13.20    | 13.25    | 13.30    | 13.35    | Average Stu | Automan Dra       | Average FIA  | Average Fill  | Average Per   |        | Tma                            | 12:35 | 12:40 | 12:45 | 12:50 | 12:55 | 13:00 | 13-05 | 13:10 | 13.15 | 13.20 | 13.25 | 13.30 | 13.35 |
| Condition                              | n        | n        | -        | n        | 0        | n         | m        | n        | (7)      | n        | 0        | m        | 10       | 17          | 9                 | 2.4          | 1 (7)         | 0             |        | est<br>lumber                  | 17)   | 0     | 17    | m     | n     | 20    | ei,   | e     | 0     | n     | m     | 61    | 62    |

10



| Permeability<br>(m/day/bar)            | 2.748 | 2 382 | 2 2 10 | 2 084 | 2 006 | 1 902 | 1.855 | 1.779 | 1729  | 1861  | 1.663 | 1.610 |             |             |                |               |              |         |                                    |       |       |       |       |       |       |       |       |       |       |            |       |
|----------------------------------------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|-------------|----------------|---------------|--------------|---------|------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|-------|
| Fittrate Flux<br>(m3/m2/day)           | 5,497 | 4,885 | 4.572  | 4.311 | 4 149 | 3,934 | 3.837 | 3.711 | 3.577 | 3.436 | 3.439 | 3.331 |             |             |                |               |              |         |                                    |       |       |       |       |       |       |       |       |       |       |            |       |
| Shirry Terrip C                        | 242   | 24.2  | 24     | 23.9  | 24.3  | 24.3  | 24.5  | 24.4  | 24.5  | 24.5  | 24    | 24    |             |             |                |               |              | 0       | Filtrate Flow<br>Rate (mL/sec)     | 1.135 | 1.008 | 0.938 | 0.882 | 0.859 | 0.814 | 0.799 | 0.770 | 0.745 | 0.715 | 0.706      | 0.884 |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 1,135 | 1.008 | 0.938  | 0.882 | 0.859 | 0.814 | 0.799 | 0.770 | 0.745 | 0.715 | 0.709 | 0.684 |             |             |                |               |              |         | Time of<br>Collection              | 26.44 | 29.75 | 31.97 | 34    | 34.93 | 30.84 | 37,56 | 38.94 | 40.29 | 41.94 | 42.5       | 43,88 |
| Time of<br>Collection<br>(Sec)         | 28.44 | 29,75 | 31.97  | Ä     | 34.83 | 36.84 | 37.56 | 38.94 | 40.29 | 41.94 | 42.5  | 43.88 |             |             |                |               |              | Elivata | Sample<br>Voluma                   | 30    | 30    | œ     | 30    | 30    | 30    | 90    | 8     | 90    | 8     | 06         | 8     |
| Fibrate<br>Sample<br>Volume<br>(mL)    | R     | 90    | 8      | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 8     |             |             |                | p             |              |         | Filler Injet.<br>Pressue<br>(psia) | 15    | 32    | CF.   | 8     | 8     | 8     | F     | 32.5  | 32    | 22    | 2          | 55    |
| Pressure<br>Drop (psig)                | 4     | 4     | 4      | 7     | ۲     | 4     | 4     | 4.5   | 4     | 4     | 4     | а     | 8.5         | 47          |                | oint Ramova   |              |         | Permeste<br>Pressure               |       |       |       |       |       |       |       |       |       |       |            |       |
| Fitter Intet<br>Pressue<br>(psig)      | 15    | ş     | 22     | 2     | 6     | 32    | £1    | 32.5  | 3     | (re   | 32    | Ħ     | = 5/11      | = 5/1       |                | With First Po |              | Ether   | Pressure                           | 12    | 8     | 28    | 28    | 28    | 28    | 28    | - 28  | 28    | 28    | 28         | 28    |
| Filter<br>Outfet<br>Pressure<br>(psig) | 22    | 28    | 82     | 28    | 8     | 23    | 12    | 8     | 28    | 28    | 28    | 28    | 2.9         | N I         | 29.94          | 0.067         | 0.002        | Surv    | Rate<br>(apm)                      | 2.87  | 3.04  | 0     |       | 2,813 | 2.94  | 2,89  | 2.92  | 2,58  | 2,98  | 2,86       | 2.87  |
| Sturry<br>Loop Flow<br>Rate<br>(gpm)   | 2.67  | 101   | 0      | 0     | 2,89  | 2.94  | 2.86  | 2.92  | 2.98  | 2.98  | 2.86  | 2.87  |             | =           | face in        | mitt2 =       | m/ft2/psi =  |         | Shiny<br>Temp C                    | 24.2  | 24.2  | 24    | 23,9  | 24.3  | 24.3  | 24.5  | 24.4  | 24.5  | 24.0  | 24         | 24    |
| Total Time<br>Elapsed<br>Min)          | 000   | 0.05  | 0.15   | 0.20  | 0.25  | 050   | 190.0 | 0.40  | 0.45  | 0:50  | 0:55  | 1:00  | my Flow gor | my Flow go  | in pist annual | rate Flux gp. | meability gp |         | Chiller<br>Temp C                  | 15    | 17    | 11    | 21    | 18    | 18    | 19    | 18    | 18    | 18    | 0 <u>0</u> | 18    |
| Time                                   | 1:45  | 1,50  | 2:00   | 2:05  | 2:10  | 2:15  | 2.21  | 2.25  | 2.30  | 2.35  | 2.40  | 2.45  | Average Slu | Average Ski | Average Pre    | Average Filt  | Average Per  |         | lime                               | 1:45  | 1:50  | 2:00  | 2.05  | 2:10  | 2:15  | 2.21  | 2.25  | 2.30  | 2.35  | 2.40       | 2.45  |
| Number                                 | 4     | 47    | 4      | Ħ     | ę     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4 1         | e i         | 4 4            | 4             | 4            |         | Test<br>fumber                     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4          | 4     |



Permeabili ty (gpm/ff2/p s0

| 10 CT 10 CT                        |          |          |          |          |          |          |          |          |                    |          |             |              |                              |                    |            |       |        |        |       |       |       |       |       |       |       |       |             |                         |            |                |              |             |            |   |            |             |          |         |                            |        |                    |
|------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------------|----------|-------------|--------------|------------------------------|--------------------|------------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|-------------------------|------------|----------------|--------------|-------------|------------|---|------------|-------------|----------|---------|----------------------------|--------|--------------------|
| Fitrate<br>Flux<br>(gpm/ft2)       | 0.123439 | 0.093924 | 0.06/348 | 0.077483 | 0.074321 | 0.071774 | 0.068795 | 0.006709 | 0.064207           | 0.061763 |             |              |                              |                    |            |       |        |        |       |       |       |       |       |       |       |       |             |                         |            |                |              |             |            |   |            |             |          |         |                            |        |                    |
| Permeability<br>(miday/thar)       | 2.059    | 1 598    | 1.478    | 1318     | 1.265    | 1.221    | 1.171    | 1.135    | 1090               | 1.051    |             |              |                              |                    |            |       |        |        |       |       |       |       |       |       |       |       |             |                         |            |                |              |             |            |   |            |             |          |         |                            |        |                    |
| Filtrate Flux<br>(m3/m2/day)       | 7.241    | 5.510    | 4 785    | 4.545    | 4.360    | 4.210    | 4 035    | 3.913    | 3,100              | 3.823    |             |              |                              |                    |            |       |        |        |       |       |       |       |       |       |       |       |             |                         |            |                |              |             | 65         | 1 | _          |             |          |         |                            |        |                    |
| Stury Temp C                       | 23.2     | 23.8     | 2.45     | 253      | 25.2     | 25.2     | 24.8     | 24.7     | 1.97               | 22.2     |             |              |                              | Fibrate Flow Rate  | (mL/sec)   | 1.453 | 1.124  | 1.0/18 | 0.968 | 0.926 | 0 894 | 0.847 | 1010  | 0.772 | 0.769 | 0.739 | ability vs. | 2)                      |            |                |              | 3 0.57 1:12 | u)         |   | bility vs. |             |          |         |                            |        | 57 1:26<br>n)      |
| Filtrate<br>Flow Rafe<br>(miL/sec) | 1.453    | 1.124    | 1.079    | 0.968    | 0.926    | 0.894    | 0.847    | 0.819    | 1022.0             | 0100     |             |              |                              | Time of            | (Sec)      | 20.65 | 29.68  | 29.47  | 31    | 32.41 | 23.55 | 35.41 | 37.94 | 36.88 | 8     | 40.59 | nt Perme    | me<br>and 8.9 m/s       | tion 5)    |                | • • • •      | 0.28 0.4    | Time (hr:m |   | nt Permea  | 10 8.9 ft/s | (sup     | 100     | * * * *                    |        | 8 0.<br>De (hr:mli |
| Time of<br>Collection<br>(Sec)     | 20.65    | 26.68    | 10.72    | 15       | 32.41    | 33.56    | 35.41    | 828      | 100 000<br>000 000 | en oc    |             |              |                              | Filtrate<br>Sample | (mL)       | 8     | 89     | 8.8    | 8     | 30    | 30    | 89    | 30    | 30    | 8     | 30    | 02 Simula   | 50.1 psq1               | (Cond      |                | • • •        | 0.14        | 1          |   | 2 Simular  | 50.1 psig a | (Condit  |         |                            |        | 0.2                |
| Sample<br>Volume<br>(mL)           | 8        | 89       | 8.08     | 18       | 30       | OE I     | 8.9      | DR OR    | 8.5                | 88       |             |              | σ                            | Filter Intet       | (prig)     | 23 1  | 53 E E | 200    | 1 23  | 3     | 27 1  | 3 12  | ¥ 24  | 55    | 8     | 23    | AZ-101/1    |                         | 1          | 240            | - 02 m       | (m) (m)     |            |   | VZ-101/10  |             | E003     | 0.002 * | 0.001                      | 000    | 0.00               |
| Pressure<br>Drop (psig)            | 4        | 4.4      | n e      | 4        | 4        | 4        | 4.5      | 4.4      |                    | 1 4      | 8.8         |              | ant Remove                   | Permeate           | (Disid)    |       |        |        |       |       |       |       |       |       |       |       |             |                         | 1          | HIH            | keen<br>Y    | bec         |            |   |            |             | **<br>11 | urs/    | lo<br>long<br>long<br>long | a<br>a |                    |
| Filter Intel<br>Pressue<br>(psig)  | 23       | 21       | 1.02     | 121      | 25       | 23 5     | CH 6     | 2 13     | 3 5                | 8 28     | = 8/1       |              | With First Pr                | Filter             | (bisd)     | 8     | 8      | 6 4    | 4     | 48    | 8     | 5 5   | 7 5   | 48    | 8     | 48    |             |                         | r          |                | T            | 1.12        |            |   |            |             |          | -       | П                          | 1:12   |                    |
| Outlet<br>Pressure<br>(psig)       | 40       | ₽ 4      | 1        | 4        | \$       | ₽ :      | ₽ \$     | \$ 4     | 74                 | ₽ ₽      | 3.08        | 50.10        | 0.074                        | Sumy               | Rate (gpm) | 2.95  | 60 H   | 3 12   | 3.1   | 3,14  | 20.6  | 3.12  | 2015  | 3.08  | 3.6   | 3.04  | 's. Time    |                         |            |                |              | 0.57        |            |   | s. Time    |             |          |         |                            | 0-57   |                    |
| Shrty<br>Loop Flow<br>Rate (gpm)   | 2.95     |          | 1 1      | 1.0      | 1.14     | 3.07     | 11.0     | 000      | 2000               | 3.05     |             |              | mitt2 =<br>mitt2 =           |                    | TenpC      | 23.2  | 8.62   | 25.3   | 25.3  | 25.2  | 2223  | 2.4.2 | 24.8  | 15    | 83    | 29.5  | ant Flux    | and 8.9 ft/s<br>ion 5)  |            | :              |              | 0:43        | (hr:min)   |   | nt Flux v  | ion 5)      |          | •       |                            | B 0:43 | ne (hr.min)        |
| Total Time<br>Elapsed<br>(Min)     | 80       | 8.6      | 2 4      | 0:20     | 0:25     | 0.30     | 9.9      | 0.40     | 09-0               | 0.55     | my Flow oon | - pisd amssi | rate Flux gp<br>meability gp |                    | Temp C     | 23    | 4.0    | = #P   | 14    | 14    | 4     | 2 \$  | 2 12  | ħ     | \$2.5 | 12    | 02 Simula   | It 50.1 psig<br>(Condit |            | :              |              | 0:28        | Time       |   | 02 Simula  | (Condit     |          |         |                            | 14 0.2 | The                |
|                                    | 320      | 300      | 3.10     | 3.15     | 3-20     | 3.25     | 000      | de la    | 246                | 38       | oe Stu      | ge Pre       | E B B                        |                    |            | 2.55  | 300    | 3.10   | 3.15  | 320   | 325   | 335   | 3.40  | 3,45  | 19.0  | 102   | 101/1       |                         |            | •              |              | 0.14        |            |   | 01/1       | -           |          | •       |                            | 0      |                    |
| Time                               |          |          |          |          |          |          |          |          |                    |          | Avera       | Avera        | Averal                       |                    | Time       |       |        |        |       |       |       |       |       |       |       |       | AZ-1        |                         | 1          | •              |              | 3           |            |   | AZ-1       |             | 4        | -       |                            | 0:00   |                    |
| Condition                          | 10.0     | 25 U     | 0.143    | 10       | 10       | 17 1     | n u      | n e      | n w                | n wit    | 10          | 10           | 0 10 10                      |                    | Number .   | 10.1  | 0.2    | 1.10   | 5     | 5     |       | n 41  | 1 40  | -     | an v  | ñ     |             |                         | * 0.00 × n | 0.0<br>6<br>14 | anul<br>Dife | E (5.00     |            |   |            |             | x1) 0.15 | 1 ett   | 90.00                      |        |                    |

0.002419 0.001577 0.001577 0.001549 0.001485 0.001485 0.001485 0.001485 0.001485 0.001283 0.001283

Permeabilit y (gpm/ft2)ps

| Parmasbility<br>(gpm/ft2/psi)          | 0.002860   | 0.002516 | 0.000447 | 0.002389 | 0.002342 | 0.002317 | 0.002307 | 0.002285       | 0,000000  | 0.002281   |              |                                                     |                                |                |       |       |       |       |       |       |       |       |                |   |             |                         |               |                             |               |                 |           |            |                                           |             |          |                  |            |               |
|----------------------------------------|------------|----------|----------|----------|----------|----------|----------|----------------|-----------|------------|--------------|-----------------------------------------------------|--------------------------------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|---|-------------|-------------------------|---------------|-----------------------------|---------------|-----------------|-----------|------------|-------------------------------------------|-------------|----------|------------------|------------|---------------|
| Filtrate Flux<br>(gpm/ft2)             | 0.086587   | 0.075527 | 0.072844 | 0.072029 | 0.070313 | 0.089556 | 0.069269 | 0.068601       | 0.0007000 | 0.067853   |              |                                                     |                                |                |       |       |       |       |       |       |       |       |                |   |             |                         |               |                             |               |                 |           |            |                                           |             |          |                  |            |               |
| Permeability<br>(m/day/bar)            | 2.435      | 2.142    | 2,083    | 2 045    | 1.994    | 1.973    | 1,964    | 1.940          | 1000      | 1942       |              |                                                     |                                |                |       |       |       |       |       |       |       |       |                |   |             |                         |               |                             |               |                 |           |            |                                           |             |          |                  |            |               |
| Filtrate Flux<br>(m3/m2/day)           | 5.079      | 4,430    | 4 273    | 4 225    | 4.125    | 4.080    | 4,063    | 4.024          | 3 048     | 3.983      |              |                                                     |                                |                |       |       |       |       |       |       |       |       |                |   |             |                         |               |                             |               |                 |           |            | -                                         |             |          |                  |            |               |
| Sturry Temp C                          | 26.6       | 25.0     | 251      | 25       | 5 52     | 25.2     | 8        | 5 4 7<br>0 Y C | 0.40      | 24.8       |              |                                                     | Fibrate Flow Rate<br>(mL/teet) | + 4.2+         | 0.957 | 0.951 | 0.905 | 0.892 | 0.866 | 0.858 | 0.847 | 0.832 | 0.825<br>0.836 | - | ability vs. |                         |               | and the second              | •             | +               | 0.57 1.12 |            | bility vs.                                |             |          | •                |            | Caller Caller |
| Filtrate<br>Flow Rate<br>(mL/sec)      | 1.121      | 10000    | 0.905    | 0.892    | 0.883    | 0.866    | 2000     | 0.830          | 568.0     | 0.836      |              |                                                     | Time of<br>Collection          | (Sec)<br>26.76 | 31.36 | 21.53 | 33.16 | 33.63 | 34.63 | 34.97 | 35.41 | 36.06 | 35.88          |   | nt Permes   | ne                      | tion 6)       |                             | •             | 100             | 8 0.43    | hr:min)    | it Permea                                 | 10 11.5 R/s | 00 (t)   | * * * *          |            |               |
| Time of<br>Collection<br>(Sec)         | 51.92      | 12 H     | 20,16    | 33,63    | 33.97    | B N      | 18,80    | 14.00          | 16.96     | 35.88      |              |                                                     | Fittrate<br>Sample<br>Volume   | (Jul) 30       | 3.8   | 8     | 98    | 88    | 30    | 8     | 30    | 30    | 8 8            |   | 02 Simula   | 29.9 psig a<br>(Condi   | ••••          | •••••                       |               | D:14 0:5        |           | 12 Simular | Tin<br>29.9 psig at                       | (Condit     |          |                  |            |               |
| Fibrate<br>Sample<br>Volume<br>(mL)    | 02         | 2.5      | 3.05     | 30       | 30       | 88       | 88       | 8.8            | 19        | 8          |              | Ţ                                                   | Filler Inlet<br>Pressue        | (Bisd)         | 33    | 8     | 32.5  | R 8   | 8     | 8     | 12    | 8     | 32.5           |   | AZ-101/10   |                         | 0             | •                           | 2 40          | 0               | 0:00      |            | 4Z-101/10                                 |             | • 200    | 003              | 002        |               |
| Pressure<br>Drop (psig)                | 10 4<br>10 | 0.4      | 9.9      | 10       | 9        | 0 1      | Ð 9      | o s            | 9 40      | iri<br>iri | 11,5         | oint Remove                                         | Pressure                       | (Bisd)         |       |       |       |       |       |       |       |       |                |   |             |                         | e<br>Li<br>Hi | lideenme9<br>y<br>sdvysbim) |               |                 |           |            | Permeabilit<br>Permeabilit<br>Permeabilit |             |          |                  |            |               |
| Filter Inlet<br>Pressue<br>(psig)      | 88         | 3 6      | 32.5     | 2        | 123      | 2:       | 2 8      | 85             | P         | 32.5       | fb/s =       | With First P                                        | Filter<br>Outlet<br>Pressure   | (Desd)         | 22    | 27    | 12    | In In | 22    | 27    | 27    | 27    | 22             |   |             |                         | Ĩ             | -                           | T             | 1               | 2112      |            |                                           |             |          |                  |            | Γ             |
| Filter<br>Outlet<br>Pressure<br>(psig) | 27.5       | 12       | 27       | 27       | 27       | 51.5     | 1        | 12             | 12        | 22         | 3.97         | 0.002                                               | Surry<br>Loop Flow             | Kete (00m)     | 3.93  | 3.93  | 3.99  | 199.5 | 3.99  | 4.01  | 3.87  | 3.98  | 3.95           |   | 's. Time    |                         |               |                             | :             | -               | 10:0      |            | s, Time                                   |             |          | •                |            | 2             |
| Sluny<br>Loop Flow<br>Rate (gpm)       | 4 000      | 2 10 1   | 3.99     | 3.99     | 3.99     | 3 39     | 10.4     | HE S           | 395       | 3.93       |              | Jisec =<br>mft2 =<br>mft2ipsi =                     | Slurry                         | 2018           | 25.8  | 25.4  | 1.52  | 298   | 25.2  | 35    | 24.9  | 24.9  | 24.9           |   | int Flux v  | ind 11.5 ft/s<br>ion 61 | NAVE OF       |                             | :             |                 | 0.43      | (usural)   | nt Flux v                                 | 00 6)       |          |                  |            |               |
| Total Time<br>Elapsed<br>(Min)         | 000        | 0.15     | 0.20     | 0.25     | 0:30     | 0.35     | 0.45     | 050            | 0.55      | 1:00       | try Flow gpt | rate Flow m<br>rate Flux gp<br>meability gp         | Chiller                        | D due          | 12    | 2     | ιņ.   | 6 9   | 12    | 16    | 15    | 15    | 約 約            |   | 02 Simula   | Candit                  |               |                             | :             |                 | 87.0      |            | 02 Simula                                 | (Condit     |          |                  |            |               |
| 2                                      | 4.05       | 4.20     | 4.25     | 4:30     | 4:35     |          | 199      | 4.65           | 200       | 505        | erage Stu    | erage Fill<br>erage Fill<br>erage Fill<br>erage Pee |                                | 4:05           | 4.15  | 4:20  | 4.25  | 4.35  | 4:40  | 4:45  | 4:50  | 4:55  | 505            |   | 2-101/1     | 8                       |               | 10.00                       | •             |                 | 0.14      |            | -101/10                                   | ä           | ľ        |                  |            |               |
| Condition<br>Number Tim                | 10 1       | 1 42     | 0        | 0        | 0        | 0 0      | 0 4      | 5. IC          | ¢         | ø          | 6 AW         | 0 AV<br>6 AV<br>6 AV                                | Test                           | number III     | 9     | ø     | 0     | 0 C   | 8     | 0     | Ø     | g     | 00             |   | N.          |                         | × < 6.0 T     | - 0.550                     | elen<br>0.5m% | <b>正</b> (3.0 + | 00.0      |            | A2                                        | 0 10        | xu) 0.08 | 1 otto<br>1 0.06 | 16)<br>16) | and a         |

1:12

0:57

0:28 0:43 ( Time (hr:min)

0:14

0:00

1.12

0:28 0:43 0:57 Time (hr:min)

0:14

0.00

c

## Distribution

#### No. of Copies

### OFFSITE

No. of Copies

### ONSITE

4 <u>Savannah River Technology Center</u> Jim Marra PO Box 616, Road 1 Building 773-43A Aiken, South Carolina 29808

> Charles Nash PO Box 616, Road 1 Building 773-42A Aiken, South Carolina 29808

> Michael Poirior PO Box 616, Road 1 Building 773-42A Aiken, South Carolina 29808

> Harold Sturm PO Box 616, Road 1 Building 773-A Aiken, South Carolina 29808

| 18 | Battelle - Pacific Northwest Division |       |  |  |  |  |  |  |  |  |  |  |
|----|---------------------------------------|-------|--|--|--|--|--|--|--|--|--|--|
|    | K. P. Brooks                          | K6-24 |  |  |  |  |  |  |  |  |  |  |
|    | J. L. Buelt                           | K9-09 |  |  |  |  |  |  |  |  |  |  |
|    | J. G. H. Geeting                      | P7-28 |  |  |  |  |  |  |  |  |  |  |
|    | G. R. Golcar (10)                     | K6-24 |  |  |  |  |  |  |  |  |  |  |
|    | D. E. Kurath                          | P7-28 |  |  |  |  |  |  |  |  |  |  |
|    | S. N. Schlahta                        | K9-14 |  |  |  |  |  |  |  |  |  |  |
|    | Project File                          | P7-28 |  |  |  |  |  |  |  |  |  |  |
|    | Information Release (2)               | K1-06 |  |  |  |  |  |  |  |  |  |  |
| 7  | Bechtel National, Inc.                |       |  |  |  |  |  |  |  |  |  |  |
|    | S. Barnes                             | H4-02 |  |  |  |  |  |  |  |  |  |  |
|    | W. Graves                             | H4-02 |  |  |  |  |  |  |  |  |  |  |
|    | S. Jenkins                            | H4-02 |  |  |  |  |  |  |  |  |  |  |
|    | I. Papp                               | H4-02 |  |  |  |  |  |  |  |  |  |  |
|    | R. Peterson                           | H4-02 |  |  |  |  |  |  |  |  |  |  |
|    | P. Townson                            | H4-02 |  |  |  |  |  |  |  |  |  |  |
|    | WTP PDC Coordinator                   | H4-02 |  |  |  |  |  |  |  |  |  |  |
|    |                                       |       |  |  |  |  |  |  |  |  |  |  |