Small Column Ion Exchange Testing of SuperLig® 644 for Removal of ¹³⁷Cs from Hanford Waste Tank 241-AP-101 Diluted Feed (Envelope A)

SK Fiskum ST Arm DL Blanchard, Jr BM Rapko

February 2004

Prepared for Bechtel National Inc. under Contract No. 24590-101-TSA-W0000-0004

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Small Column Ion Exchange Testing of SuperLig® 644 for Removal of ¹³⁷Cs from Hanford Waste Tank 241-AP-101 Diluted Feed (Envelope A)

SK Fiskum ST Arm DL Blanchard, Jr BM Rapko

<u>L. H. For W.L. Temposoitis</u> 411404

ACCEPTED FOR Project use

February 2004

Prepared for Bechtel National, Inc under Contract No. 24590-101-TSA-W0000-0004

Battelle Pacific Northwest Division Richland, Washington 99352

Completeness of Testing

This report describes the results of work and testing specified by TSP-W375-00-00028, Rev. 1 and CHG-TP-41500-013, Rev. 0 and TP-RPP-WTP-013, Rev. 0. The work and any associated testing followed the quality assurance requirements outlined in the Test Specification/Plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

om

Gordon H. Beeman, Manager WTP R&T Support Project

pfd4

Date

	History Sheet						
Rev	Date	Reason for revision	Revised by				
0	September 2002	New Document	SK Fiskum				
1	February 2004	Noted higher uncertainty in the total ⁹⁹ Tc values in	SK Fiskum				

Summary

The River Protection Project-Waste Treatment Plant (RPP-WTP) baseline process for ¹³⁷Cs removal from Hanford high-level tank waste is ion exchange. The current flowsheet includes the use of Cs-selective, organic ion exchanger SuperLig[®] 644 (SL-644) material for Cs removal from the aqueous waste fraction. This material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. The RPP-WTP Development Requirements Document (DRD)¹ task 8.2.6 and the RPP-WTP Research and Technology schedule² identify Cs and Tc ion exchange process verification tests [WTP Request for Proposal reference Standard 2 item (a)(3)(ii)].

Battelle Pacific Northwest Division (PNWD) was contracted to perform Cs ion exchange studies under contract 24590-101-TSA-W000-0004, and work breakdown structure BN.02.08.05. The Cs ion exchange activities are further defined in Technical Scoping Statement B-42a, which is included in Appendix C of the *Research and Technology Plan*². These studies are to verify design and operating parameters for plant-scale ion exchange systems. Test results will also be used to validate ion exchange models.

Objectives

The Cs ion exchange test objectives were to develop load and elution breakthrough profiles using AP-101 diluted feed (AP-101DF); produce and characterize the Cs eluate for use in evaporation tests; remove ¹³⁷Cs from the AP-101DF to meet LAW vitrification criteria; and develop batch distribution coefficient values for AP-101DF. The final effluent was to contain <1.75E-5 Ci ¹³⁷Cs per mole Na, equivalent to < 0.087 μ Ci ¹³⁷Cs/mL, based on a 20 wt% waste Na₂O loading in the waste glass. Direction from BNI for calculating Na₂O loading was later reduced to 14 wt%. All testing objectives were met.

Conduct of Test

This report summarizes testing of the SL-644 in batch-contact studies and in a dual small-column system. The test matrix was Hanford tank waste 241-AP-101 (Envelope A) diluted to 5 M Na⁺ (AP-101DF). Batch contacts were performed with the waste at three Cs concentrations with a phase ratio of 100 (liquid volume to exchanger mass ratio) with both SL-644 and crystalline silicotitanate (IE-911, an alternative Cs ion exchanger). Ion exchange processing was conducted with two small columns in series with resin bed volumes (BVs) of 10.6 mL (L/D = 4.4) during the conditioning phase with 0.25 M NaOH, and 9.7 mL (L/D = 4) during the AP-101DF loading phase. Proper functioning of the ion exchange apparatus and resin beds had initially been tested with an AW-101 simulant. Approximately 1.2 L, equivalent to 112 BVs of AP-101DF waste were processed. All ion exchange process steps were tested

¹ PL-W375-TE00002, Rev. 1, River Protection Project Waste Treatment Plant Development Requirements Document, October 31, 2000, M. E., Johnson and T. W. Crawford, CH2MHill Hanford Group, Inc., Richland, WA. DRAFT.

² Barnes S, R Roosa, and R Peterson. 2002. *Research and Technology Plan.* 24590-WTP-PL-RT-01-002 Rev. 1, RPP-WTP project.

including resin bed preparation, loading, feed displacement, water rinse, elution, eluant rinse, and resin regeneration.

Results and Performance Against Objectives

The batch-contact performance data are summarized in Table S1. The Cs λ value (column distribution ratio) represents a measure of the effective capacity of the SL-644 resin; the higher the λ value, the higher loading capacity. Results from the SL-644 batch-contact tests, resulted in an estimated batch distribution (K_d) value of 690 mL/g in the feed condition (Na/Cs mole ratio of 1.4 E+5). Using a bed density of 0.230 g/mL in the 0.25 M NaOH condition, the Cs λ value is predicted to be 160 BVs. The IE-911 feed condition K_d value was interpolated to be 710 mL/g. With a bed density of 1.04 g/mL, the estimated λ value is 740 BVs.

Flow	Extrapolated 50% Cs breakthrough, BV		Cs breakthrough,			K _d , mL/g (feed condition)		Predicted Cs λ, BV	
rate (BV/h)	Lead column	Lag column	Composite DF ⁽¹⁾	Maximum DF ⁽²⁾	SL-644	IE-911	SL-644	IE-911	
3	190	-	7.78E+5	1.4E+6	690	710	160	740	
 (1) The decontamination factor was calculated by dividing the feed Cs concentration by the composite effluent Cs concentration. (2) The maximum DF was obtained by dividing the feed Cs concentration by the lowest lag column sample Cs concentration. 									

Table S1. Summary of Performance Measures

The ion exchange column processing performance data are also summarized in Table S1. The maximum ion exchange Cs breakthrough obtained was 0.27% at 112 BVs (regeneration condition). Based on the AP-101DF column load data, the lead column 50% Cs breakthrough was extrapolated to be 190 BVs (resin BV in the 0.25 M NaOH regeneration condition). A 50% Cs breakthrough value for the lag column could not be estimated; virtually no measurable Cs broke through the lag column. The decontamination factor (DF) for ¹³⁷Cs, listed in Table S1, was based on ¹³⁷Cs concentration in the feed divided by the ¹³⁷Cs concentration in the composite effluent. The DF for ¹³⁷Cs was 7.78 E+5, and is equivalent to an effluent with a ¹³⁷Cs concentration of 1.1E-4 μ Ci/mL. The maximum DF, 1.4 E+6, measured the best performance that could be expected from this column system.

The LAW vitrified waste form must be no greater than 0.3 Ci 137 Cs/m³. This limit can be converted to 137 Cs concentration in the Cs ion exchange effluent of 0.125 µCi 137 Cs/mL.³ The product effluent 137 Cs concentration was a factor of 1000 below this contract limit.

³ The conversion requires the following assumptions: Envelope A LAW will contain 14 wt% Na₂O, all Na comes from the tank waste, the glass density is 2.66 g/mL, and the waste Na concentration is 5 M Na. For the maximum 20 wt% waste Na₂O loading, the Cs ion exchange effluent must be less than 0.087 μ Ci ¹³⁷Cs/mL.

The lead column was eluted with 0.5 M HNO₃ to C/C_o of 1% in 12 BVs with >94% of the ¹³⁷Cs contained in 2.5 BVs of eluant. The peak ¹³⁷Cs C/C_o value was 64 (based on 1-BV collection increments of nominally 10-mL).

Quality Requirements

This work was designated as QL-3 per the RPP-WTP Quality Assurance Program, BNFL-5193-QAP-01, Rev. 6. PNWD implemented the RPP-WTP quality requirements by performing work in accordance with the quality assurance plan, CHG-QAPjP, Rev. 0.

Issue

U and Pu were found in the Cs eluate, indicating these materials exchanged onto the resin. No additional issues were observed.

Terms and Abbreviations

AV	apparatus volume
BV	bed volume
C/C _o	analyte concentration in column effluent divided by analyte
	concentration in feed
CMC	Chemical Measurement Center
DI	deionized
EQL	estimated quantitation level
F-factor	mass of dry ion exchanger divided by mass of wet exchanger
FMI	Fluid Metering, Inc., Syosset, NY
GEA	gamma energy analysis
HLRF	High Level Radiation Facility
IBC	IBC Advanced Technologies, Inc., American Fork, Utah
IC	ion chromatography
ICP-AES	inductively coupled plasma/atomic emission spectrometry
ICP-MS	inductively coupled plasma/mass spectrometry
λ	column distribution ratio
L/D	length over diameter ratio
Μ	molarity, moles/liter
MDL	method detection limit
MRQ	minimum reportable quantity
NMRQ	no minimum reportable quantity
NPT	National Pipe Thread
PSD	particle size distribution
SAL	Shielded Analytical Laboratory
TIC	total inorganic carbon
TOC	total organic carbon

Contents

Summary	iii
Terms and Abbreviations	vii
1.0 Introduction	1.1
2.0 Experimental	2.1
2.1 SL-644 Resin	2.1
2.2 Crystalline Silicotitanate	2.2
2.3 AP-101 Diluted Feed	2.3
2.4 Batch Contacts	
2.5 Column Run Experimental Conditions	2.6
2.5.1 Ion Exchange Column System	2.6
2.5.2 Resin Bed Preparation	
2.5.3 Ion Exchange Column Test with AP-101DF	2.9
2.5.4 Sample Analysis	. 2.11
3.0 Results and Discussion	
3.1 Batch Contact Results	3.1
3.2 Column Test	
3.2.1 Initial Resin Conditioning	
3.2.2 Loading	3.3
3.2.3 Feed Displacement and Rinse	3.6
3.2.4 Elution and Eluant Rinse	3.6
3.2.5 Regeneration	
3.2.6 Activity Balance for ¹³⁷ Cs	. 3.13
3.2.7 SL-644 Resin Volume Changes	
4.0 Conclusions	4.1
5.0 References	5.1
Appendix A	A.1
Appendix B	B.1
Appendix C	C.1
Appendix D	D.1
Appendix E	E.1
Appendix F	
Appendix G	G.1

Figures

Figure 3.1.	¹³⁷ Cs Distribution Coefficients (K_d) for AP-101DF (T = 26°C)	3.1
	Estimated ¹³⁷ Cs λ Values for AP-101DF (T = 26°C)	
Figure 3.3.	¹³⁷ Cs Breakthrough Curves for AP-101DF Sample, Probability Plot	3.5
Figure 3.4.	¹³⁷ Cs Elution and Eluant Rinse of the Lead Column	3.8
Figure 3.5.	(a and b) Comparison of Bed Volumes of the Lead and Lag Columns	3.16

Tables

Table S1.	Summary of Performance Measures	iv
Table 2.1.	Dry Particle-Size Weight-Percent Distribution of Various Batches of	
	As-Received SL-644	2.1
Table 2.2.	SL-644 Properties	2.2
Table 2.3.	Composition of AP-101DF (Envelope A)	2.4
Table 2.4.	Initial Cs Concentrations in the AP-101DF Solutions Used for the Batch	
	Distribution Tests	2.5
Table 2.5.	Bed Conditioning and Simulant Shakedown Testing Parameters	2.9
Table 2.6.	Experimental Conditions for AP-101DF Ion Exchange	2.10
Table 2.7.	Sampling Interval and Analyses	2.11
Table 3.1.	Dry Bed Density	3.2
Table 3.2.	Decontamination Factors for ¹³⁷ Cs from AP-101DF	3.4
Table 3.3.	AP-101DF Cs-Decontaminated Product Effluent	3.7
Table 3.4.	Inorganic and Organic Analytes in the Lead Column Eluate Composite	3.9
Table 3.5.	Radionuclides in the Lead Column Eluate Composite ⁽¹⁾	3.11
Table 3.6.	Composition of Regeneration Solution	3.13
Table 3.7.	Activity Balance for ¹³⁷ Cs	3.13
Table 3.8.	SL-644 Bed Volume Changes	3.15
Table B.1.	Sample Identification	B.1

1.0 Introduction

The U. S. Department of Energy plans to vitrify tank wastes at the Hanford Site in preparation for permanent disposal. Before vitrification, tank wastes will be divided into low-activity and high-activity fractions through specific pretreatment processes. The pretreatment flow sheet for the Hanford high-level tank wastes includes the use of SuperLig[®] 644 (SL-644) material for ¹³⁷Cs removal from the aqueous waste fraction. The SL-644 is a Cs-selective, organic, ion exchanger and has been shown to be effective in removing Cs from a variety of Hanford tank wastes (Hassan, McCabe, and King 2000; Hassan, McCabe, King and Crowder, 2000; Hassan, King, McCabe, and Crowder 2001; King, Hassan, and McCabe 2001; Kurath, Blanchard, and Bontha 2000a; Kurath, Blanchard, and Bontha 2000b). The SL-644 has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT.

This report summarizes batch-contact studies of SL-644 and crystalline silicotitanate⁴ (IE-911, UOP LLC, Des Plaines, IL), and dual small-column testing of the SL-644 ion exchange material. The test matrix was 241-AP-101 Hanford tank waste diluted to 5 M Na⁺ (hereafter referred to as AP-101DF) (Goheen, et al., 2001). Approximately 1.2 L of AP-101DF were processed through the ion exchange column system. The ion exchange process steps tested include resin bed preparation, loading, feed displacement, water rinse, elution, and resin regeneration.

The objectives of this work were to:

- determine batch distribution coefficients as a function of Na/Cs molar concentration for SL-644 and IE-911 in the AP-101DF matrix.
- demonstrate the ¹³⁷Cs decontamination of Envelope A tank waste sample AP-101DF using SL-644 columns and provide a Cs-decontaminated sample for downstream process testing (i.e., ⁹⁹Tc removal, low activity waste (LAW) melter feed testing, and LAW vitrification).
- develop loading and elution breakthrough profiles for SL-644 columns.
- produce and characterize the Cs eluate solution from SL-644 columns for use in evaporation tests and high-level waste (HLW) vitrification.
- demonstrate the effectiveness of all SL-644 ion exchange process steps including loading, feed displacement, deionized (DI) water washing, elution and resin regeneration.⁵

⁴IE-911 is an alternative Cs ion exchanger and is being tested in parallel to SL-644 only with batch contacts. The IE-911 was developed and supplied by UOP LLC, Des Plaines, IL.

⁵ Test Specification: "Tank 241-AN-102 and 241-AP-101 Ion Exchange," TSP-W375-00-00028, Rev. 1, M. E. Johnson, CH2M Hill Hanford Group, Dec. 11, 2000 and Test Plan "Actual Waste Ion Exchange Testing for the RPP-WTP Project," CHG-TP-41500-013, Rev. 0, D. L. Blanchard, Jan. 24, 2000.

2.0 Experimental

2.1 SL-644 Resin

Initial AP-101DF batch contacts were conducted with SL-644 resin batch 981112YK-N3-16/18. This material batch had a distinct salt and pepper appearance with a significant light gray fraction. Initial batch distribution studies with this SL-644 batch on AW-101 simulant indicated it performed well and it was used for AP-101DF batch distribution testing. Unfortunately, later simulant column testing proved this material inadequate (Fiskum, Blanchard, and Arm 2002). Additional SL-644 was obtained from IBC production batch number 010319SMC-IV-73. This material batch exhibited a black-red appearance peppered with light brown specs.

Before sampling SL-644 from the IBC-supplied plastic bottle, the bulk resin bottle was turned several times to produce a well-mixed material. Sub-samples were removed immediately after mixing. The sieve results of the two resin batches were previously reported (Fiskum, Blanchard, and Arm 2002) and are reproduced in Table 2.1. The 212- to 425-µm particle size dry-sieved fraction was used in the ion exchange columns.⁶ The average particle size corresponded to 540-µm in diameter, expanded in 3 M NaOH-2 M NaNO₃-0.1 M KNO₃ (Fiskum, Blanchard, and Arm 2002). As a general rule, the column diameter should be 20 times greater than the resin particle diameter to minimize wall effects (Korkisch). Given the diameter of the column at 1.46 cm, the column diameter was 27 times the average diameter of the 212- to 425-µm diameter dry-sieved resin particles expanded in caustic solution.

a. a. (1)	Particle Size	981112YK-N3-16/18	010319SMC-IV-73
Sieve Size ⁽¹⁾	(µm)	wt %	wt %
18	>1000	1.78	0.06
30	600-1000	55.25	37.27
40	425-600	20.12	38.23
50	300-425	13.76	18.01
70	212-300	7.93	6.08
100	150-212	1.11	0.26
140	106 -150	0.02	0.06
>140	<106	0.03	0.03
(1) U. S. standar	d sieve size corresp	oonds to ASTM E-11 specification	tion.

Table 2.1. Dry Particle-Size Weight-Percent Distribution of Various Batches ofAs-Received SL-644

Properties of the 981112YK-N3-16/18 and 212- to 425-µm 010319SMC-IV-73 SL-644 resins have been previously reported (Fiskum, Blanchard, Arm 2002) and selected properties are reproduced in Table 2.2. The F-factor is the ratio of the dry mass of exchanger to the initial mass of the exchanger, and was

⁶ This particle size distribution was used successfully in AW-101 simulant testing.

determined at the same time the batch contact samples and column resin fractions were weighed. The F-factor was obtained by drying approximately 0.5 g resin, under vacuum, at 50°C to constant mass. The F-factor was determined on the H-form (hydrogen form or acid form) and the as-received form of the resin. The F-factor for the Na-form resin was performed differently because of stability problems observed in prior tests on this resin form (Steimke et al. 2001). Drying to constant mass under vacuum at ambient temperature was considered adequate for removing water from the Na-form resin.⁷ The L-factor represents the fractional mass remaining after washing the as-received resin form with 0.5 M HNO₃ and DI water, correcting for residual water content as described above. The I_{Na} represents the fractional mass gain upon conversion from the H-form to the Na-form, correcting for water content as described above.

Property	981112YK-N3-16/18	010319SMC-IV-73
Sieve fraction	As-received	212- to 425-µm
Bulk density, g/mL ⁽¹⁾	0.80	0.74
F-factor, as-received	0.891	0.8773
L-factor, conversion to H-form, fractional mass remaining	0.493	0.538
F-factor, H-form	0.939	0.932
I _{Na} , fractional mass gain from H-form to Na-form	1.29	1.25
(1) Bulk density based on resin as-supplied by IB	C, no drying, washing, or cond	litioning.

Table 2.2. SL-644 Properties

2.2 Crystalline Silicotitanate

Crystalline silicotitanate IE-911, Lot 2081000009, was obtained from UOP LLC, Des Plaines, IL. The UOP particle size specification of this material was 30-60 mesh. The material was provided in the hydrogen form. A 5-g aliquot was converted to the sodium form by soaking in 40 mL 1 M NaOH for two days. The NaOH solution was then decanted and the IE-911 was rinsed with five successive volumes of DI water. The resin was then dried at 95°C overnight. The F-factor, 0.9630 was determined at the same time the batch contact samples were weighed. This was obtained by drying approximately 0.5 g at 95°C to constant mass.

 $^{^{7}}$ After initial drying at ambient temperature under vacuum to constant mass, the resin was heated to 50°C. The heated product appeared (visual inspection) to have degraded thus potentially nullifying subsequent mass measurements.

2.3 AP-101 Diluted Feed

Samples of tank 241-AP-101 (Envelope A) waste were received in the High Level Radiation Facility (HLRF) in 2000. The homogenization, dilution, subsampling, and analysis of this material have been previously described (Goheen et al. 2002). The total volume of AP-101DF available for Cs ion exchange processing was about 1.2 L. The feed composition is summarized in Table 2.3.

Cations, M								
Na ⁺	4.97 E+0							
K ⁺	7.61 E-1							
Cs^+	3.68 E-5 ⁽¹⁾							
Uranyl	1.7 E-4							
Mole Ratios								
Na/Cs mole ratio	1.4 E+5							
K/Cs mole ratio	2.1 E+4							
	Anions, M							
$AlO_2^{-(2)}$	2.59 E-1							
Cl	4.1 E-2							
F	$< 1.2 \text{ E-1}^{(3)}$							
CO ₃ ²⁻	4.46 E-1							
CrO ₄ ^{-2 (2)}	2.92 E-3							
NO ₂	7.1 E-1							
NO ₃ ⁻	1.68 E+0							
OH	1.94 E+0							
PO ₄ ^{-3 (2)}	1.2 E-2							
SO_4^{-2}	4.8 E-2							
Oxalate	< 1 E-2							
TOC, g/L	1.64 g/L							
Radionuclide	s, (μCi/mL)							
Total alpha	2.6 E-04							
⁶⁰ Co	2.5 E-03							
⁹⁰ Sr	7.1 E-02							
⁹⁹ Tc	3.93 E-2 ⁽⁴⁾							
⁹⁹ Tc as pertechnetate	3.46 E-2							
¹³⁷ Cs	1.26 E+2							
¹⁵⁴ Eu	< 7 E-4							
²³⁹⁺²⁴⁰ Pu	1.10E-4							
²⁴³⁺²⁴⁴ Cm	2.12E-6							
Solution density, g/mL	1.256							
(1) Total Cs reported by Goheen et al. 2002 may be 137 Cs determination by GEA and application of isoto 137 Cs $^{24.0}$ wt% where a total Cs apparent;	ppic distribution (¹³³ Cs 60.6 wt%, ¹³⁵ Cs 15.4							

Table 2.3. Composition of AP-101DF (Envelope A)

wt%, 137 Cs 24.0 wt%) where a total Cs concentration of 6.04 µg/mL or 4.5 E-5 M is calculated. (2) Al, Cr, and P determined by ICP-AES. The anionic form is assumed on the basis of waste chemistry.

(3) F concentration is an upper bound; co-eluting anions positively interfered with peak integration.(4) Uncertainty, including standards bias, ranged from -10% to +30%

2.4 Batch Contacts

The batch contacts were performed with the H-form of SL-644 batch 981112YK-N3-16/18. The Naform of IE-911 was tested in parallel with the SL-644. Initial batch contacts were performed using AP-101DF at three different Cs concentrations. Aliquots of the AP-101DF subsamples were tested without spiking, additional aliquots were spiked with 0.1 M CsNO₃ to obtain stock solutions of nominally 1E-3 M and 5 E-3 M Cs. The initial Cs concentrations in the AP-101DF stock contact solutions and the corresponding Na/Cs and K/Cs mole ratios are given in Table 2.4. After discerning the SL-644 batch 981112YK-N3-16/18 was insufficient to remove Cs under column loading conditions (Fiskum, Blanchard, and Arm 2002), another batch contact with AP-101DF was performed using the H-form of SL-644 batch 010319SMC-IV-73, 212- to 425-µm dry particle size. The scope of this second test was much reduced in order to conserve AP-101DF feed for use in subsequent column ion exchange and vitrification tests. Thus only the mid-range Cs concentration was tested in duplicate.

Solution	Target Initial Cs Conc. [M]	Target Nominal Na/Cs ⁽¹⁾ mole ratio	Target Nominal K/Cs ⁽¹⁾ mole ratio			
	SL-644 Batch 9811	12YK-N3-16/18 and IE-9	11			
Un-spiked	3.68E-5	1.4 E+5	2.1 E+4			
Cs Spike 1	1.0 E-3	5.0 E+3	7.6 E+2			
Cs Spike 2	5.0 E-3	1.0 E+3	1.5 E+2			
	SL-644 Bate	ch 010319SMC-IV-73				
Cs Spike 3	1.0 E-3	5.0 E+3	7.6 E+2			
(1) Na^+ and K^+ are the primary cations that compete with Cs^+ for ion exchange with SL-644 and						
IE-911.						

 Table 2.4. Initial Cs Concentrations in the AP-101DF Solutions Used for the Batch Distribution Tests

The batch-contact tests were performed in duplicate at a phase ratio of approximately 100 mL/g (liquid volume to exchanger mass). Typically, 0.1 g of SL-644 exchanger was contacted with 10 mL of AP-101DF, and 0.05 g of IE-911 and SL-644 for Cs Spike 3 were contacted with 5 mL AP-101DF. The exchanger mass was determined to an accuracy of 0.0002 g. The waste volume was transferred by pipet and the actual volume was determined by mass difference with an accuracy of 0.0002 g and the solution density. Samples were agitated in an orbital shaker for approximately 24 hours for SL-644 and 72 hours for IE-911. The temperature was not controlled but was generally constant at $26 \pm 1^{\circ}$ C during the 3 days of contact.

All batch-distribution measurements were determined by measuring ¹³⁷Cs on both the stock solution (initial concentration) and the contacted solution (final concentration). The initial Na and K concentrations were determined with inductively coupled plasma-atomic emission spectrometry (ICP-AES). Initial ¹³³Cs concentrations were confirmed by inductively coupled plasma-mass spectrometry (ICP-MS).

The batch distribution coefficient, K_d (with units of mL/g), was determined using the following relationship:

$$K_{d} = \frac{(C_{0} - C_{1})}{C_{1}} * \frac{V}{M * F}$$
(1)

where $C_0 = initial^{137}$ Cs concentration

 C_1 = final ¹³⁷Cs concentration

- V = volume of the liquid sample (mL)
- M = mass of the ion exchanger (g) (SL-644 H-form mass corrected for the Na-form mass increase or Na-form IE-911 mass)
- F = dried resin mass divided by the initial resin mass.

The dry bed resin density, ρ , was obtained according to the following equation:

$$\rho = \frac{m * L * F * I_{Na}}{BV}$$
(2)

where $\rho = dry \text{ Na-form g of resin per mL of resin}$

m = resin mass in the column, as-received form

L = fractional mass remaining after washing (0.538)

F = water loss factor, as-received form (0.877)

 I_{Na} = fractional mass gain on conversion from H-form to Na-form (1.25) (this factor is set to 1 when calculating the dry bed density in the H-form or 0.5 M HNO₃ feed)

BV = resin bed volume in the feed (discussed in section 3.2.7).

The Cs λ value (column distribution ratio) is a function of the feed condition batch distribution coefficient and the dry bed density, and is obtained as shown in Equation 3.

$$\lambda = K_d * \rho \tag{3}$$

2.5 Column Run Experimental Conditions

2.5.1 Ion Exchange Column System

A schematic of the ion exchange column system is shown in Figure 2.1. The system consisted of two small columns containing the ion exchange material, a small metering pump, three valves, a pressure gauge, and a pressure relief valve. Valves 1, 2, and 3 were three-way valves that could be turned to the flow position, sample position, or no-flow position. Valve 1 was placed at the outlet of the pump and was used to eliminate air from the system, purge the initial volume of the system, or isolate the columns from the pump. Valves 2 and 3 were primarily used for obtaining samples and could also be used to isolate the columns from the rest of the system. The columns were connected in series with the first column referred to as the lead column and the second column referred to as the lag column.

The columns were prepared at Savannah River Technology Center Glassblowing Laboratory. Each column consisted of a 15-cm glass column with a 24/40 taper ground-glass fitting on top and a threaded fitting on the bottom. A polyethylene bushing was installed in each glass-threaded fitting to accommodate a ¹/₄-in stainless steel National Pipe Thread (NPT) fitting. The inside diameter of each column was 1.46 cm, which corresponded to a volume of 1.67 mL/cm. A stainless steel, 200-mesh screen supported the resin bed. A decal millimeter scale affixed to the column allowed for measurement of resin bed height and thus shrinkage and swelling. The upper section contained four entry ports and a taper joint with screw cap that securely fitted the column. The lead column assembly used a pressure relief valve (10 psi trigger), pressure gauge, and sample inlet; the remaining port was plugged. The lag column assembly used one port for sample entry, and the other three ports were plugged. In both columns, the inlet sample lines extended through the port opening to the top of the column. The connecting tubing was 1/8-in OD, 1/16-in ID polyethylene. Valved quick-disconnects (Cole Parmer, Vernon Hills, IL) were installed in-line to allow for ease of column switching. A FMI QVG50 pump (Fluid Metering, Inc., Syosset, New York) equipped with a ceramic and Kynar[®] coated low-flow piston pump head was used for all fluid introduction. The flow rate was controlled with a remotely operated FMI stroke-rate controller. The pump was calibrated with the stroke-rate controller and could provide pumping rates from 0.08 to 16 mL/min. The volume actually pumped was determined using the mass of the fluid and the fluid density. The pressure indicated on the pressure gauge remained below 5 psi during all runs. The total holdup volume of the Cs ion exchange system was the summed volume of all fluid-filled parts and was estimated to be 42 mL.

2.5.2 Resin Bed Preparation

The initial SL-644 resin and bed preparations were performed using a procedure similar to that recommended by Hassan et al. (1999). Before packing the resin beds, aliquots of SL-644 resin were placed in separate beakers. The two resin aliquots (4.17 and 4.20 g lead and lag columns, respectively) were soaked in about 40 mL of 1 M NaOH (~10:1 solution to resin volume ratio) with light agitation for 2 h. The NaOH was decanted, and the SL-644 was slurried with about 40 mL of DI water. The resin was then quantitatively transferred into the columns using additional DI water to aid the transfer. Both of the resin beds were individually washed with 0.5 M HNO₃. After resin washing, the corrected sodium form SL-644 mass was calculated to be 2.46 g and 2.48 g (dried at ambient temperature under vacuum) in the lead and lag columns, respectively, according to the following equation:

$$M_{bed} = M_{AR} * F_{AR} * L * I_{Na}$$
(4)

where M_{bed} = resin bed mass

 M_{AR} = resin mass loaded in the column, as-received form, 4.17 g lead and 4.20 g lag columns

- F_{AR} = F-factor for the as-received resin, 0.877
- L = fractional mass remaining after conversion to the H-form, 0.538
- I_{Na} = fractional mass gain on conversion from the H-form to the Na-form, 1.25.

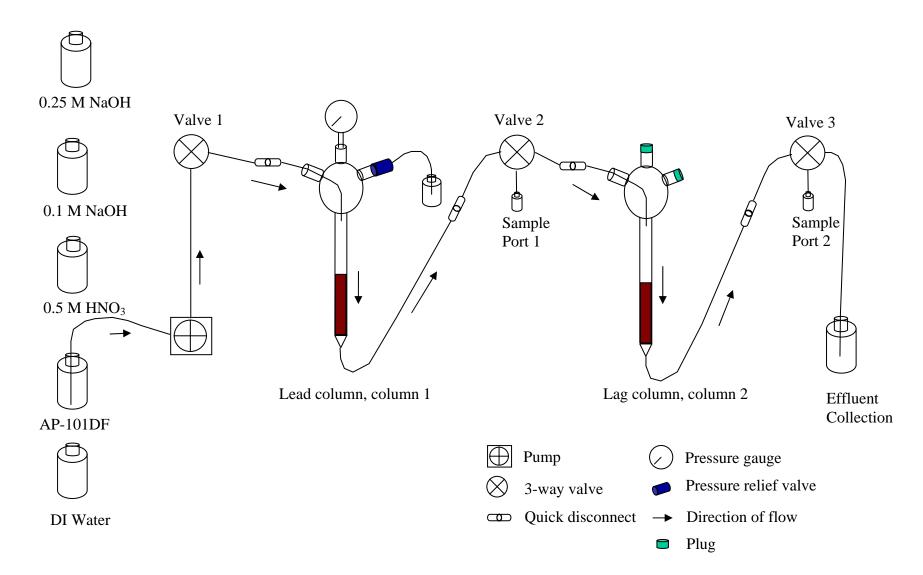


Figure 2.1. Cesium Ion Exchange Column System

The entire ion exchange system was rinsed with DI water, regenerated with 0.25 M NaOH, and then used for a full shakedown experiment with AW-101 simulant (Fiskum, Blanchard, and Arm 2002). Both columns were individually eluted and rinsed. A summary of the shakedown test operations is provided in Table 2.5.

		Ave	rage Volu	ime	Flow Rate,			
Process Step	Solution	BV ⁽¹⁾	$AV^{(2)}$	mL	BV/h			
Pre-Conditioning, Lea	d and Lag Columns S	Separate						
Wash	0.5 M HNO ₃	13.5		150	0.87			
DI water rinse	DI water		3.0	67	2.1			
Regeneration	0.25 M NaOH	5.1		56	2.0			
Loading, Feed Displac	Loading, Feed Displacement, and Rinse, Columns in Series							
Regeneration (cont.)	0.25 M NaOH	3.7		41	1.9			
Load	AW-101 simulant	143		1576	2.6			
Feed Displacement	0.1 M NaOH		2.9	121	2.5			
Rinse	DI water		2.0	84	2.5			
Elution, Lead and Lag	columns Separate	•			-			
Elution	0.5 M HNO ₃	12		132	0.92			
Eluant rinse	DI water		2.7	60	2.6			
	 (1) BV = bed volume (11 mL in 0.25 M NaOH regeneration condition) (2) AV = apparatus volume (42 mL for columns in series; 23 mL for lead column processing and 21 mL 							

Table 2.5. Bed Conditioning and Simulant Shakedown Testing Parameters

2.5.3 Ion Exchange Column Test with AP-101DF

The beds had been stored approximately 3 weeks in the H-form in DI water since the end of the simulant AW-101 column run. The resin beds were fluidized with DI water. Then the ion exchange system was loaded into the Shielded Analytical Laboratory (SAL) hot cell with the resin in the H-form. All subsequent processing was performed in the hot cells at temperatures ranging from 25 to 29°C. The entire system was initially cycled in the hot cell with 0.25 M NaOH, DI water, 0.5 M HNO₃, and DI water sequentially through the lead and lag columns. The bed conditioning, AP-101DF loading,⁸ feed displacement, and DI water rinse steps were conducted by passing these solutions through both resin beds connected in series. The elution, elution rinse, and the regeneration steps were conducted on the lead column only. The experimental conditions for each process step are shown in Table 2.6. The resin bed volume (BV) is the volume in 0.25 M NaOH. For the AP-101DF test, the BV was measured at 10.6 mL in the regeneration condition just prior to waste loading. The AP-101DF effluent was collected in four effluent bottles. The first bottle collected 64 mL, slightly over one apparatus volume (AV), and consisted primarily of the displaced regeneration solution. The following effluent collections captured nominally

⁸ AP-101DF processing represents the second Cs load and elute cycle for the resin beds.

350-mL AP-101DF fractions. After ascertaining ¹³⁷Cs activity was low, the three 350-mL fractions were combined into one composite for follow-on Tc ion exchange.

The solution above the lead resin bed was drained to within about 1 cm of the resin surface when switching to the next process step. Then nominally 5-mL of the solution were allowed to build up above the resin bed prior to commencement of flow. This helped minimize reagent mixing thus speeding the reagent transition through the column system.

		Total Volume Flow rate		Time,	T,			
Process step	Solution	$\mathbf{BV}^{(1)}$	$AV^{(2)}$	mL	BV/h	mL/min	h	°C
Bed conditioning	0.25 M NaOH	9.8	2.5	104	1.9	0.33	5.2	25
Bed conditioning	DI water	5.7	1.4	60.6	2.7	0.48	2.1	25
Bed conditioning	0.5 M HNO ₃	7.8	2	82.2	2.5	0.44	3.1	25
Bed conditioning	DI water	6.9	1.8	74	2.8	0.49	2.5	25
Regeneration	0.25 M NaOH	9.6	2.4	103	1	0.18	9.6	25
Loading lead column	AP-101 Feed	112.2	I	1189	2.8	0.50	37.8	26-28
Loading lag column ⁽³⁾	AP-101 Feed	109.4	I	1159	2.8	0.50	37.8	26-28
Feed displacement	0.1 M NaOH	13.2	3.3	140	2.74	0.48	5.1	28
DI water rinse	DI water	8.7	2.2	92	2.9	0.51	3.2	28
Elution of lead colum	n							
Elution	0.5 M HNO ₃	19.3	-	204	0.88	0.16	24.6	28-29
Eluant rinse	DI water	6.9	3.19	73.7	2.9	0.51	4.5	28-29
Regeneration	0.25 M NaOH	4.7	2.17	50	0.9 - 1.5	0.16 - 0.27	6.2	23
Rinse	DI water	5	2.31	53.1	2.59	0.46	1.9	24
(1) BV in 0.25 M NaOH(2) AV (42 mL for sequence)(3) The feed volume through the feed volume the feed volume the feed volume the feed volume through	ential column forn	nat, 23 mL	for lead		•			

 Table 2.6.
 Experimental Conditions for AP-101DF Ion Exchange

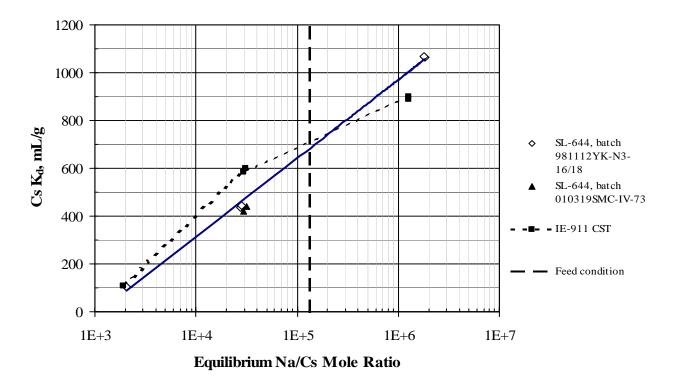
The sampling and analysis protocol is shown in Table 2.7. During the loading phase, small samples (about 2 mL) were collected from the lead column starting at 7 BVs, then at 15 BVs and continuing in nominal 10-BV increments of feed from both the lead and lag columns. The flow rate ranged from 2.99 to 3.23 BV/h in the feed condition, which was equivalent to 2.74 to 2.96 BV/h when the resin bed was expanded in the regeneration solution. Flow rate doubled during sample collection from the lead column because of the strong siphoning effect at the sample port. Thus, for the 13 samples collected from the lead column, and for 2 minutes each sample, AP-101DF fed at a nominal flow rate of 6 BV/h. The feed displacement, DI water rinse, elution, and elution rinse samples were taken at 1-BV increments at flow rates shown in Table 2.6.

			Approximate		
Process Step	Lead Column	Lag Column	Sample Size (mL)	Analyses	
Bed conditioning	-	-	-	-	
Bed conditioning	_	_	_	_	
Bed conditioning	_	_	_	-	
Loading	Every 10 BVs	Every 10 BVs	2	GEA	
Feed displacement	_	Every 1 BVs	10	GEA	
DI water rinse	_	Every 1 BVs	10	GEA	
Elution	Every 1 BVs	-	10	GEA	
Eluant rinse	Every 1 BVs	_	10	GEA	
Regeneration	1 composite	_	50	ICP-AES, GEA, OH-	
		Composite Sar	nples		
Effluent – 1	_	_	2	GEA	
Effluent – 2	_	_	2	GEA	
Effluent – 3	_	_	2	GEA	
Effluent – 4	_	-	2	GEA	
				GEA, ICP-AES, IC,	
Effluent composite				U, ICP-MS (Tc),	
(effluents 2 - 4)	_	-	10	pertechnetate	
				ICP-AES, GEA,	
				TOC, IC, U,	
				ICP-MS, and various	
Eluate	1 composite	-	10	radioisotopes	

Table 2.7. Sampling Interval and Analyses

2.5.4 Sample Analysis

The ¹³⁷Cs concentration was determined using a bench-top GEA spectrometer. This allowed for rapid sample analysis. Selected sample results were later confirmed by GEA analysis in the analytical laboratory. Because of the high dose rate from ¹³⁷Cs, the feed sample and eluate samples required dilution before removal from the hot cell. These samples were diluted with 0.25 M NaOH and 0.5 M HNO₃, respectively. The extent of dilution was determined by mass difference. Composite samples from each of the effluent bottles were taken for analysis by GEA. Another composite sample was taken for analysis once the contents of effluent bottles 2 through 4 were combined for Tc ion exchange. The regeneration solution was composited and a sample taken for ICP-AES and OH⁻ determination. Once the GEA results were confirmed for the eluate samples, the eluate samples were composited and a sample of the composite was submitted for various analyses; GEA, ICP-AES, total organic carbon (TOC), ion chromatography (IC), U, pertechnetate, and ICP-MS for ⁹⁹Tc.


The Na and other metal concentrations were determined with ICP-AES. The OH⁻ concentration was determined by potentiometric titration with standardized HCl. Uranium was determined using kinetic phosphorescence. The total Tc concentration was determined by ICP-MS and the pertechnetate concentration was determined using radiochemical separations specific for pertechnetate followed by beta counting. Anions were determined using IC. TOC and total inorganic carbon (TIC) were determined by silver-catalyzed hot persulfate oxidation and furnace oxidation methods.

3.0 Results and Discussion

3.1 Batch Contact Results

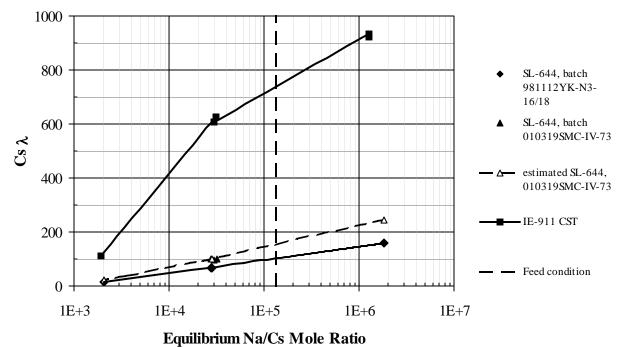
The K_d values were calculated using Equation 1 and are based on the ¹³⁷Cs concentrations as measured by GEA. The Na/Cs mole ratios were calculated based on the measured Na and total Cs concentrations in the uncontacted AP-101DF. The equilibrium Cs concentration was based on the measured ¹³⁷Cs concentrations and the ratio of ¹³⁷Cs:total Cs determined for the unspiked and spiked solutions. The Na concentration was assumed to be constant for the batch contacts. Since the quantity of H⁺ added with the resin was small relative to the moles of Na⁺ and OH⁻ in the contact solution (phase ratio of 100 mL of solution:gram of exchanger) this is a reasonable assumption. In these experiments the waste solutions were estimated to have 19.4 meq of OH⁻ and 49.7 meq of Na⁺, while the resin contained 0.22 meq of H⁺ for the 0.1 g resin used in the batch distribution tests.⁹

The calculated ¹³⁷Cs K_d values are plotted in Figure 3.1 for SL-644 and IE-911 in contact with AP-101DF. The IE-911 feed condition K_d value is interpolated at 710 mL/g. The SL-644, 981112YK-N3-16/18 resin batch K_d values are defined by the following equation (linear least squares fit): $K_d = 142.44 * Ln([Na]/[Cs]) - 997.49$, $R^2 = 0.998$.

Figure 3.1. ¹³⁷Cs Distribution Coefficients (K_d) for AP-101DF ($T = 26^{\circ}C$)

⁹ The H-form resin contains 2.2 meq H^+ per gram. (Rapko, et al. 2002)

The experimental data from the single Cs concentration tested (Cs spike 3) shows the K_d value, represented by the 010319SMC-IV-73 SL-644 resin batch (212- to 425-µm particle size), is equivalent to the 981112YK-N3-16/18 material. However the slope could not be evaluated. Assuming equivalent slope, the K_d value at the AP-101DF feed condition can be estimated at 690 mL/g from the point at which the K_d curve crosses the Na/Cs mole ratio (1.4 E+5) for the AP-101DF sample.


The calculated dry-bed densities determined using the resin masses and volumes in the ion exchange column system are given in Table 3.1. Good agreement was obtained between the lead and lag columns. The 0.25 M NaOH dry-bed density was equivalent to the 0.5 M HNO₃ form dry-bed density. In this case, the decrease in mass associated with the change from the Na-form to the H-form was equivalent to the decrease in volume upon contracting from the Na-form to the H-form.

	010319SMC-IV-73,	010319SMC-IV-73,						
Property	Lead Column	Lag Column						
Column resin mass, ⁽¹⁾ g	4.17	4.20						
Corrected column Na-form resin mass, g	2.46	2.48						
Bed volume, 0.25 M NaOH, mL	10.7	10.5						
Bed volume, AP-101DF, mL	9.7	9.7						
Bed volume, 0.5 M HNO ₃ , mL	7.7	not performed						
Dry bed density, ρ , in given matrix								
Na-form resin								
0.25 M NaOH, g/mL	0.230	0.236						
AP-101DF, g/mL	0.254	0.255						
H-form resin								
0.5 M HNO ₃ , g/mL	0.256	not performed						
(1) The 212- to 425-µm particle-size resin mass measured in the as-received form.								

Table 3.1. Dry Bed Density

The calculated Cs λ values, as a function of Na/Cs mole ratio, are shown in Figure 3.2. Two Cs λ curves are plotted for SL-644. One curve represents the measured K_d values from SL-644 batch 981112YK-N3-16/18 multiplied by the calculated resin bed density of 0.15 g/mL (Fiskum, Blanchard, and Arm 2002). The other SL-644 Cs λ curve is estimated for the 010319SMC-IV-73 resin, applying the resin bed density of 0.23 g/mL to the K_d values generated for the 981112YK-N3-16/18 resin. The Cs λ value is estimated to be 170 BVs in the AP-101DF feed condition, and 160 BVs in the 0.25 M NaOH regeneration condition for 010319SMC-IV-73 SL-644. This value is the approximate point at which the Cs breakthrough curve was predicted to pass through C/C₀ = 50% if sufficient feed was available for processing.

The calculated Cs λ values for IE-911 are also shown in Figure 3.2. The IE-911 bed density was determined to be 1.04 g/mL. The feed condition Cs λ value for IE-911 is estimated to be 740 BVs.

-

Figure 3.2. Estimated ¹³⁷Cs λ Values for AP-101DF (T = 26°C)

3.2 Column Test

3.2.1 Initial Resin Conditioning

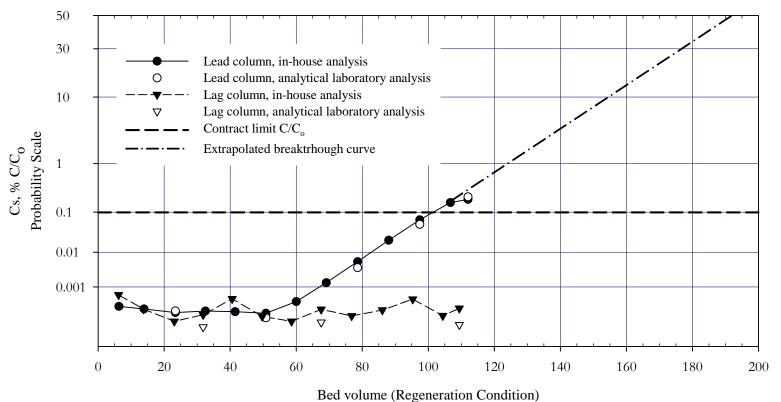
The resin bed conversion progress from Na-form to H-form and vice versa could be monitored visually according to the color of the resin bed. The Na-form appeared black in the columns whereas the H-form appeared brown. Initial conversion to the Na-form in the sequential column format required nominally 104 mL (9.8 BVs fully expanded) or 2.5 AVs. During this time the BVs increased from 7.5 mL to 11 mL. Conversion to the H-form required 82 mL of 0.5 M HNO₃ (7.8 BV fully expanded) or 2.0 AVs. During this time the resin bed shrank from 11 mL to 7.8 mL. The second regeneration was performed at half the flow rate (1 BV/h) of the first regeneration. The same volume of 0.25 M NaOH was required to complete the conversion, as evidenced by visual examination.

3.2.2 Loading

After the resin beds were conditioned, the loading phase was initiated with AP-101DF. Approximately 1.5 AVs (64 mL) of effluent were initially collected in a separate collection bottle. Most of this effluent was 0.25 M NaOH from the regeneration step mixed with some AP-101DF in the ion exchange apparatus. This solution was maintained separately and not mixed with the final Csdecontaminated AP-101DF effluent composite; thus most of the apparatus 0.25 M NaOH solution was prevented from mixing with the AP-101DF effluent. The resin shrank about 8.5% to 9.7 mL in the AP-101DF feed.

The Cs effluent concentrations from the columns are shown in Figure 3.3 as % C/C_o vs. the BVs of feed processed through each column. The abscissa reflects BVs as a function of the resin in the expanded regeneration condition of 10.6 mL. The C_o value for ¹³⁷Cs was determined to be 126 μ Ci/mL. The C/C_o is plotted on a probability scale as this scale tends to provide a straight-line breakthrough curve. The C/C_o values, determined using a bench-top GEA spectrometer, were generally in good agreement with selected samples independently analyzed by the analytical laboratory. Raw analytical results and calculations are located in the appendix.

The contract ¹³⁷Cs removal limit is also shown in Figure 3.3. The C/C_o value of 0.099% corresponds to the contract limit of 0.3 Ci/m³ for ¹³⁷Cs in the LAW glass. The C/C_o value corresponding to this limit is determined using the Na concentration of 5.0 M in the AP-101DF, a ¹³⁷Cs feed concentration of 126 μ Ci/mL, a 14 wt% waste Na₂O loading in the glass, and a glass product density of 2.66 g/mL.¹⁰


The 50% Cs breakthrough value is the point at which the C/C_o is 50% (0.5) and is normally a direct indicator of the effective capacity of the resin. A straight-line extrapolation to 50% breakthrough from 0.2% C/C_o is inherently prone to error. With this caveat, the 50% Cs breakthrough extrapolated to about 190 BVs (0.25 M NaOH condition) for the lead column. This value is in good agreement with the predicted Cs λ value of 160 BVs determined with batch-contact tests. There is insufficient data for an estimate of the 50% Cs breakthrough for the lag column.

The decontamination factors (DFs) were calculated on composites from each of the three effluent collection bottles and are summarized in Table 3.2. These may be compared to the contractual limit of $C/C_o = 0.099\%$ (DF= 1,010). In all cases, sufficient Cs was removed that the contract limit for Cs removal was met. The final lag column sample C/C_o and DF are also shown. The DF result is equivalent to the maximum DF within experimental error.

Sample	Volume, BV (mL)	¹³⁷ Cs Concentration µCi/mL ⁽¹⁾	C/C ₀ , %	DF				
Final lag column sample	109 (1160)	7.4 E-05	7.3 E-05	1.4 E+06				
Effluent composite bottle-2	34 (356)	9.8 E-05	7.7 E-05	1.3 E+06				
Effluent composite bottle-3	36 (377)	1.1 E-04	8.6 E-05	1.2 E+06				
Effluent composite bottle-4	40 (424)	2.3 E-04	1.8 E-04	5.5 E+05				
Composite effluent	104 (1103)	1.08 E-04	8.6 E-05	1.2 E +06				
(1) The ¹³⁷ Cs uncertainty ranges from 3% to 8% relative error, $1-\sigma$.								

 Table 3.2.
 Decontamination Factors for ¹³⁷Cs from AP-101DF

 $^{^{10}}$ Applying a glass loading of 20 wt% would reduce the contract limit % C/C₀ to 0.069 %.

× *U* ,

Figure 3.3. ¹³⁷Cs Breakthrough Curves for AP-101DF Sample, Probability Plot

3.5

The three composite effluent fractions were combined into a single composite for subsequent processing. This Cs-decontaminated effluent was characterized and the results are summarized in Table 3.3. Major constituents (Na, K, Al, NO₃⁻, and NO₂⁻) in the effluent were similar in concentration to the feed within experimental error. The authors have no explanation for the 24% increase measured for OH other than experimental/analytical error. The pertechnetate remained constant within experimental error. The total Tc determined by ICP-MS appeared to be biased high in this analysis consistent with postanalysis standards bias (see ICP-MS report ASR 6121 in Appendix E). Notably, nearly all U and Pu¹¹ were removed from the AP-101DF by SL-644. The F, PO₄³⁻ and SO₄²⁻ also resulted in low effluent recovery. The low recovery is thought to be due to analytical error/uncertainty.

3.2.3 Feed Displacement and Rinse

There was a delay between the introduction of the feed displacement and the collection of these samples from the effluent line. Approximately 42 ml of Cs-decontaminated AP-101DF were collected as effluent prior to starting the feed displacement sampling. The relative Cs concentration, as C/C_0 , was < 4 E-3 % for all feed displacement and DI water rinse samples.

3.2.4 **Elution and Eluant Rinse**

The elution proceeded similarly as found in the simulant test with respect to the Cs elution profile and resin bed shrinkage. However, the characteristic color change from black in the Na-form to tan in the H-form was not visible. The resin appeared virtually black for the entire elution and rinse cycles.

The lead column C/C_0^{12} values for ¹³⁷Cs are shown in Figure 3.4 for the elution and the eluant rinse steps. The ordinate is a logarithmic scale to clearly show the large range of C/C_0 values obtained. The abscissa is given in BVs relative to the regeneration condition. The majority of the ¹³⁷Cs was contained in elution BVs 3-5. The peak value of C/C_0 was found to be 64. The elution cutoff of $C/C_0 = 0.01$ was reached at 12 BVs but elution was continued beyond this due to the lag between sample collection and the determination of the Cs concentration. At 18.5 BVs the C/C_o visibly rises. At this point, the columns were allowed to sit in 0.5 M HNO₃ for about two hours while samples were counted. Cesium continued to elute from the resin and when flow was re-started, showed a slight rise in relative Cs concentration. The C/C₀ values for the eluant rinse with DI water dropped rapidly in 137 Cs concentration indicating DI water did not continue Cs elution.

¹¹ Pu concentration in the effluent was estimated from the Pu concentration in the Tc ion exchange effluent. This

assumes that the Tc ion exchange processing did not remove Pu. ¹² The C_o refers to the ¹³⁷Cs concentration in the AP-101 DF sample fed to the lead column. For elution, the C/C_o value is an indication of the extent to which ¹³⁷Cs is concentrated relative to the feed. It is an indirect measure of the extent to which the resin is actually eluted.

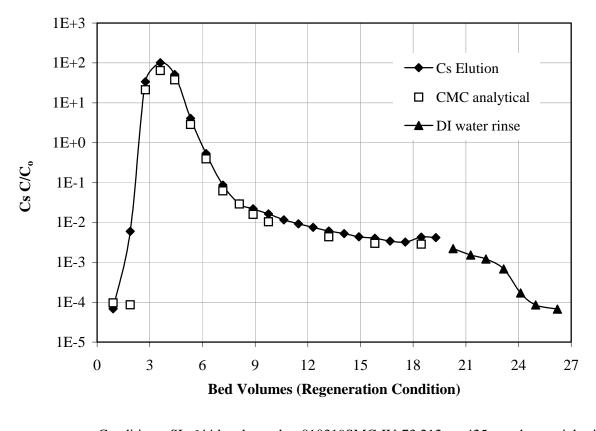

Component	Concentration, M	% Change from Feed
Cations		
Na ⁺	4.81 E+0	-3.0
\mathbf{K}^+	7.44 E-1	-2.2
Uranyl	3.8 E-6	-98
Anions		
AlO ₂ ⁻	2.45 E-1	-5.3
F	9.74 E-2	-19.
Cl	4.09 E-2	-1.2
CrO_4^{-2}	2.70 E-3	-7.5
NO ₂	7.78 E-1	10.
NO ₃	1.88 E+0	12.
OH	2.40 E+0	24
PO_4^{-3} (IC)	7.3 E-3	-27.
P (ICP-AES)	1.06 E-2	-15.
SO_4^{-2}	3.25 E-2	-33.
Oxalate	1.1 E-2	-2.7
Radionuclides	μCi/mL	% Change from Feed
⁶⁰ Co	2.23 E-3	-12.
⁹⁹ Tc	4.99 E-02 ⁽²⁾	27.
⁹⁹ Tc as pertechnetate	3.95 E-2	14.
¹³⁷ Cs	1.08 E-4	>-99
¹⁵⁴ Eu	< 3.0 E-5	NA
²³⁹⁺²⁴⁰ Pu	1.74E-5 (estimated) ⁽¹⁾	-84 ⁽¹⁾
Solution density, g/mL	1.257	0.08

Table 3.3. AP-101DF Cs-Decontaminated Product Effluent

NA = not applicable, not detected in feed or effluent

(1) Pu removal estimated based on feed Pu concentration and effluent Pu concentration from Tc ion exchange. The ²³⁹⁺²⁴⁰Pu concentration in the Tc-removed AP-101DF effluent was 1.74E-5 μ Ci/mL. The Pu removal estimate is supported by the eluate analysis where 72% Pu was recovered.

(2) Uncertainty, including standard bias, ranged from -10% to +30%.

Conditions: SL-644 batch number 010319SMC-IV-73 212- to 425- μ m dry particle size Process temperature = 28-29 °C BV in 0.25 M NaOH feed condition = 10.6 mL Flow Rate = 0.88 BV/h ¹³⁷Cs C_o = 126 μ Ci/mL Eluant is 0.5 M HNO₃.

Figure 3.4. ¹³⁷Cs Elution and Eluant Rinse of the Lead Column

The eluate samples from the lead column were composited and a sub-sample taken for analysis. The remainder of the composite was saved for vitrification testing. The analytical results are shown in Tables 3.4 and 3.5. Sodium was the dominant component detected using ICP-AES with some Ca, Cd, Cr, Fe, K, Pb, U, and Pu eluting as well. The relative fractions of these analytes recovered in the eluate are given in the tables. The U recovered in the eluate (~42 mg) represents 87% of the U loaded in the AP-101DF feed (48 mg). Plutonium (based on ²³⁹⁺²⁴⁰Pu) is also largely recovered (72%) in the eluate.¹³ A significant fraction (57%) of the Cm was also recovered in the eluate. The other analytes recovered to a much

 $^{^{13}}$ The sum of 239 Pu and 240 Pu measured by ICP-MS (8.98E-4 $\mu Ci/mL$) was a factor of two higher than the radiochemistry determination of the $^{239+240}$ Pu (4.63E-4 $\mu Ci/mL$). The ICP-MS determination was considered biased high.

smaller percentage in the eluate (Na: 0.14%; Ca: 2%; Cr: 1%; Fe: 29%; K: 0.03%; Pb: Sr: 7%). Because the feed concentrations were "less than" values, the Cd and Pb recovered at >10% and >8%, respectively. The B and Si were probably leached from the glass vials used during the sample preparation process; the preparative blank sample was nearly as high in B and Si concentrations as the eluate sample. Thus the reported B and Si concentrations are not indicative of the eluate composition. As expected ¹³⁷Cs was the dominant radionuclide detected. The only anion detected was nitrate, which is not surprising since the eluant was 0.5 M HNO₃.

Most of the specified minimum reportable quantity (MRQ) levels were met with some exceptions. The large amount of ¹³⁷Cs prevented the detection limits for ²⁴¹Am, ¹⁵⁴Eu, and ¹⁵⁵Eu from meeting the MRQ levels. Relatively high ¹³⁷Cs activity increased the gamma background level in the detectors due to Compton scattering, thereby making it difficult to detect lower concentrations of other gamma emitters. The large amount of NO₃ prevented the detection limit for Cl from meeting the MRQ level of 3 μ g/mL. The large NO₃ concentration required large sample dilutions and increased the method detection limit for the other components. The anion concentrations other than nitrate are expected to be small. The TIC analysis was not completed because carbonate is known to evolve as CO₂ in acidic solutions.

Analyte	Method	MRQ μg/mL	Cs eluate µg/mL	% recovered	Analyte	Method	MRQ μg/mL	Cs eluate µg/mL	% recovered
Ag	ICP-AES	NMRQ	< 0.63	ND	Rh	ICP-MS	NMRQ	5.7 E-2	NM
Al	ICP-AES	75	18.6	0.05	Ru	ICP-MS	NMRQ	3.2 E-3	NM
As	ICP-AES	NMRQ	< 6.3	ND	Sb	ICP-AES	NMRQ	< 13	ND
В	ICP-AES	NMRQ	194	HB	Se	ICP-AES	NMRQ	< 6.3	ND
Ba	ICP-AES	2.3	[0.29]	[>4] ⁽¹⁾	Si	ICP-AES	170	145	HB
Be	ICP-AES	NMRQ	< 0.25	ND	Sn	ICP-AES	1500	< 38	ND
Bi	ICP-AES	NMRQ	< 2.5	ND	Sr	ICP-AES	NMRQ	< 0.38	ND
Ca	ICP-AES	150	[25]	[2.0]	Та	ICP-MS	NMRQ	2.7E-3	NM
Cd	ICP-AES	8	[1.2]	[>10] ⁽¹⁾	Te	ICP-AES	NMRQ	< 38	ND
Ce	ICP-AES	NMRQ	< 5.0	ND	Th	ICP-AES	NMRQ	< 25	ND
Co	ICP-AES	30	< 1.3	ND	Ti	ICP-AES	17	< 0.63	ND
Cr	ICP-AES	15	12	1.4	U	ICP-AES	600	[160]	[67]
Cs ⁽²⁾	GEA	1.5	37	130 ⁽³⁾	U	KPA	600	206 ⁽⁴⁾	87
Cu	ICP-AES	17	[1.2]	[>6] ⁽¹⁾	V	ICP-AES	NMRQ	< 1.3	ND
Dy	ICP-AES	NMRQ	< 1.3	ND	Y	ICP-AES	NMRQ	< 1.3	ND
Eu	ICP-AES	NMRQ	< 2.5	ND	Zn	ICP-AES	17	< 1.3	< 2.8
Fe	ICP-AES	150	[6.1]	[29]	Zr	ICP-AES	NMRQ	< 1.3	ND
К	ICP-AES	75	[57]	[0.03]	TOC	Hot Pers.	1500	< 30	< 0.3
La	ICP-AES	35	< 1.3	ND	TOC	Furnace	1500	180	0.4

 Table 3.4. Inorganic and Organic Analytes in the Lead Column Eluate Composite

Analyte	Method	MRQ μg/mL	Cs eluate µg/mL	% recovered	Analyte	Method	MRQ μg/mL	Cs eluate µg/mL	% recovered
Li	ICP-AES	NMRQ	< 0.75	ND	Br⁻	IC	NMRQ	< 63	ND
Mg	ICP-AES	300	< 2.5	ND	Cl	IC	3	< 63	< 0.7
Mn	ICP-AES	150	< 1.3	ND	F⁻	IC	150	< 63	< 0.5
Мо	ICP-AES	150	< 1.3	ND	NO_2^-	IC	3000	< 125	< 0.1
Na	ICP-AES	75	912	0.14	NO ₃ ⁻	IC	3000	29250	NA
Nd	ICP-AES	NMRQ	< 2.5	ND	PO_4^{-3}	IC	2500	< 125	ND
Ni	ICP-AES	30	[1.6]	[6]	SO_4^{-2}	IC	2300	< 125	< 0.5
Р	ICP-AES	600	< 2.5	< 0.1	Oxalate	IC	NMRQ	< 125	ND
Pb	ICP-AES	300	[4.7]	[>6] ⁽¹⁾	OH	Titration	17	NM	NM
Pd	ICP-MS	NMRQ	5.9 E-3	NM	Wt% dried solids		0.1	0.34%	NA
Pr	ICP-MS	NMRQ	5.2 E-4	NM	Wt% oxides		NMRQ	0.40%	NA
Pt	ICP-MS	NMRQ	3.0E-2	NM	Density, g/mL		NMRQ	1.011	NA

ASR 6192, sample ID 01-1842

Notes: MRQ is minimum reportable quantity requested by Bechtel. NMRQ is no minimum reportable quantity requested. The overall error is estimated to be within +/-15%. Values in brackets are within 10-times the detection limit and errors are likely to exceed +/-15%.

NA = not applicable

ND = analyte not detected in the feed or product

NM = analyte not measured in the eluate

HB = high preparative blank concentration, recovery cannot be calculated

Analyte was not detected in the feed. (1)

Calculated based on ¹³⁷Cs concentration in the eluate and applied Cs isotopic distribution ratio (¹³³Cs 60.6 wt%, ¹³⁵Cs 15.4 wt%, ¹³⁷Cs 24.0 wt%). (2)

Calculated based on Cs feed concentration of 4.89 µg/mL. If the feed Cs concentration is actually 6.04 (3) μ g/mL, then Cs recovery is calculated to be 105%. See footnote (1) of Table 2.3.

(4) Total U measured by ICP-MS was in good agreement at 190 μ g/mL.

Analyte	Method	MRQ ⁽²⁾ µCi/mL	Cs eluate µCi/mL	Error %	% recovered	Analyte	Method	MRQ ⁽²⁾ µCi/mL	Cs eluate μCi/mL	Error %	% recovered
³ H	Radchem	NMRQ	1.72 E-4	10	NM	¹⁵⁵ Eu	GEA	9.00 E-2	<3 E-1	_	ND
¹⁴ C	Radchem	NMRQ	2.4 E-5	30	NM	²³² Th	GEA	NMRQ	<2 E-1	_	NM
⁵¹ Cr	GEA	NMRQ	< 2 E-2	_	NM	²³³ U	ICP-MS	NMRQ	1.78 E-4	1	NM
⁵⁴ Mn	GEA	NMRQ	<3 E-2	_	NM	²³⁴ U	ICP-MS	NMRQ	9.89 E-5	4	NM
⁵⁹ Fe	GEA	NMRQ	<3 E-2	—	NM	²³⁵ U	ICP-MS	NMRQ	3.53 E-6	1	NM
⁶⁰ Co	GEA	NMRQ	<5 E-3	_	<34	²³⁶ U	ICP-MS	NMRQ	7.17 E-6	2	NM
⁶³ Ni	Radchem	NMRQ	8.83 E-4	5	NM	²³⁸ U	ICP-MS	NMRQ	6.31 E-5	0.5	NM
⁷⁹ Se	Radchem	NMRQ	3.52 E-6	25	NM	²³⁶ Pu	Radchem	NMRQ	< 4 E-7	_	NM
⁸⁸ Y	GEA	NMRQ	<2 E-2	_	NM	²³⁷ Np	ICP-MS	NMRQ	6.25 E-7 ⁽⁵⁾	13	ND
⁹⁰ Sr	Radchem	1.50 E-1	2.95 E-2	3	7	²³⁸ Pu	Radchem	NMRQ	6.00 E-5	4	74
⁹⁵ Nb	GEA	NMRQ	<2 E-2	—	NM	²³⁹⁺²⁴⁰ Pu	Radchem	NMRQ	4.63 E-4	2	72
⁹⁹ Tc	ICP-MS	3.00 E-3	[1.36 E-4] ⁽³⁾	10	0.06	²³⁹ Pu	ICP-MS	NMRQ	7.64 E-4 ⁽⁶⁾	3	NM
¹⁰³ Ru	GEA	NMRQ	<2 E-1	_	NM	²⁴⁰ Pu	ICP-MS	NMRQ	1.34 E-4 ⁽⁶⁾	13	NM
¹⁰⁶ Ru	GEA	NMRQ	<7 E-1	_	NM	²⁴¹ Pu	Radchem	NMRQ	3.06 E-3	8	NM
¹¹³ Sn	GEA	NMRQ	<2 E-1	_	NM	²⁴¹ Am	Radchem	7.20E-04	3.04 E-5	3	3.8
¹²⁵ Sb	GEA	NMRQ	<4 E-1	_	NM	²⁴¹ Pu, ²⁴¹ Am	ICP-MS	NMRQ	<1.6 E-4 µg	g/mL ⁽⁷⁾	NM
¹²⁶ Sn/Sb	GEA	NMRQ	2.69 E-1	19	NM	²⁴² Am	Radchem	NMRQ	< 3 E-7	_	NM
¹²⁹ I	ICP-MS	NMRQ	< 6 E-6	_	NM	²⁴² Cm	Radchem	NMRQ	<2 E-7	_	ND
¹³⁴ Cs	GEA	NMRQ	1.56 E-1	6	NM	²⁴² Pu	ICP-MS	NMRQ	<1.6 E-6	_	NM
¹³⁷ Cs	GEA	5.00 E-2	7.65 E+2	2	104	²⁴³⁺²⁴⁴ Cm	Radchem	NMRQ	7.30 E-6	6	57
¹⁴⁴ Ce	GEA	NMRQ	<6 E-1	_	NM	Alpha sum ⁽⁸⁾	Radchem	NMRQ	5.60 E-4	2	36
¹⁵¹ Sm ⁽⁴⁾	Radchem	NMRQ	1.16 E-4	6	NM	Total alpha	Radchem	2.30E-01	9.13 E-4	11	
¹⁵² Eu	GEA	NMRQ	<1 E-2	—	NM	Total beta	Radchem	NMRQ	7.97 E+2	4	NM

Table 3.5. Radionuclides in the Lead Column Eluate Composite⁽¹⁾

Analyte	Method	MRQ ⁽²⁾ µCi/mL	Cs eluate μCi/mL	Error %	% recovered	Analyte	Method	MRQ ⁽²⁾ µCi/mL	Cs eluate µCi/mL	Error %	% recovered
¹⁵⁴ Eu	GEA	2.00 E-3	<3 E-2	_	ND						
Notes:											
	measured in										

ND = not detected in feed or eluate

(1) ASR 6192, Sample 01-1842

(2) MRQ is minimum reportable quantity requested by Bechtel. NMRQ is no minimum reportable quantity requested. (3) Uncertainty, including standards bias, for 99 Tc ranged from -10% to +30%.

(4) The 151 Sm is an upper bound because other beta-emitters interfered with the analysis.

(5) Uncertainty, including standards bias, was -20% to +10%.

(6) Uncertainty, including standards bias, was -10% to +20%.

(7) The AMU-241 is reported in units of μ g/mL. Applying the specific activity of ²⁴¹Pu, sample activity is <1.6E-2 μ Ci/mL; applying the specific

activity of 241 Am, sample activity is <5.4E-4 μ Ci/mL. The uncertainty, associated with bias standards, ranged from -10% to +20%.

(8) The alpha sum (total of individually-measured Pu, Am, and Cm alpha emitters) provides the best estimate of the total alpha activity in the sample.

3.2.5 Regeneration

The lead column was regenerated with 50 mL 0.25 M NaOH, collected in 1 composite fraction. The composition of this regeneration effluent solution is shown in Table 3.6. Sodium was the only cation found above the blank concentration. The charge balance between Na and OH are not equal. The counter-ion for the extra Na is predicted to be residual NO_3 from the elution step.

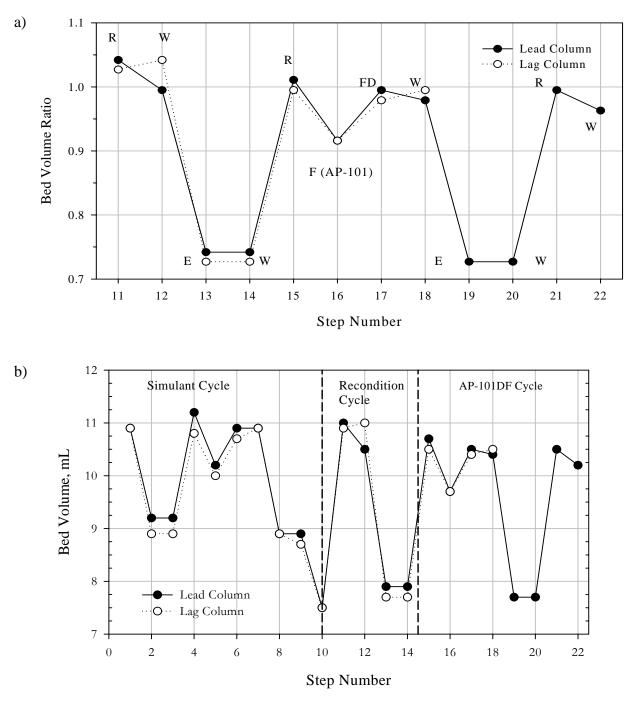
Analyte	Concentration, µg/mL	Concentration, M
Na ⁺	1020	0.044
\mathbf{K}^+	< 40	<1E-3
OH ⁻	500	0.030
Total Cs ⁽¹⁾	2.8 E-3	2.1 E-8
¹³⁷ Cs	6.69 E-4	5.85 E-2 µCi/mL
Density, g/mL	1.006	
(1) Total Cs is calcul	ated from the isotopic ratio and me	easured ¹³⁷ Cs concentration

Table 3.6. Composition of Regeneration Solution

3.2.6 Activity Balance for ¹³⁷Cs

An activity balance for ¹³⁷Cs was completed to compare the ¹³⁷Cs recovered in various process streams to the ¹³⁷Cs present in the feed sample (Table 3.7). As expected, virtually all ¹³⁷Cs was found in the eluate, recovering >99 % of the ¹³⁷Cs present in the initial AP-101DF feed. The lag column remained loaded with 35 μ Ci ¹³⁷Cs based on the integration of the lead column breakthrough curve.

Solution	¹³⁷ Cs, µCi	¹³⁷ Cs in Feed Sample, %
Feed Sample	1.50 E+5	1.00 E+2
Effluent	1.3 E-1	8.4 E-5
Load samples	1.2 E+0	8.2 E-4
Feed displacement	2.6 E-1	1.7 E-4
DI Water Rinse	2.1 E-1	1.4 E-4
Column #1 Eluate	1.56 E+5	1.04 E+2
Column #1 DI water rinse	7.6 E+0	5.1 E-3
Column #1 regeneration	3.0 E+0	2.0 E-3
Lag column Cs loading	3.5 E+1	2.3 E-2
Total ¹³⁷ Cs Recovery	1.56 E+5	1.04 E+2


Table 3.7. Activity Balance for ¹³⁷Cs

3.2.7 SL-644 Resin Volume Changes

The SL-644 resin is known to change in volume as a function of the solution pH and ionic strength (Hassan et al., 1999). The resin BV change history is shown in Table 3.8. The volume contraction after each subsequent 0.5 M HNO₃ step became more pronounced with cycling. The first volume contraction stabilized at 9.2 mL; the final measured volume contraction stabilized at 7.7 mL. The variation in BV as a function of the process steps for both columns is shown in Figure 3.5 a and b. In Figure 3.5a, the BVs are normalized to the volume in the 0.25 M NaOH regeneration condition just prior to AP-101DF loading. Two process cycles are shown with the first cycle consisting of the bed conditioning steps and the second cycle consisting of the actual process test. Each process step is denoted with a number given in Table 3.8. In Figure 3.5b, the observed volume changes show clearly the greater contraction and slightly reduced expansion. Fluidizing the bed in the H-form resulted in tighter resin packing, yet the subsequent to that obtained prior to fluidization. Overall, there appears to be a general decline in resin volume in both the H-form and the Na-form. The change in resin volume may be caused in part by small losses of the resin during processing. Resin volume changes may also be attributed to compaction while swelling during the regeneration step.

		Process	BV 010319SMC-IV-	-73 212-425 μm PSD
Feed	Symbol	Step	Lead column, mL ⁽¹⁾	Lag column, mL ⁽²⁾
Initial packing	Р	1	10.9	10.9
0.5 M HNO ₃	Е	2	9.2	8.9
DI water	W	3	9.2	8.9
0.25 M NaOH	R	4	11.2	10.8
AW-101 simulant	F	5	10.2	10.0
0.1 M NaOH	FD	6	10.9	10.7
DI water	W	7	10.9	10.9
0.5 M HNO ₃	Е	8	8.9	8.9
DI water	W	9	8.9	8.7
Re-fluidize bed	RP	10	7.5	7.5
0.25 M NaOH	R	11	11.0	10.9
DI water	W	12	10.5	11.0
0.5 M HNO ₃	Е	13	7.9	7.7
DI water	W	14	7.9	7.7
0.25 M NaOH	R	15	10.7	10.5
AP-101DF	F	16	9.7	9.7
0.1 M NaOH	FD	17	10.5	10.4
DI water	W	18	10.4	10.5
0.5 M HNO ₃	Е	19	7.7	_
DI water	W	20	7.7	
0.25 M NaOH	R	21	10.5	
DI water	W	22	10.2	
 (1) Calculated resin ma (2) Calculated resin ma Note: The inside di 	ss after washi	ng, dry Na-for	m: 2.48 g.	

Table 3.8. SL-644 Bed Volume Changes

- a) Relative BV for reported testing cycle; baseline BV = 10.6 mL in the 0.25 M NaOH Regeneration Condition.
- b) Actual BVs for all tested cycles, including initial simulant run.

4.0 Conclusions

The objectives of the testing were met.

Batch distribution values were developed as a function of Na/Cs mole ratios for both SL-644 and IE-911 in AP-101DF.

- The SL-644 equilibrium data resulted in a K_d value of 690 mL/g, corresponding to a predicted Cs λ of 160 BVs (0.25 M NaOH condition), at a Na/Cs mole ratio of 1.4 E+5, 25°C.
- The IE-911 CST equilibrium data resulted in a K_d value of 710 mL/g, corresponding to a Cs λ value of 740 BVs, at a Na/Cs mole ratio of 1.4E+5, 25 °C.

Cs decontamination from AP-101DF (Envelope A) was successfully demonstrated.

 An overall DF of 7.8 E+5 was obtained after processing 112 BVs providing a Csdecontaminated effluent with a ¹³⁷Cs concentration of 1.1 E-4 μCi/mL. This represents 0.09% of the contract limit of 1.25 E-1 μCi/mL in the treated effluent (based on 14 wt% waste Na₂O loading).¹⁴

Cs load and elution breakthrough profiles were developed.

- The estimated 50% Cs breakthrough for the lead ion exchange column, extrapolated from 0.2% C/C_o to 50% C/C_o, was about 190 BVs (0.25 M NaOH regeneration condition). This is a huge extrapolation and as such is inherently uncertain, however it is nearly equivalent to the predicted 160 BVs based on batch-contact studies.
- The Cs-loaded lead column was efficiently eluted with 0.5 M HNO₃. Over 94% of the ¹³⁷Cs was eluted from the column in 2.5 BVs of eluate. A total of 12 BVs eluate were required to reach the elution end point of $C/C_0 = 0.01$. The peak C/C_0 value for ¹³⁷Cs was 64 for the lead column. The activity balance accounted for 104% of the feed ¹³⁷Cs, which is essentially equivalent to 100% within experimental error.

The Cs eluate solution was composited and characterized in preparation for subsequent evaporation and HLW vitrification testing.

• A high percentage of the U (87%) and Pu (72%) was exchanged onto the resin and recovered in the acid eluate.

 $^{^{14}}$ The effluent ^{137}Cs concentration was 0.13% of the contract limit of 0.0874 $\mu Ci/mL$ in the treated effluent based on the maximum waste loading of 20 wt% waste Na₂O.

The effectiveness of all SL-644 ion exchange process steps was demonstrated.

- The SL-644 was adequately regenerated with 4.7 BVs or 2.2 AVs of 0.25 M NaOH. The average ^{137}Cs concentration in the regeneration solution was 5.8 E-2 $\mu Ci/mL$, equivalent to C/C_o of 4.6 E-4.
- An activity balance for ¹³⁷Cs indicated 104% of the ¹³⁷Cs present in the feed sample was accounted for in the samples and process streams (mostly in the eluate) indicative of good experimental integrity.
- No fouling, or other off-normal conditions, of the resin bed was observed.

5.0 References

Barnes S., R. Roosa, and R. Peterson. 2002. *Research and Technology Plan.* 24590-WTP-PL-RT-01-002 Rev. 1, RPP-WTP project.

Fiskum, S. K., D. L. Blanchard, S. Arm. 2002. *Aging Study and Small Column Ion Exchange Testing of SuperLig*® 644 for Removal of ¹³⁷Cs from Simulated AW-101 Hanford Tank Waste, WTP-RPT-015, Battelle Pacific Northwest Division, Richland, WA, 99352.

Fiskum, S. K., P. R. Bredt, J. A. Campbell, L. R. Greenwood, O. T. Farmer, III, G. J. Lumetta, G. M. Mong, R. T. Ratner, C. Z. Soderquist, R. G. Swoboda, M. W. Urie, J. J. Wagner. June 2000. *Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste*, PNNL-13354, Pacific Northwest National Laboratory, Richland, WA, 99352.

Goheen, S. C., P. R. Bredt, O. T. Farmer, III, S. K. Fiskum, K. A. Gaither, L. R. Greenwood, L. K. Jagoda, A. P. Poloski, R. D. Scheele, C. Z. Soderquist, R. G. Swoboda, M. P. Thomas, M. W. Urie, J. J. Wagner. 2001. *Chemical Analysis and Physical Property Testing of Diluted 241-AP-101 Tank Waste*, WTP-RPT-022, Rev. 0, Battelle Pacific Northwest Division, Richland, WA, 99352.

Hassan, N. M., W. D. King, D. J. McCabe, M. L. Crowder. January 2001. *Small-Scale Ion Exchange Removal of Cesium and Technetium from Envelope B Hanford Tank 241-AZ-102*, WSRC-TR-2000-00419, SRT-RPP-2000-00036, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC, 29808.

Hassan, N. M., D. J. McCabe, W. D. King. April 2000. *Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103, Revision 1*, BNF-003-98-0146, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC, 29808.

Hassan, N. M., D. J. McCabe, W. D. King, M. L. Crowder. March 2000. *Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102*, BNF-003-98-0219, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC, 29808.

Hassan, N. M., W. D. King, and D. J. McCabe. 1999. *Superlig® Ion Exchange Resin Swelling and Buoyancy Study (U)*, Savannah River Technology Center, Westinghouse Savannah River Co., Aiken, SC, 29808.

King, W. D., N. M. Hassan, D. J. McCabe. August 2001. *Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tanks 241-AN-102*, WSRC-TR-2000-00420, SRT-RPP-2000-00014, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC, 29808.

Korkisch, J., *Handbook of Ion Exchange Resins: Their Application to Inorganic Analytical Chemistry*, Vol. 1, CRC Press, Boca Raton, FL, 1989, pg 39.

Kurath, D. E., D. L Blanchard, Jr. J. R. Bontha. 2000a. *Small Column Ion Exchange Testing of Superlig* 644 for *Removal of 137Cs from Hanford Tank Waste Envelope C (Tank 241-AN-107)*, PNWD-3039, Battelle Pacific Northwest Division, Richland, WA.

Kurath, D. E., D. L Blanchard, Jr. J. R. Bontha. 2000b. *Small Column Ion Exchange Testing of Superlig* 644 for Removal of ¹³⁷Cs from Hanford Tank Waste Envelope A (Tank 241-AW-101), PNWD-3001, Battelle Pacific Northwest Division, Richland, WA.

Rapko, B. M., D. L. Blanchard, Jr., K. J. Carson, J. R. DesChane, R. L. Sell, R. G. Swoboda. 2002. *Batch Contact Testing of SuperLig*®-644. WTP-RPT-037, Battelle Pacific Northwest Division, Richland, WA.

Steimke, J. L., M. A. Norato, T. J. Steeper, D. J. McCabe, 2001, *Summary of Initial Testing of SuperLig*® 644 at the *TFL Ion Exchange Facility*, February, 2001, SRR-RPP-2000-00054, WSRC-TR-2000-00505, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC, 29808.

Appendix A

Calculations

Cs-137 Contractual Limit in AP-101 Env. A Vit feed

Assumptions

- 1) Concentration of Na₂O in Env. A glass = 14% (=14 g Na₂O / 100 g glass)
- For maximum ¹³⁷Cs concentration in glass assume all Na comes from the feed. If some Na is added to Vit feed, multiply the maximum ¹³⁷Cs value determined below by ratio of total Na:feed Na.
- 3) Glass density = 2.66 MT/m^3 (=2.66 g/mL)
- 4) Maximum Cs-137 in glass = 0.3 Ci/m^3 (= 0.3 Ci / 1E+6 mL = 3E-7 Ci/mL)
- 5) AP-101DF actual waste and AW-101 simulant Na concentration = 5 M
- 6) AP-101DF actual waste ¹³⁷Cs concentration = $126 \mu Ci / mL$

Na Loading in Glass

14 g Na₂O / 100g glass * 1 mole Na₂O / 62 g Na₂O) * (2 mole Na/ mole Na₂O)* (23 g Na / mole Na) * (2.66 g glass / mL glass) = 0.276 g Na / mL glass

Maximum 137 Cs:Na in glass (3.0E-7 Ci 137 Cs / mL glass) / (0.276 g Na / mL glass) = 1.09 E-6 Ci 137 Cs / g Na

 $(1.09 \text{ E-6 Ci}^{137}\text{Cs} / \text{g Na}) * (23 \text{ g Na} / \text{mole}) = 2.50\text{E-5 Ci}^{137}\text{Cs} / \text{mole Na}$

 $\begin{array}{l} \mbox{Maximum} \ ^{137}\mbox{Cs:Na in feed} \\ (2.5\mbox{E-5 Ci} \ ^{137}\mbox{Cs} \ / \mbox{ mole Na}) \ * \ (5 \ \mbox{mole Na} \ / \ \mbox{L feed}) & = 1.25 \ \mbox{E-4 Ci} \ ^{137}\mbox{Cs} \ / \ \mbox{L} \\ & = 125 \ \mbox{\muCi} \ ^{137}\mbox{Cs} \ / \ \mbox{L} \\ & = 0.125 \ \mbox{\muCi} \ ^{137}\mbox{Cs} \ / \ \mbox{mL} \\ \end{array}$

 $\frac{\text{AP-101DF actual waste Cs fraction remaining (C/Co) Contractual Limit}}{(0.125 \ \mu\text{Ci}^{137}\text{Cs/mL}) / (126 \ \mu\text{Ci}^{137}\text{Cs}/\text{mL})} = 9.92\text{E-4 C/C}_{o} = 0.0992 \ \% \ \text{C/C}_{o}$

Decontamination Factor (DF) Contract Limit 1 / (9.92E-4 C/C_o) = 1008 C_o/C

Appendix B

Sample Identification

Table B.1.	Sample Identification
------------	-----------------------

Sample Description	ASR	RPL ID	Sample Identification	Extended Sample Description
Batch Contact Testing				
First batch contact with	6048	01-0575 01-0576	AP101-644a and duplicate	Batch contact with SL-644, no spike
SL-644 981112YK-N3-16/18		01-0577 01-0578	AP101-S1-644a and duplicate	Batch contact with SL-644, 1E-3 M Cs spike
		01-0579 01-0580	AP101-S2-644a and duplicate	Batch contact with SL-6444, 5E-3 M Cs spike
Batch contact with IE-911		01-0581 01-0582	AP101-CSTa and duplicate	Batch contact with IE-911 no spike
		01-0583 01-0584	AP101-S1-CSTa and duplicate	Batch contact with IE-911, 1E-3M Cs spike
		01-0585 01-0586	AP101-S2-CSTa and duplicate	Batch contact with IE-911, 5E-3M Cs spike
Controls		01-0587	AP101-S1a	Batch contact control (no exchanger) 1E-3M Cs
		01-0588	AP101-S2a	Batch contact control (no exchanger) 5E-3M Cs
		01-0589	AP101-Ca	Batch contact control (no exchanger), unspiked
Second batch contact with	6130	01-133601-1337	AP101-S3-644-F/A and duplicate	Batch contact samples with SL-644, 1E-3M Cs
SL-644 010319SMC-IV-73		01-1338	AP101- S3C-F/A	Batch contact control (no exchanger) Spike 3
		01-1339 01-1340	AP101-S2a and S1a	Re-analysis of controls, Spike 1 and Spike 2
Column Run				
Initial Feed Sample, AP-				
101DF	6031	01-0520	AP-101DF	Initial feed sample
Load - Elution samples	6097	01-0780	AP-101-F0	Initial feed sample
		01-0781 01-0785	AP-101L-F3 through F-13	Lead column load samples
		01-0786 01-0788	AP-101P-F4 through F-13	Lag column load samples
		01-0789 01-0791	AP101-Fcomp2-A through Fcomp4-A	Composite effluent samples
		01-0792 01-0794	AP101-FD2-A through FD6-A	Feed displacement samples
		01-0795 01-0796	AP101-DI2-A and DI5-A	Water rinse samples
		01-0797 01-0809	AP101L-E1-DA	Lead column elution analytical samples
		01-0810	AP101L-RGN-A	Regeneration solution analytical sample
AP-101DF effluent composite	6121	01-1203	AP1-Tc-0-C	AP-101DF Cs IX effluent composite
AP-101 Cs eluent	6192	01-1842	AP101L-E-Comp	AP-101DF Cs eluant

Notes: 1) The suffix letter "a" after the sample ID indicates the sample was loaded out of the hot cell into a clean analytical vial; the suffix letter "D" after the sample ID indicates the sample was diluted prior to submission for analysis. Unidentified samples are associated with other tests unrelated to this work.

Appendix C

AP-101DF Batch Contact Calculations and Results

Reduction
Data
0
Rev.
-
-
8
L-WTP-041.
>
- ?
-INNI-
-
z
INNA-II
F

Batch Contact of AP101 Waste with SuperLig 644 and IE-911

Cs concentration determination

AP-101

AP-101 as-received reported concentration was 5.4 ug/mL Cs-133 The AP-101 as-received contained 144 uCi/mL Cs-137, corresponding to 1.66 ug/mL or 6.9 ug/mL total Cs Dilution from 5.62 M Na to 4.97M Na, a dilution factor of 1.13, results in 4.8 ug/mL Cs-133 Dilution from 6.9 ug/mL total Cs by 1.13, results in 6.1 ug/mL total Cs.

calculated Dilute 1.13X total Cs total Cs	8.91 7.82		6.90 6.05		
sotopic o ratio	0.6058	0.1543	0.2399		
calc. Iso. isotopic cal ıg/mL Ratio M ratio to	4.06E-05	7.075-10	1.21E-05	5.27E-05	
calc. Iso. Ratio	0.665	0.131	0.20		
ug/mL	5.4 2.2200.05	1.06 4	1.66	8.12	ort
Sp Act	1004	0.0009	87		101 DF rep
as-received uCi/mL	6640.0	Cs-134 0.0473 1.294 3.00E-03 Cs-135 nm 0.0009 1.06	144		.89 µg/mL Cs reported in AP101 DF report
AP101	Cs-133	Cs-135 Cs-135	Cs-137	Cs Sum	µg/mL Cs r
					\$
					4
		4.89		1.24	4.4
		4.89		1.24	4.1
isotopic calculated M ratio total Cs	2.23E-05 0.6058 4.89	1.005-10 5.59E-06 0.1543 4.89	1.06E-05 0.2399 6.04		7
isotopic calculated M ratio total Cs	0.573 2.23E-05 0.6058 4.89	0.146 5.59E-06 0.1543 4.89	0.280 1.06E-05 0.2399 6.04	3.84E-05 4.97	7
isotopic calculated M ratio total Cs	0.573 2.23E-05 0.6058 4.89	0.1543 4.89	0.280 1.06E-05 0.2399 6.04	3.84E-05 4.97	7
calc. Iso. isotopic calculated Ratio M ratio total Cs	2.96 0.573 2.23E-05 0.6058 4.89	2.2225-00 4.5025-00 1.0005-10 0.755 0.146 5.595-06 0.1543 4.89	0.280 1.06E-05 0.2399 6.04	3.84E-05 4.97	0.665
calc. Iso. isotopic calculated ug/mL Ratio M ratio total Cs	2.96 0.573 2.23E-05 0.6058 4.89	1294 2.22E-00 4.20E-00 1.00E-10 0.0009 0.755 0.146 5.59E-06 0.1543 4.89	1.45 0.280 1.06E-05 0.2399 6.04	3.84E-05 4.97	0.665

g/mL 1.256 AP-101 Denstiy

Cs spiking solution 3.6696 g CsNO₃

See preparation in TI-41500-020, Rev. 0, Addendum A 7.531E-01 M Cs 100,085 µg/mL Cs 0.025 L into 194.91 g/mole

					A positive 32% bias was found in the LCS	therefore, the as-prepared [Cs] is used	
Ratio found/	prepared*		1.314	1.338	2% bias wa	as-prepared	
Dilution Corrected	Cs, ug/mL		192	953	A positive 3	herefore, the	ev. 0
Measured	Cs ug/mL		9.33E+0	4.54E+1	*	Ŧ	See preparation in TI-RPP-WTP-082, Rev. 0
Final Cs	molarity	3.68E-5	1.10E-3	5.36E-3			n in TI-RPP-
Final Cs conc.,	μg/mL	4.89	145.9	712.0			ee preparatio
Cs-133	added, µg	0	4974	25021			
Final Cs Final Cs Dilution Ratio AP101, Cs spike Cs in Cs spike Cs-133 conc., Final Cs Measured Corrected found/	conc.		100,085	100,085			7.528E-01 M Cs
Cs in	P101, µg	171	172	172			(-
Cs spike	vol., mL A	0	0.0497	0.25			0.01 L
AP101,	mL	44 35.0000	35.2287	35.1312			into
	P101, g	44	44.2473	44.1248			
bottle +	AP101, g	"DF D"	56.8076	56.86			194.91 g/mole
	bottle tare, g	unspiked pipet directly from "DF D"	12.5603	12.7352			Cs spiking solution for S3 1.4672 g CsNO ₃
	Ð	unspiked	SI.	S2			Cs spiking 1.4672

0	7	*	
Ratio	found/	prepared	6.0
Dilution		Cs, ug/mL p	124
	Measured	Cs ug/mL	124
	Final Cs	molarity	9.86E-4
Final Cs	conc.,	μg/mL	130.989
·	Cs-133	added, µg	1551
	Cs spike	conc.	100,085
	Cs in	AP101, µg	60
		vol., mL AP101, µg	0.0155
	AP101,	mL	12.2863
		AP101, g	15.4316
	bottle +	AP101, g	32.7131
		bottle tare, g	17.2815
	,	9	S

100,041 µg/mL Cs

4.97

1.35E+05

Na molarity =

Feed Na/Cs mole ratio:

C.1

TI-PNNL-WTP-41, Rev. 0 Data Reduction

Batch Contact of AP-101DF Waste with SuperLig 644 and IE-911

AP-101 Batch contact

Equilibrium Cs Concentration

							Cs-137,	Fraction of				
		Resin, g		I _{Na} factor	corrected	AP101, mL	uCi/mL	original Cs-			Na/Cs mole	
Sample ID	Resin	(m)	F-factor	increase	resin mass, g	(V)	(Aeq)	137	Μ	ug/mL	ratio	Kd
AP101-644	16/18	0.1009	0.9392	1.25	0.1185	10.0819	9.29E+0	7.41E-2	2.73E-6	3.62E-1	1.82E+6	1062
AP101-644-D	16/18	0.1004	0.9392	1.25	0.1179	10.1102	9.32E+0	7.43E-2	2.73E-6	3.64E-1	1.82E+6	1066
AP101-S1-644	16/18	0.1016	0.9392	1.25	0.1193	10.0796	2.04E+1	1.62E-1	1.78E-4	2.37E+1	2.79E+4	436
AP101-S1-644-D	16/18	0.1012	0.9392	1.25	0.1188	10.0132	2.01E+1	1.60E-1	1.76E-4	2.34E+1	2.83E+4	442
AP101-S2-644	16/18	0.101	0.9392	1.25	0.1186	9.9890	5.66E+1	4.51E-1	2.42E-3	3.21E+2	2.06E+3	102
AP101-S2-644-D	16/18	0.101	0.9392	1.25	0.1186	10.0373	5.64E+1	4.50E-1	2.41E-3	3.20E+2	2.06E+3	104
AP101-S3-644	73	0.0515	0.9321	1.25	0.0600	4.9494	2.18E+1	1.58E-1	1.56E-4	2.07E+1	3.19E+4	440
AP101-S3-644D	73	0.0504	0.9321	1.25	0.0587	5.0549	2.34E+1	1.70E-1	1.67E-4	2.22E+1	2.97E+4	422
AP101-CST	CST	0.0493	0.9630	1.00	0.0475	4.9953	1.33E+1	1.06E-1	3.89E-6	5.18E-1	1.28E+6	888
AP101-CST-D	CST	0.0492	0.9630	1.00	0.0474	5.0162	1.32E+1	1.05E-1	3.88E-6	5.16E-1	1.28E+6	899
AP101-S1-CST	CST	0.0496	0.9630	1.00	0.0478	4.9939	1.91E+1	1.52E-1	1.67E-4	2.22E+1	2.98E+4	584
AP101-S1-CST-D	CST	0.0508	0.9630	1.00	0.0489	4.9693	1.81E+1	1.45E-1	1.59E-4	2.11E+1	3.13E+4	601
AP101-S2-CST	CST	0.0511	0.9630	1.00	0.0492	4.9743	6.07E+1	4.84E-1	2.59E-3	3.45E+2	1.92E+3	108
AP101-S2-CST-D	CST	0.0518	0.9630	1.00	0.0499	4.9765	6.07E+1	4.84E-1	2.59E-3	3.45E+2	1.92E+3	106
							Ao					
AP101-S1		0				4.9717	1.26E+2	1.00E+0	1.10E-3	1.46E+2	4.53E+3	
AP101-S2		0				4.9726	1.25E+2	9.99E-1	5.36E-3	7.12E+2	9.28E+2	
AP101-C		0				4.9766	1.25E+2	9.98E-1	3.68E-5	4.89E+0	1.35E+5	
AP101-S3							1.38E+2	1.00E+0	9.86E-4	1.31E+2	5.04E+3	•
		Na	Na molarity =	4.97								
		Kd = (Ao- <i>i</i>	Aeq)/Aeq x	$Kd = (Ao-Aeq)/Aeq \times V/(m^*F^*I_{Na})$	•	Average	Average Ao for S1, S2 and C	2 and C	-			
		where F =]	where $F = F$ factor for water loss	water loss			1.25E+2					

TI-PNNL-WTP-041, Rev. 0 Data Reduction

11
IE-91
and
644
SuperLig
with
P101 Waste
AP101
of
Contact
Batch

F-Factors

F-Factors								
	Vial Mass (g)	Vial + cap +	_		mass %		Grand	
Vial ID	incl. cap	Resin mass, g	Resin Mass (g)	mass change	change	F factor	Average	-/+
SL-644-F1	16.9748	17.4750	0.5002					
Batch 16/18		17.4439	0.4691	0.0311	6.22	0.9378		
		17.4468	0.4720	-0.0029	-0.62	0.9436		
average						0.9407		
SL-644-F2	16.6938	17.1945	0.5007					
Batch 16/18		17.1634	0.4696	0.0311	6.21	0.9379		
		17.1631	0.4693	0.0003	0.06	0.9373		
average						0.9376	0.9392	0.0016
CST-F1	16.6125	17.1032	0.4907					
		17.0848	0.4723	0.0184	3.75	0.9625		
		17.0845	0.4720	0.0003	0.06	0.9619		
average						0.9622		
CST-F2	16.6869	17.2052	0.5183					
		17.1850	0.4981	0.0202	3.90	0.9610		
		17.1879	0.5010	-0.0029	-0.58	0.9666		
average						0.9638	0.9630	0.0008
SL-644-F1-082	17.0993	17.4046	0.3053					
Batch -73		17.3892	0.2899	0.0154	5.04	0.9496		
		17.3820	0.2827	0.0072	2.48	0.9260		
		17.3843	0.2850	-0.0023	-0.81	0.9335		
SL-644-F2-082	17.1339	17.4371	0.3032					
Batch -73		17.4211	0.2872	0.0160	5.28	0.9472		
		17.4142	0.2803	0.0069	2.40	0.9245		
		17.4161	0.2822	-0.0019	-0.68	0.9307	0.9321	0.0014

.

Appendix D

AP-101DF Batch Contact Analytical Results

Project / WP#:	42042 / F20907
ASR#:	6046 & 6048
Client:	S. Fiskum
Total Samples:	18

	From	То
RPL#:	01-00562	01-00564
Client ID:	SAW101-feed	SAN105-feed
RPL#:	01-00575	01-00589
Client ID:	AP101-644a	AP101-Ca

	ively Coupled Arg	Determination of Elements by gon Plasma Atomic Emission y" (ICPAES).
Analyst: D.R. Sande	rs	
Analysis Date (File):	<u>02-20-01</u> (A06	47) & <u>02-21-01</u> (A0648)
See Chemical Measureme (Calibr	nt Center 98620 ration and Mainte	
M&TE Number:	<u>WB73520</u> <u>360-06-01-029</u>	(ICPAES instrument) (Mettler AT400 Balance)

Molher 6-7-2001

Concur

6/7/2001

Page 1 of 4

A total of eighteen samples received as prepared liquids (<u>AW101 simulant</u>, <u>AN105 simulant</u> and <u>AP-101 Batch Contacts</u>), were analyzed by ICPAES. Simulant samples required an analytical dilution of 2-fold because of high sodium concentration.

Analytes of interest include Al, K and Na. Other analytes measured are for information only. All samples were prepared (PNL-ALO-106) in one batch and included a process blank, blank spike, duplicates and matrix spike. The matrix spike submitted for analysis did not appear to have any spiked analytes in it. The blank spike did have spiked analytes in it (27 analytes that included the analytes of interest Al, Na, and K).

Al, K and Na were present in all samples submitted at relatively high concentration, generally above EQL. The process blank did not have any substantial amount of Al, K, or Na greater than EQL. A few other analytes present in the process blank were either below EQL or less than 5% of sample concentration for that analyte. Boron and silicon were present at concentrations both below and above EQL with large differences noted for duplicate samples. The source of boron and silicon is likely from glassware used to process the samples.

See attached ICPAES Data Report for final results. All results reported have been corrected for sample digestion (PNL-ALO-106) according to sample preparation bench sheets supplied by the client. Bench sheets indicate that each sample aliquot (0.25mL) was weighed, digested to remove organic material, and diluted to a final volume of 25mL (also weighed).

Quality control check-standard results, relative to ICPAES instrument performance, met tolerance requirements for all analytes of interest reported except where noted below. In general sample RPD between duplicates agreed well for analytes of interest and within tolerance limits for most other analytes. Potassium measurement of the quality control check samples indicated a slightly higher than tolerance limit of up to 12%. Measurement of single element standards for potassium did not exceed about 9% above the expected concentration.

Following is a list of quality control measurement results relative to ICPAES analysis tolerance requirements of the controlling QA plan.

Five fold serial dilution:

All analytes of interest were within tolerance limit of \pm 10% after correcting for dilution.

<u>Duplicate RPD (Relative Percent Difference):</u> All analytes of interest were within tolerance limit of $\pm 20\%$.

<u>Post-Spiked Samples (Group A):</u> All analytes were recovered within tolerance of 75% to 125% recovery.

Post-Spiked Samples (Group B):

All analytes were recovered within tolerance of 75% to 125% recovery.

6/7/2001

Page 2 of 4

Blank Spike:

Other than boron, all analytes were recovered within tolerance limit of 80% to 120%.

Matrix Spiked Sample:

A sample was submitted for analysis and designated as a matrix spike but did not contain any measurable amount of spike material.

Quality Control Check Standards:

Concentration of all analytes of interest is within tolerance limit of \pm 10% accuracy in the check standards: QC_MCVA, QC_MCVB, and QC_SSTMCV except potassium. One measurement of QC_SSTMCV about 11% high.

High Calibration Standard Check:

Verification of the high-end calibration concentration in QC_SST for all analytes contained in the standard is within tolerance of \pm 5% accuracy except potassium. Potassium tended to measure slightly high, from about 8% to 12%. Measurement of QC_SSTMCV for potassium (100 ug/mL) is within tolerance limits.

<u>Process Blank:</u>

Analytes of interest are either below EQL or less than 5% of sample concentration.

Laboratory Control Standard (LCS):

A blank-spike was prepared and analyzed as the LCS (See Blank Spike above)

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically \pm 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times

6/7/2001

Page 3 of 4

detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 μ g/mL (0.5 per cent by weight).

4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.

5) The maximum number of significant figures for all ICP measurements is 2.

6/7/2001

•

Page 1 of 1

,

									1		,
		100.0	ו	200.0	1	800.0	1	800.0	1	200.0	I
	Multiplier≃ RPL/LAB #≃	BLK 0562	1			200.0		200.0		200.0	
	RPULAB #=	Process		01-0562 @2		01-0562-DUP	@2 . t	01-0563 @2		01-0564 @2	
		Blank (ALO-		SAW101		SAW101		SL-Cs-		SAN-105-	
	Client ID≠	106)		feed		feed (dup)		COMP		feed	
Det. Limit	Run Date=	2/20/2001		2/20/2001		2/20/2001		2/20/2001		2/20/2001	
(ug/mL)	(Analyte)	(ug/mL)		(ug/mL)		(ug/mL)		(ug/mL)		(ug/mL)	
0.025	Ag						[
0.060	AL	[27]	1	13,900		14,900		13,300		19,600	
0.250	As						1				
0.050	В	382		437		423		220		279	
0.010	Ba			[12]		[12]		[11]			
0.010	Be										
0.100	Bi										
0.250	Ca							[52]			Í.
0.015	Cd										
0.200	Ce										
0.200	Co										
0.030	Cr									705	
0.025	Cu										
0.025											
0.050	Dy Eu										
0.025											
2.000	Fe	[10]		[22]		[6.1]		[14]		[6.7]	
	K			14,700		16,300		13,900		4,430	
0.050	La							••			-
0.030	Li										
0.100	Mg										
0.050	Mn			[51]		[53]		[47]			
0.050	Mo			[28]		[29]		[28]		[44]	
0.150	Na	413		110,000	•••••	121,000		105,000		135,000	
0.100	Nd										
0.030	Ni							[6.1]			
0.100	P			[71]		[69]		[78]		[99]	
0.100	Pb			[28]							
0.750	Pd										
0.300	Rh										
1.100	Ru										
0.500	Sb										
0.250	Se										
0.500	Si	[160]		[200]		[170]		[110]		[130]	
1.500	Sn										
0.015	Sr										
1.500	Te										
1.000	Th										
0.025	Ti										
0.500	ті										
2.000	U										
0.050	V										
2.000	w										
0.050	Y										
0.050	Zn										
0.050	Zr										
		Note: 1) Overa	all error greate	er than 10-time	s detection lin	nit is estimated	to be within +,	/- 15%.			

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are <u>within</u> 10-times detection limit with errors likely to exceed 15%.

3) "---" indicate measurement is <u>below</u> detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

-

,

, **'**

,

	Multiplier=	100.0	7	100.0	1	100.0]	100.0]	100.0	7
	RPL/LAB #=	01-0575		01-0575 DUP		01-0576		01-0577		01-0578	
				AP-101-644a		AP-101-644a-		AP-101-S1-		AP-101-S1-	
	Client ID=	AP-101-644a		<u>(dup)</u>		D		<u>644a</u>		644a-D	
Det. Limit	Run Date≃	2/21/2001		2/21/2001		2/21/2001		2/21/2001		2/21/2001	
(ug/mL)	(Analyte)	(ug/mL)		(ug/mL)		(ug/mL)		(ug/mL)		(ug/mL)	
0.025	Ag		1								1
0.060	AI	386	1	392	1	390	1	385	1	385	1
0.250	As		1				1		1		1
0.050	В	237		353		233		241		235	1
0.010	Ba	[1.9]	1	[1.8]		[1.1]	1	[1.5]	1	[1.4]	1
0.010	Be						1		1		1
0.100	Bi										+
0.250	Ca						1		1		-
0.015	Cd		1				{		-		ł
0.200	Ce										<u> </u>
0.200	Co		1				-		-		4
			{				-		ł		-
0.020	Cr	[6.1]		[6.4]		[6,0]		[6.2]		[6.1]	
0.025	Cu		4			••			-		-
0.050	Dy		-						-		1.
0.100	Eu										
0.025	Fe	[7.6]	-	[4.3]		[6.6]		[6.7]		[6.0]	1
2.000	к	[1,800]		[1,800]		[1,700]		[1,800]		[1,800]	
0.050	La										
0.030	Li										
0.100	Mg										
0.050	Mn										
0.050	Мо										
0.150	Na	17,500		17,900		18,300		18,100		17,900	
0.100	Nd										
0.030	Ni										
0.100	Р	[24]		[22]		[20]		[22]		[23]	
0.100	Pb										
0.750	Pd	**									
0.300	Rh										1
1.100	Ru										
0.500	Sb								1		1.
0.250	Se		1								
0.500	Si	[150]		[170]		[130]		[120]		[120]	
1.500	Sn										
0.015	Sr										
1.500	Te										
1.000	Th										
0.025	Ti										
0.500	TI										
2.000	U										
0.050	v				1						
	W									••	
2.000	**				-						
0.050	v 1										
0.050	Y				-						
0.050	Y Zn Zr				-						

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is \underline{below} detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

,•

1.500

1.000

0.025

0.500

2.000

0.050

2.000

0.050

0.050

0.050

Те

Th

Ti

τı

U

۷

W

Y

Zn

Zr

--

--

--

--

•--

--

--

•-

--

,*

	Multiplier=	100.0	1	100.0	1	100.0	1	100.0	1	100.0	1
	RPL/LAB #=			01-0580		01-0581		01-0582		01-0583	
		AP-101-S2-		AP-101-52-				AP-101-CSTa-		AP-101-51-	
	Client ID=	<u>644a</u>		644a-D		<u>AP-101-CSTa</u>		D		CSTa	
Det. Limit	Run Date=	2/21/2001		2/21/2001		2/21/2001		2/21/2001		2/21/2001	
(ug/mL)	(Analyte)	(ug/mL)		(ug/mL)		(ug/mL)		(ug/mL)		(ug/mL)	ļ
0.025	Ag				1		Ī				1
0.060	AI	393	1	389	1	385		379	1	372	1
0.250	As		1		1		1		1		1
0.050	В	241		230	1	384	Ī	401		407	
0.010	Ва	[1.4]	1	[1.5]	1	[1.1]	1		1	[1.2]	1
0.010	Be		1				1		1		1
0.100	Bi]				[1
0.250	Ca] .]]	-	1		1
0.015	Cd	••	1		1				1		1
0.200	Ce										
0.050	Co		1	-	1		1		1 .		
0.020	Cr	[5.8]	1	[5.9]	1	[7.5]		[7.4]	1	[7.3]	1
0.025	Cu				[
0.050	Dy		1		1		1		1		1
0.100	Eu		1		1		1				1
0.025	Fe .	[3.9]		[6.1]	1	[5.9]		[5.3]			
2.000	ĸ	[1,800]		[1,800]	1	[1,700]]	[1,600]]	[1,600]]
0.050	La]]]
0.030	Li						l		l		
0.100	Mg		1		1		1				1
0.050	Mn		1		1	-					1
0.050	Мо			**	l		l				
0.150	Na	19,600]	19,800		19,600		19,000		18,900	
0.100	Nd]]
0.030	Ni]
0.100	Р	[20]		[19]		[19]		[19]		[18]	
0.100	Pb										
0.750	Pđ										Ĺ
0.300	Rh	-	}								
1.100	Ru		,					-			
0.500	Sb					-					
0.250	Se										
0.500	Si	[74]]	[56]				[62]			
1.500	Sn]								
0.015	Sr]							•-	
			1		I		Γ		[T

**

--

--

--

--

--

•--

--

--

-

--

--

--

--

--

--

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

--

--

--

--

--

--

--

--

--

--

--

•-

--

--

--

--

--

--

•-

*,***'**

,'

. . . . **,***

Page 3 of 4

.

	Multiplier=	100.0	1	100.0	1	100.0]	100.0	100.0	
	RPL/LAB #=	01-0584		01-0585		01-0586		01-0587	01-0588	
		AP-101-\$1-		AP-101-52-		AP-101-52-	ļ			
	Client ID=	CSTa-D	· ·	CSTa		CSTa-D		<u>AP-101- S1a</u>	AP-101- S2a	ł
Det. Limit	Run Date=	2/21/2001		2/21/2001		2/21/2001		2/21/2001	2/21/2001	
(ug/mL)	(Analyte)	(ug/mL)		(ug/mL)		(ug/mL)		(ug/mL)	(ug/mL)	
0.025	Ag								 	
0.060	AI	376		382	1	390	1	401	390	
0.250	As									
0.050	В	389		384		392		357	 390	
0.030	Ba	[1.3]		[1.1]		[1.5]	1	[1.6]		
0.010	Be		{		1		+			
**********		·····							 	
0.100	Bi		ł				-			
0.250	Ca						{	-		
0.015	Cd								 	
0.200	Ce									
0.050	Co	-								
0.020	Cr	[7.4]		[7.5]		[7.7]		[7.7]	 [7.8]	
0.025	Cu									
0.050	Dу									
0.100	Eu						}			
0.025	Fe			[5.9]		[20]			 [14]	
2.000	к	[1,700]	1	[1,600]		[1,700]	1	[1,800]	[1,700]	
0.050	La		1				ĺ			
0.030	Li								 	
0.100	Mg						1			
0.050	Mn									
0.050	Mo								 	
0.050							1	21,200	20,400	
	Na	19,700		19,800		20,700			 	
0.100	Nd	-					{			
0.030	Ni									
0.100	P	[18]		[18]		[18]		[16]	 [17]	
0.100	Pb									
0.750	Pd									
0.300	Rh								 	
1.100	Ru	-					1			
0.500	Sb									
0.250	Se								 	
0.500	Si	[52]		[57]		[57]			[58]	
1.500	Sn									
0.015	Sr		1	-			1			
1.500	Тe								 	
1.000	Th		ĺ				1			
0.025	Ti									
0.500	TI							_	 	••••••
2.000	U									
2.000	v									
2.000	W	••								
0.050	Y									
0.050	Zn									
0.050	Zr	 Note: 1) Overal						-		

Note: 1) Overall error <u>greater than</u> 10-times detection limit is estimated to be within +/- 15%.
2) Values in brackets [] are <u>within</u> 10-times detection limit with errors likely to exceed 15%.
3) "—" indicate measurement is <u>below</u> detection. Sample detection limit may be found by multiplying "det, limit" (far left column) by "multiplier" (top of each column).

'

.

,"

	Multiplier=	100.0	1		1.	·	1		1	[1
	RPL/LAB #=	01-0589									
	Client ID=	<u>AP-101- Ca</u>									
Det. Limit	Run Date=	2/21/2001			}				ł		1
(ug/mL)	(Analyte)	(ug/mL)					<u> </u>				
0.025	Ag				-		4				ļ
0.060	AI	388			-		1		1		
0.250	As										
0.050	В	379					4		ł		
0.010	Ba						4				
0.010	Be										
0.100	Bi									-	1
0.250	Ca										
0.015	Cd										
0.200	Ce				1		1				
0.050	Co										
0.020	Cr	[7.4]		-							
0.025	Cu										J
0.050	Dy]
0.100	Eu										
0.025	Fe						ļ				
2.000	к	[1,700]									
0.050	La		** ** ** ** *** **************								
0.030	Li										
0.100	Mg										
0.050	Mn										
0.050	Mo										
0.150	Na	20,600									
0.100	Nd										
0.030	Ni										
0.100	Р	[17]									
0.100	Pb						Į				
0.750	Pd										
0.300	Rh										
1.100	Ru										
0.500	Sb			· ••							
0.250	Se										
0.500	Si	[61]									
1.500	Sn										
0.015	Sr							-			
1.500	Te										
1.000	Th										
0.025	Ti										
0.500	τι										
2.000	U										
0.050	v	••									
2.000	w			•-				-			
0.050	Y		[[
0.050	Zn		[
0.050	Zr		[· •-					
		Note: 1) Overa	all error grea	ter than 10-tir	nes detection i	limit is estimat	ed to be within	+/- 15%.	1		

Note: 1) Overall error <u>greater than</u> 10-times detection limit is estimated to be within +/- 15%. 2) Values in brackets [] are <u>within</u> 10-times detection limit with errors likely to exceed 15%. 3) "--" indicate measurement is <u>below</u> detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

.

6/7/2001 @ 8:02 PM

Andrew Areasen

Battelle Pacific Northwest National Laboratory Radiochemical Processing Group

2/22/01

Cognizant Scientist:

JRFilemand	/ [,] Date :	2/22/01
T Trang-le	Date :	2/22/07

Measured Activities (uCi/ml)

Procedures

PNL-ALO-450 - Gamma Energy Analysis

Concur :

ALO ID Client ID	Co-60 E rr or %	Cs-134 Error %	Cs-137 Error %
01-05 62 SAW 101- Feed	<3.E-5	<3.E-5	6.74E-2 2%
01 -0 563 SL-Cs-Comp	<2.E-5	<2.E-5	3.57 E- 2 5%
01-0575 AP101- 644 a	1.11E-4 13%	<8.E-5	4.60E-1 2%
01-0576 AP101-644a-D	<8.E-5	<8.E-5	4.57E-1 2%
01-0577 AP101-SI-644a	1.01E-4 13%	<2.E-4	9.85E-1 2%
01-0578 AP101-SI-644a-D	<7.E-5	<2.E-4	9.80E-1 2%
01-0579 AP101-S2-644a	<2.E-4	<5.E-4	2.76E+0 2%
01-0580 AP101-S2-644a-D	<9.E-5	7.74E-4 8%	2.72E+0 2%
01-0581 AP101- CSTa	1.21E-4 12%	<1.E-4	6.29E-1 2%
01-058 2 AP101-CSTa-D	<8.E-5	<1.E-4	6.27E-1 2%
01-0583 AP101-SI-CSTa	<8.E-5	<1.E-4	9.00E-1 2%
01-0584 AP101-SI-CSTa-D	1.15E-4 11%	<2.E-4	8.59E-1 2%
01-0585 AP101-S 2- CSTa	<9.E-5	<3.E-4	2.86E+0 2%

,

	Measured Activities (uCi/ml)				
ALO ID	Co-60	Cs-134	Cs-137		
Client ID	Error %	Error %	Error %		
01-0586	1.40E-4	<3.E-4	2.91E+0		
AP101-S2-CSTa-D	13%		2%		
01-0587	<9,E-5	1.64E- 3	6.12E+0		
AP101-S1a		7%	2%		
01-0588	<9.E-5	1.46E-3	5.97E+0		
AP101-S2a		9%	2%		
01-0589	<1.E-4	1.61E-3	6.00E+0		
AP10 1- Ca		9%	2%		

•

-

Dag∉ 2

510

File: 01-0562

Battelle Pacific Northwest National Laboratory Radiochemical Processing Group

3/7/01

Client : Sandy Fiskum

....

Cognizant Scientist:

IRfreenword TTRang-le

Date :

Date :

3 370

Procedures RPG-CMC-476, -408 (Sr-90)

Concur:

ALO ID Client ID	Sr-90 Error +/-	
01-0581 AP 101-CST a	7.46E-4 36%	 .
01-0582 AP101 -C STa-D	1.34E-3 20%	
01-0583 AP101-SI-CSTa	1.02E-3 27%	
01-0584 AP101 -SI-CS Ta-D	1.06E-3 26%	
01-0585	2.52E-3	

Measured Activities (uCi/ml)

01-0585	2.52E-3
AP101-S2-CSTa	21%
01-0586	1.58E-3

34%

1.24E-3 43% 3.82E-3

15%

3.46E-3

17%

4.22E-3

13%

99%

01-0586 AP101-S2-CSTa-D

01-0586 DUP
AP101 -S2-C STa-D

01-0587 AP101-S1a 01-0588 AP101-S2a 01-0589 AP101-Ca Matrix Spike

106% Blank Spike <5.E-6 Blank

Project / WP#:	42365 / W58166
ASR#:	6130
Client:	S. Fiskum
Total Samples:	2

RPL#:	01-01345	01-01354		
Client ID:	"ANC102/104-C-F/A"	"AN102CST-C-F/A"		

	tively Coupled Arg	Determination of Elements by gon Plasma Atomic Emission y" (ICPAES).	
Analyst: D.R. Sand	ers		 ,- . .
Analysis Date (File):	<u>07-18-2001</u> (A	0700)	
See Chemical Measurem (Calib	ent Center 98620 pration and Mainte		
M& TE Number:	<u>WB73520</u> <u>360-06-01-029</u>	(ICPAES instrument) (Mettler AT400 Balance)	

14-01 9 Reviewed by

9-18-01 Concur

Two liquid samples (ANC 102/104-C F/A and AN102CST-C F/A) from Analytical Service Request 6130 were prepared by acid digestion per PNL-ALO-106. The samples were digesting in the laboratory (i.e., not in the Shielded Analytical Laboratory) by using 0.2 mL of sample and diluting to a final volume of 20 mL.

In the Analytical Service Request (ASR), Na and K were identified as analytes of interest for this work along with 'minors as found'. Therefore, any analyte detected in the samples besides Na and K was considered an analyte of interest; i.e., Al, B, Ba, Ca, Cd, Cr, Cu, Fe, Mo, Ni, P, Pb, Si, Sr, and Zn. The quality control (QC) results for each of these analytes has been evaluated and is presented below. Analytes other than those detected part of the ICPAES analysis are reported, but have concentrations less than the method detection limit (MDL) and have not been fully evaluated for QC performance.

The attached ICPAES Results (2 pages) presents the final results. Results are from the direct **measurement** of the digestates, except for the AN102CST-C F/A duplicate which was measured following an additional 2x dilution at the ICPAES. The ICPAES measurement results are reported in μ g/mL of liquid sample and have been corrected for all dilutions resulting from sample processing.

The following is a list of quality control measurement results relative to ICPAES analysis requirements of the controlling QA plan. A digestion processing blank, laboratory control sample (blank spike), and duplicate were prepared with the sample. Through a mix up in the processing laboratory, no matrix spike was prepared from either of the samples analyzed by ICPAES; therefore, post spike were used to assess matrix interferences. The blank spike was prepared by using 1 ml of a custom multi-element solution "INT-QC-MCVA-1B" per 20 mL digestate volume.

Process Blank:

Concentration of analytes of interest measured in the process blank were all within tolerance limit of \leq EQL or less than \leq 5% of the concentration in the sample, except for B, Ba, Fe, and Si. The sample concentration for B, Ba, Fe, and Si are essentially the same as the processing blank concentrations, suggesting that there is little, if any, B, Ba, Fe, or Si in the samples.

Blank Spike (laboratory control sample):

The blank spike recovery for analytes of interest was within the acceptance criteria of 80% to 120%, **except for B**, Mo, and Si. For B the high recovery (i.e., 210%) is attributed to digesting the BS in glass vials. Silicon and Mo were not included in the BS since the only analytes identified as required were Na and K.

Duplicate RPD (Relative Percent Difference):

For those analytes of interest measured above the estimated Method Detection Limit (MDL), the RPDs were within the acceptance criteria of less than 20%.

Matrix Spiked Sample:

No matrix spike was analyzed with this batch of samples.

Post-Spiked Samples (Group A; all analytes of interest):

All post-spiked analytes of interest in samples tested were recovered within tolerance of 75% to 125%, except Al and Na. The post spike analysis uses a general spiking solution intended to be usable on the majority of sample analyzed by ICPAES. However, for the sample selected for post spiking, the spike concentration for Al and Na was less than 20% of the sample concentration and the recovery results are considered meaningless. For these analytes, the use of serial dilution results is required to evaluate potential matrix interferences.

Post-Spiked Samples (Group B; other analytes):

The post spiked analytes (i.e., analytes other than those identified as analytes of interest) were within tolerance of 75% to 125%.

Serial dilution:

Serial dilution was required for Al and Na, since both the post spike concentrations were less than 20% of the sample concentration (i.e., recoveries could not be evaluated). These analytes demonstrated a percent difference (%D) within the acceptance criteria of $\pm 10\%$ after correcting for dilution.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- Detection limits (Det. Limit) shown are for acidified water. Detection limits for other matrices may be determined if requested. Method detection limits (MDL) can be estimated by multiplying the 'Multiplier' times the Detection Limit.
- 3) Routine precision and bias is typically \pm 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight). Note that bracketed values listed in the data report are within ten times instrument detection limit (adjusted for processing factors and laboratory dilutions) and have a potential uncertainty much greater than 15%.
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

	Multiplier=	100	100	200	200
	RPL#=	01-1338 PB	01-1345	01-1354	01-1354 D
Det Limit	Client ID=		ANC 102	AN102 CST-	
Det. Limit		Blank	/104-C-F/A	C-F/A	C-F/A
ug/mL	Analytes	ug/ml-	ug/mL	ug/mL	ug/mL
0.150	Na	1,010	111,000	136,000	146,000
2.000	K		[950]	[1,100]	[1,100]
0.060	Other Analyte		0.010		
0.050	B	84.1	8,210	6,520	6,730
0.050		750	624	815	755
0.250	Ba Ca	[1.3]	[1.6]	[2.5]	
0.250			[150]	[190]	[190]
0.015	Çd Cr		26.0	32.1	32.3
			108	119	121
0.025	Cu		[10]	[8.4]	[7.5]
0.025	Fe	[5.7]	[9.4]	[9.1]	[8.8]
0.030	Ni		[22]	[26]	[27]
	P		188	237	240
0.100	P		748	457	455
			[67]	[88]	[84]
0.500	SI	973	1,110	1,250	1,240
0.015	Sr		86.5	60.3	62,1
0.050	Zn		[8.6]		
	Other Analytes		t Not Detecte	d	
0.025	Ag				
0.250	As				
0.010	Be				
0.100	Bi				~*
0.200	Ce				~
0.050	Co				
0.050	DY				
0.100	Eu				
0.050	La				~
0.030	Li				
0.100	Mg				~
0.050	Man				
0.100	E N				
0.750	Pd				
0.300	Rh				
1.100	Ru				
0.500	Sb				
0.250	\$e				
1.500	Sn				
1.500	Te				
1.000	Th				
0.025	Ti				
0.500	TI				
2.000	U				
0.050	V				
2.000	W				
0.050	Y				*
0.050	Zr				

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column). D.16

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Results

Page 2 of 2

,*

		80% -		75%-		
Criteria>	<20%	120%	75%-125%		75%-125%	
00.10	04 4054 8	01-1388- AES-			01-1345 +	01-1354
QC ID=	01-1354 & 01-1354 D	LCS-BS	none	Post Spike A	Post Spike B	@2/@3 Serial Dil
Analytes	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Diff
Na	7.1	93.5	/01/20	n.r.	/01/00	0.7
K	5.2	103.4		93.6		0.7
Other Analyte		103.4	<u> </u>	93.0		
AI	3.2	97.6		n.r.		-0.2
В	7.6	209.8		102.0		-0.2
Ba	1.0	110.3		95.5		
Ca	1.0	105.6		97.5		
Cd	0.5	105.0		98.1		
Cr	2.2	105.9		98.4		•
	11.2	107.9		99.2		
Cu Fe	2.3	107.9		100.5		
Mo	2.3	109.0		97.0		
Ni	1.3	109.0		100.5		
P	0.5	105.3		93.8		
Pb	4.6	109.7		100.3		
Si	0.8	109.7		106.7		
Sr	2.9	105.4		99.1		
Zn	2.9	114.2		101.9		
			atastad	101.9		
	es Measured		etected	02.0		
Ag		101.2		93.2		
As		103.6		98.7		
Be		102.2		95.1		
Bi	·····	104.1		95.9	94.0	
Ce		102.0		101.7	94.0	
Co		108.9		101.7	94.0	
Dy					101.1	
Eu					91.9	
La		106.6		97.7	- 51.5	
		112.3		103.6		
Mg				103.0		
Mn		109.8		102.1	92.2	
Nd					92.2 85.4	
Pd					94.3	
Rh					JH,J	
Ru				96.0		
Sb		105.0		98.0		
Se		105.0		30.4		
Sn						
Te					95.1	
Th				94.2		
Ti		101.0		94.2		
TI		101.9		33.7	90.3	
U		00.2		92.7	30.3	
V		99.8		92.1		
W		00.4		93.2		
Y		99.4				
Zr		<u> </u>		99.0		L

n.r. = not recovered; spike at <20% of sample concentration

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurement Center

Client: S. Fiskum

Cognizant Scientist:

Concur :

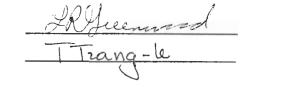
LRS lenver zang-le

Date : Date :

PNL-ALO-476 (Sr-90)

Measured Activities (uCi/ml) with 1-sigma error

ALO ID Client ID	Sr-90 Error %	
01-1348 PB Process Blank	<7.E-3	
01-1348 AN-102-CST-F/A	9.14E+0 3%	
01-1349 AN-1 02- CSTD-F/A	8.22E+0 3%	
RPD	11%	
01-1350 AN-102-S3 -C ST-F/A	1.07E+1 7%	· · · · · · · · · · · · · · · · · · ·
01-1351 AN-102-S3-CSTD-F/A	1.02E+1 7%	
RPD	5%	· · · · · ·
01-1352 AN-1 02-S4 -CST-F/A	1.05E+1 7%	
01-1353 AN-102-S4-CSTD-F/A	1.03E+1 8%	
RPD	2%	
01-1354 AN-102 CST- C-F/A	1.34E+1 7%	
01-1354 DUP AN-102CST-C-F/A	1.45E+1 7%	
RPD	8%	
Blank Spike	108%	
Matrix Spike	126%	
Blank	1.03E-2 36%	


8/10/01

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurement Center

Client: S. Fiskum

Cognizant Scientist:

Concur :

Date : 7/25/0/

PNL-ALO-450 (GEA)

Measured Activities (uCi/ml) with 1-sigma error

,'

ALO ID	Co-60	Cs-134	Cs-137	Eu-154	Eu-155	Am-241
Client ID	Error %	Error %	Error %	Error %	Error %	Error %
01-1336 AP101-S3-644- F/A	2.23E-3 12%	4.45E-3 10%	2.18E+1 2%	<2.E-3	<2.E-2	<2.E-2
01-1337 AP101-S 3-64 4D-F/A	2.44E-3 11%	5.46E-3 11%	2.34E+1 2%	<2.E-3	<3.E-2	<3.E-2
01-1338 AP101-S3-C-F/A	2.39E-3 14%	3.26E-2 5%	1.38E+2 2%	<4.E-3	<4.E-2	<4.E-2
01-1341	3.57E-2	<4.E-4	5.16E+0	2.32E-2	1.31E-2	9.76E-3
ANC102/104-644- F/A	2%		2%	2%	7%	13%
01-1342	3.51E-2	<5.E-4	1.50E+1	2.29E-2	1.27E-2	6.80E-3
ANC102/104-S1- 6 44- F/A	2%		2%	2%	9%	26%
01-1343	3.65E -2	<7.E-4	1.45E+1	2.26E-2	1.24E-2	1.17E-2
ANC102/104 S1-644D- F/A	2%		2%	3%	14%	23%
01-1344 ANC102/104- S2-644- F/A	3.50E-2 3%	<2.E-3	5.14E+1 2%	2.36E-2 6%	<3.E-2	<3.E-2
01-1345 ANC102/104-C- F/A	4.09E-2 3%	<5.E-3	1.61E+2 2%	<9.E-3	<6.E-2	<6.E-2
01-1346 ANC102/104- S1-C- F/A	4.05E-2 3%	<5.E-3	1.62E+2 2%	<1.E-2	<7.E-2	<7.E-2
01-1347 ANC102/104-S2C-F/A	4.04E-2 3%	<4.E-3	1.60E+2 2%	<8.E-3	<6.E-2	<6.E-2
01-134 8	5.28E-2	<3.E-3	1.84E+1	8.19E-2	4.77E-2	5.31E-2
AN-102-CST-F/A	3%		2%	3%	12%	17%
01-1350	5.18E-2	<3.E-3	1.76E+1	7.84E-2	3.84E-2	2.77E-2
AN-102-S3-CST- F/A	3%		2%	3%	14%	28%
01-1352	5.28E-2	<2.E-3	6.59E+1	7.85E-2	3.51E-2	3.87E-2
AN-102-S4-CST-F/A	2%		2%	3%	17%	26%

7/25/01

	P4	Measured ,	Activities (u0	Ci/ml) with 1	, -sigma erro	r -
ALO ID Client ID	Co-60 Error %	Cs-134 Error %	Cs-137 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
01-1354 AN-102CST-C- F/A	5.46E-2 6%	<1.E-2	2.05E+2 2%	<4.E-2	<3.E-1	<3.E-1
01-1355 AN-102CST-S3-C- F/A	5.52E-2 8%	<2.E-2	2.10E+2 2%	<6.E-2	<4.E-1	<4.E-1
01-1356 AN102CST-S4-C- F/A	5.46E-2 5%	<8.E-3	2.05E+2 2%	<3.E-2	<2.E-1	<2.E-1

C. 100000.000-

.

Battelle, PNNL / AIAL Inorganic Analysis / ICP-MS Data Report

Project / WP#:	42365 / W58168
ASR#:	6130
Client:	Sandy Fiskum
Total Samples:	8

RPL #	Client ID
01-01338	AP101-S3C-F/A
01-01339	AP101-S2a
01-01340	AP101-S1a
01-01345	ANC 102/104-C-F/A
01-01346	ANC 102/104-S1C-F/A
01-01354	AN102 CST-C-F/A
01-01355	AN102 CST-S3C
01-01356	AN102 CST-S4C

Procedure: PNL-ALO-280 Rev. 1, Inductively-Coupled Plasma Mass Spectrometric (ICP-MS) Analysis

M&TE Number:	WB36913 512-06-01-014	ICP/MS, VG Elemental Mettler AJ100 Balance
Analyst:	James P Bramson	t.
Analysis Date:	9/12/01, 9/17/01, 9/1	8/01
Analysis Files:	Experiment – 12SEP Procedure - 010912b Element Menu - CsT	

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Prepared By

Eight samples, a process blank, and a blank spike submitted for analysis were analyzed on a radioactive-material-contained ICP/MS for the requested analyte, Cs¹³³.

1. Analysis

See attached ICP/MS data reports for final results and run order for the analytical batch. The final results have been corrected for all client and laboratory dilutions performed on the sample during analysis.

2. Quality Control

<u>Duplicate (DUP)</u>. In addition to the duplicate sample submitted (AN102 CST-C-F/A), a replicate analysis on sample AP101-S3C-F/A, was also performed. The RPD for both duplicate and replicate analyses met the QC criteria of < 20%.

<u>Matrix Spike (MS).</u> In addition to the matrix spike samples submitted, a post spike was also performed on AN1102 CST-C-F/A. The spike recovery for both the ANC 102/104-S1C-F/A matrix spike and AN1102 CST-C-F/A post spike met the QC criteria of 75% – 125%. However, the AN102 CST-C-F/A matrix spike recovery was above this range (129%).

<u>Process Blank (PB), Blank Spike (BS).</u> The PB concentration was near detection limit and below the MRQ. A post spike of the PB met the spike recovery QC criteria of 75% – 125%. However, the BS spike recovery (132%) was above the QC criteria of 80% - 120%.

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB). The ICB/CCB standards are 1% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than the estimated quantitation limit (EQL, taken to be the lowest calibration standard), was met.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV). The ICV/CCV standards met the QC criteria of 90-110%.

Client: Sandy Fiskum WP/Project: W58166 / 42365 ASR/Log-In: 6130, 01-01338 to 01-01356 Report Date: 11/25/01

Battelle, PNNL, AIAL ICP/MS Analysis Data Report

Reviewed by: <u>Analyst</u> formes beams 11/27/01

Unless otherwise specified, the results are reported in μg analyte/ml of original sample.

Log-In	Sample	ICP/MS	MDL µg/ml	Cs-13	3	Rec/RPD
Number	ID			µg/ml ±	1SD	%
	1 % HNO ₃	ICB	<	1.85E-06		
	1 % HNO ₃	CCB1		2.44E-06 ±	2.88E-07	
	1 % HNO ₃	CCB2		2.61E-06 ±	3.29E-07	
	1%HNO3	CCB3	<	1.85E-06		
	1 % HNO ₃	CCB4		2.40E-06 ±	3.73E-07	
	1%HNO3	CCB5		2.32E-06 ±	7.13E-07	
	1%HNO ₃	ICB	<	1.54E-06		
	1%HNO ₃	CCB3		2.13E-06		
	1 % HNO ₃	CCB4	<	2.17E-06		
	1%HNO3	ICB	<	8.00E-06		
	1%HNO ₃	CCB1	<			
	1%HNO3	CCB2	<	8.42E-06 1.09E-05	6	
	0.1ppb Cs				4 455 4 4	
	0.1ppb Cs	ICV CCV1		9.85E-05 ± 1.03E-04 ±	1.25E-06 1.10E-06	99% 103%
	0.1ppb Cs	CCV2		1.04E-04 ±	1.90E-06	103%
	0.1ppb Cs	CCV3		1.02E-04 ±	1.67E-06	104%
	0.1ppb Cs	CCV4		1.01E-04 ±	3.67E-07	102 %
	0.1ppb Cs	CCV5		1.03E-04 ±	9.08E-07	103%
	1ppb Cs	ICV		9.75E-04 ±	3.40E-06	98%
	1ppb Cs	CCV3		9.42E-04 ±	4.75E-06	94%
	1ppb Cs	CCV4		9.73E-04 ±	5.32E-06	97%
	1ppb Cs	ICV		1.03E-03 ±	3.59E-06	103%
	1ppb Cs	CCV1		1.03E-03 ±	1.99E-05	103%
	1ppb Cs	CCV2		1.04E-03 ±	1.17E-05	104%
01-01338 PB	PROCESS BLANK	Sample1	1.87E-03	7.55E-03 ±	4.93E-04	
01-01338 PB	PROCESS BLANK post spike	Sample4	1.91E-03	1.03E-01 ±	5.49E-04	
Post Spike Concentra	ation expected	Sample1 Sample4		1.00E-01		96%
01-01338 MS-LCS/B			8	0.005.004	0.075.04	
Matrix Spike Concent		Sample10	1.94E-01	$6.60E + 01 \pm$	9.07E-01	1000/
Matrix Spike Concern	tration expected			5.00E+01		132%
01-01338	AP101-S3C-F/A	Sample21	4.41E-01	1.20E+02 ±	1.73E+00	
01-01338	AP101-S3C-F/A replicate	Sample22	4.41E-01	1.27E+02 ±	9.36E-01	6.0%
01-01339	AP101-S2a	Sample26	1.86E-01	$4.54E + 01 \pm$	4.84E-01	
)1-01340	AP101-S1a	Sample27	1.82E-01	$9.33E + 00 \pm$	1.59E-01	
01-01345	ANC 102/104-C-F/A	Sample28	1.86E-01	$5.10E + 00 \pm$	1.30E-01	
01-01346	ANC 102/104-S1C-F/A	Sample5	2.11E+00	$1.30E + 02 \pm$		
01-01346 MS-MS	ANC 102/104-S1C-F/A	Sample25	4.31E-01	$1.69E + 02 \pm$	2.13E+00	70.04
Matrix Spike Concent	tration expected			5.00E+01		79%
01-01354	AN102 CST-C-F/A	Sample30	1.86E-01	9.77E+00 ±	8.75E-01	
01-01354 DUP	AN102 CST-C-F/A	Sample31	1.91E-01	8.97E+00 ±	5.61E-02	8.5%
01-01354	AN102 CST-C-F/A post spike	Sample34	1.88E-01	$1.92E + 01 \pm$	5.41E-01	
Post Spike Concentra				1.00E+01		95%
1 01054 140		0	1.045.04	7 455 - 04	0.505.01	
01-01354 MS	AN102 CST-C-F/A	Sample36	1.84E-01	$7.45E+01 \pm$	3.59E-01	1000/
Matrix Spike Concent	tration expected			5.00E+01		129%
01-01355	AN102 CST-S3C-F/A	Sample24	4.28E-01	1.19E+02 ±	1.27E+00	
	AN102 CST-S4C-F/A	Sample33	8	8.95E+02 ±		

MTE: ICP/MS VG (WB36913), Mettler 512-06-01-014 Procedure: PNL-ALO-280 Rev. 1

Appendix E

AP-101DF Column Processing Calculations and Results

Test Runs SL-64H arch 010310SMC-IV-73 212-425 um particle size Bed volume in 0.25 M NaOH Bed volume in 0.25 M NaOH Apparatus volume Conditioning 4/23/01 Lead column + Lag column start end 0.25M NaOH wash 13:45 5:11 DI water wash 13:45 13:45 19:05 DI water wash 15:58 19:05 DI water wash 15:48 19:05 DI water wash 19:08 22:03 0.25M NaOH wash 19:08 22:03 20:03 20:07 BI water wash 19:08 22:03 20:55 9:01 Atractod and wash 22:03 20:55 9:01 Atract wash 19:05 Atract wash 22:03 20:33:0 4/24/2001 4/23/2001 9:317 Atract wash 9:317	(In NaOH M NaOH NaOH (In NaOH (In NaOH (In NaOH (In NaOH (In NaOH (In NaOH) (In NaOH (In NaOH) (In NaOH (In NaOH) (In NaOH (In NaOH) (In NaOH (In NaOH) (In	2.425 um pa	At m At m 5:11 10 5:05 6 3:07 8 3:07 8 9:37 10	2.2 ml 2.2 ml 2.2 ml 2.7 ml		0.1N 0.25N 8in AP1(AP1(AP1(0.33 0.33 0.33 0.48 0.48 0.48 0.48 0.48	HN03 0.1M NaOH 0.25M NaOH simple sim- AP101 waste 48 2.74 48 2.74 49 2.80 18 1.00	Densities 1.012 0.999 1.006 1.2069 1.2069 9.8 9.8 6.9	وم م	3 5 5 2 √ Volume	total system column 2 column 2; was increase	apparatus volume 42 23 23 21 21 cd because the resi	apparatus volume total system 42 column 1 23 column 2 21 1.44 1.46 1.96 1.75 2.43 Volume was increased because the resin in column 2 was not completely converted.	mn 2 was no	ıt complete	ily convertee	÷		
Initial effluent collection 1 apparatus volume of feed start	ction of feed end	_	۳ ک	mass v	cumul. volume f	flow rate	BV/hr	apparatus volume	e Sample ID		Lead column sampling start end	ng Vial tare	Vial tare Vial + smpl	mass	volume	total vol.	BV	c C	Running total sample vol
9:15	11:23		2:08 6	64.1	63.7	0.498	2.82	1.5	API01L-F1		23 11:27	16.9634	20.3799	3.4165	2.720	66.549	6.3	2.43E-6	2.7201 Running
Feed flow start	end		At	nass v	cumul. volume 1	flow rate	cu BV/hr	cumulat. BV	/ Sample ID		Lead column sampling start end		Vial tare Vial + smol	mass	volume	total vol.	BV	C/Co	total sample vol
11:34	14:15			98.8	142.4	0.489	2.77	13.4	1 ·				20.0049	3.021	2.405	147.603	13.9	2.01E-6	5.1254
14:26				218.5	237.7	0.502	2.84	22.4						2.202	1.753	248.501	23.4	1.53E-6	6.8785
17:55				331.9 117.2	328.0	0.502	2.84	30.9			~			2.807	2.235	344.196 420.625	32.5	1.72E-6	9.1133
4/24/2001 21:06	4/25/2001 0:15			447.5	419.8	0.450	C/-7	39.0	APIUIL-FS	0:10	11:0 CI	10.8/44	10,0000	70/07	161.2	439.8/2	41.5	1.63E-6	11.3043
2.15	CC:C h2:A		11 01:c	119.0	0.410 6073	0.491	20.2 278	C 04						010.0 030	CVC.2	200.0CC	8.UC	1.44E-0 3.48E 6	1660.61
0.4.0 2.4.0	-			357.7	2.007	0.484	01.2 PLC	6 F 1		-	-			108 0	102.6	117 727	00.00	0.40E-0	1100.01
10-23				473.5	796.8	0.506	2.86	75.2						2.437	1.940	832.920		5.50E-5	000000000000000000000000000000000000000
24.51	16-54			120.7	892.9	0.503	2.85	84.2	1~		54 16:55			2.620	2.086	932.776		2 07F-4	27 3593
PU-21				241.2	988.9	0.502	2.84	93.3		•	•			2.514	2.002	1032 785	97.4	6.64F-4	CCCC-77
20-02					1083.2	0.494	2.80	102.2					19.5084	2.522	2.008	1130 874	1067	0.07E-3	2100-72
4/25/2001 23:43	4/26/200		_		1135.0	0.523	2.96	107.1						3.983	3.171	1187.713	112.0	1.93E-3	29.5400
						average	2.82												
AT total	37-48-00	_																	305

29.5

37:48:00

ΔT, total

E.1

Running total sample volume	2 1 20	2 040		c11./	8.723	10.389	12.388	14.115	15 808	17 470	11.4/9	19.547	21.281	23.197	24.338	2 V 2	1			01DF																									
C/Co san		2.0E-6			1.3E-0	4.3E-6	1.1E-6	7.7E-7	1 9E-6	1 25 6	1.25-0	1.8E-0	4.1E-6	1.2E-6	2.1E-6					d in the AP-1															1 g/mL										
BV	622	13 80	00.00	60.62	31./0	40.59	49.72	58.63	67.55	16 27	70.07	80.08	95.30	104.38	109.37					was collecte															density										
total vol.	65.91	146.37	100 100	007.445	930.09	430.24	526.98	621.46	716.07	814 37	70.410	912.48	1010.16	1106.42	1159.31					The initial rinse was collected in the AP-101DF	1.85E-5 effluent bottle.														den										
volume	2 189	1 750	2112	C/T.C	1.010	1.666	1.999	1.727	1.693	1.671	1/0/1	/00.7	1.735	1.916	1.141				c(C	F	1.85E-5 eft	1.66E-5	2.70E-5	2.51E-5	2.43E-5	2.47E-5	2.48E-5	2.74E-5	2.87E-5	2.94E-5				C/Co	3.06E-5	3.11E-5	3.79E-5	3.53E-5	2.37E-5	1.66E-5	1.36E-5	1 14E-5	1 22E-5		-
sample mass	2 750	01100	101 5	261.0	770.7	2.093	2.510	2.170	2.126	000 6	20.7	060.7	2.179	2.406	1.433				AV Cumul. AV	0.92	1.21	1.44	1.68	1.95	2.18	2.41	2.65	2.87	3.11	3.34				AV Cumul. AV	0.23	0.47	0.69	0.93	1.19	1.45	1.70	96	2.20		
Vial + sample	19 9555	10 4785	0111.00	2014-02	7777.61	19.2736	19.6688	19.3844	19.3924	PE9C 01	1002.01	566/.6I	19.3334	19.5873	18.4433				AVC	0.92	0.29	0.24	0.23	0.27	0.23	0.23	0.24	0.23	0.24	0.23				AV Cu	0.23	0.23	0.22	0.25	0.26	0.26	0.25	0.76	0.25		
Vial tare	17 2058	0007.11	021021	C000 D1	1/.2003	17.1807	17.1585	17.2147	17.2662	17 1642	7-0101-11	0502.11	17.1547	17.1809	17.0099				cumul. BV	3.64	4.79	5.73	6.66	7.73	8.63	9.53	10.49	11.39	12.32	13.25			. *	cumul. BV	0.9	1.8	2.7	3.7	4.7	5.7	6.7	17	2.8	5	
end	11-34	14-25	17.55	20.11	CO:17	0:25	3:45	7:03	10:23	12-41	11.01	cu:/1	20:23	23:43	1:40					3.64	1.16	0.93	0.93	1.07	0.00	16.0	0.96	06.0	0.93	0.93				BV cu	0.9	0.9	6.0	1.0	1.0	1.0	1.0	10	1.0		
start	11-31	16-11	17.50	00.11	CU:12	0:21	3:41	6:59	10:20	13-38	02.21	60:01	20:19	23:39	1:36				BV/hr	2.60	3.48	2.79	2.79	2.79	2.71	2.59	2.87	2.69	2.80	2.79	2.74			BV/hr	2.76	2.77	2.63	2.92	3.06	2.94	2.95	C 0 C	2.92	2.86	
Sample ID	AP101P-F1	AP101P-F7	ADIDID E3		APIUIP-F4	AP101P-F5	AP101P-F6	AP101P-F7	AP101P-F8	AP101P-F0		ALIUIP-FIU	AP101P-F11	AP101P-F12	AP101P-F13				mL/min	0.46	0.61	0.49	0.49	0.49	0.48	0.46	0.51	0.48	0.50	0.49	0.48			mL/min	0.49	0.49	0.46	0.52	0.54	0.52	0.52	0.52	0.52	0.51	
	1					1					I	•	•					Sample	Volume	38.5	12.3	9.9	9.9	11.3	9.6	9.6	10.1	9.5	9.9	9.8	average	-10	outinec	Volume	9.745	9.804	9.288	10.331	10.807	10.913	10.412	10 843	10.330	average	0
	RGN bottle																	Sample	mass	48.4	12.3	9.6	6.6	11.3	9.6	9'6 .	10.1	9.5	6.6	9.8	6.101	0	outinec	mass	9.745	9.804	9.288	10.331	10.807	10.913	10.412	10 843	10.330		•
	This solution was added to the INIT-RGN																	Vial +	sample	532.0	29.4498	26.9840	27.1071	28.4410	26.7305	26.8727	27.0879	26.6840	27.3385	27.2543	total vol.	1121A		sample	27.1571	27.2705	26.6221	27.9263	28.2286	28.1969	27.9468	28 3187	27.8184		
	was added																		Vial tare	483.6	17.1797	17.1226	17.2508	17.1142	17.1802	17.2648	16.9496	17.1927	17.4383	17.4177	to			Vial tare	17.4118	17.4666	17.3339	17.5949	17.4213	17.2843	17.5350	17 4760	17.4884		
	his solution																		Ŗ	1:24	0:20	0:20	0:20	0:23	0:20	0:21	0:20	0:20	0:20	0:20				¥	0:20	0:20	0:20	0:20	0:20	0:21	0:20	0-21	0.20		
	F	3																	End	3:05	3:34	3:55	4:16	4:40	5:01	5:22	5:43	6:04	6:25	6:46	5:05			End	7:13	7:34	7:56	8:17	8:39	9:02	9:23	0.46	10-01	3-14	
																	_		Start	1:41	3:14	3:35	3:56	4:17	4:41	5:01	5:23	5:44	6:05	6:26				Start	6:53	7:14	7:36	7:57	8:19	8:41	9-03	0-75	6.47		
																	l displacement														ΔT , total													AT total	· · · ·
																	0.1M NaOH feed displacement		Sample ID		AP101-FD-1	AP101-FD-2	AP101-FD-3	AP101-FD-4	AP101-FD-5	AP101-FD-6	AP101-FD-7	AP101-FD-8	AP101-FD-9	AP101-FD-10		DI water rinse		Sample ID	AP101-DI-1	AP101-DI-2	AP101-DI-3	AP101-DI-4	AP101-DI-5	AP101-DI-6	AP101-DI-7	AD101-D1-8	AP101-DI-0		

Lag column sampling

E.2

																										density 1 g/mL								· ·				1.68 The pump was inadvertently turned off during this event	2.17 thus flow rate cannot be calculated.					0.82 This sample was added to the AP101L-RGN			
C/Co		6.80E-5	3 36F+1	1.01E+2	5.10E+1	4.05E+0	5.31E-1 8 60E-2	0.005-2 2.92E-2	2.20E-2	1.63E-2	1.16E-2	9.26E-3	7.52E-3	6.06E-3	0.24E-0	4.005.2	4.00E-3	3 22E-3	4.29E-3	4.16E-3					AV Cumul. AV	0.45	1.02	1.32	1.78	577	107				AV Cumul. AV	0.67	1.14	1.68 Th	2.17 th			AV Cumul AV		0.82 Th	1.57	10.2	
BV/hr cumul. BV		16.0	27.5 27.5	3.60	4.42	5.32	6.20 7.16	8.10	8.88	9.76	10.63	11.46	12.30	13.20	14.07	14.71	70.01	17.55	18.46	19.29					AVC	0.45	0.40	0.40	0.46	0.40	4C.U				AV C	0.67	0.47	0.53	0.50			AV C		0.82	0.75	1	
BV/hr o	000	0.90	0.86 0.86	0.83	0.83	0.89	0.88 0.96	0.88	0.86	0.87	0.88	0.83	0.84	06.0	10.0	0.0	0.07	0.86	0.91	0.84		0.88			BV Cumul. BV	0.1	0.7	7 0	9.5 9.9	4 4	1.0 9 9	5			BV Cumul. BV	1.5	2.5	3.6	4.7			BV Cumul BV		1.8	1.6	1.0	
flow rate		0.10	0.15	0.15	0.15	0.16	0.16	0.16	0.15	0.15	0.15	0.15	0.15	0.16	21.0	21.0	01.0	0.15	0.16	0.15		0.15			BVC	1.0	0.1	v.v	0.1	0.1 0	c.n	!			BV CI	1.5	1.0	1.2	1.1			D V D	5	1.8	1.6	1.0	
volume flow rate	0	40.4 20.01	66.01 914	8.94	8.78	9.47	9.37	9.93	8.35	9.24	9.29	8.80	8.89	10.6	07.4	0.07	(C 0	91.6	69.6	8.77	204.49	average			BV/hr	2.81	89.7 7	2.73 2.00	3.02	16.2	40.7 2 8 C	2.86			BV/hr	06.0	1.53	0.40	1.50			RV/hr		2.67	2.63	11.7	
mass colleccted		9.8057	9 2453	9.0482	8.8815	9.5838	9.4865	10.0529	8.4536	9.3505	9.4040	8.9027	8.9943	8070.6	7010 8	0.7063	0 3316	9.2681	9.8033	8.8721	206.94				mL/min	0.50	10.0	0.48	55.0	10.0	05.0	0.51			mL/min	0.16	0.27	0.07	0.27			ml /min		0.47	0.46	;	
Vial + sample 6		21:2318	26.5583	26.4352	26.2987	27.0074	27.0399 77 6899	27.3419	25.8487	26.6313	26.7641	26.3552	26.4375	1601.12	07C/07	1386	26 5876	26,6698	27.1111	26.2543	mns		•	Sample	Volume	10.426	10.00	9.104	10.000	0.027	13 188	average	73.422	Samola	Volume	15.5	10.8	12.3	11.4	50.0		Sample	Alimio	18.9	17.0	0./1	1.00
Vial tare		17.5104	17.3130	17.3870	17.4172	17.4236	17.5534 17.4160	17.2890	17.3951	17.2808	17.3601	17.4525	17.4432	17 2775	2107 21	CI04.11	17.7560	17.4017	17.3078	17.3822			•	Sample	mass	10.426	10.00/	401.4	10.000	0.020	13 188			Samle	mass	15.5	10.8	12.3	11.4	uns		Sample	CONTI	18.9	17.2		mps
ζŧ		10:1	00.1	1:01	1:00	1:00	00:1	1:04	0:55	1:00	1:00	1:00	00:1	1.00	00-1	8.1 1.01	10.1	1:00	1:00	0:59				Vial +	sample	27.8227	28.1401	20.0420	28.0442	2740.17	30 6766			Bottle +	sample	40.2	51.0	63.3	74.7	S		Vial + sample		93.6	31.9	<u>ر</u>	6
end	HNO3 wash-lead column	07:11	13:33	14:35	15:37	16:38	17:39 18:45	19:50	20:46	21:50	22:52	23:53	0:54	00:1	10.2	00.0 10.3	10.0	7:05	9:56	10:56	24:37:00				Vial tare	17.3964	1/.4/30	C8/4/1	17.2782	7000.11	17 4301				At Bottle tare	24.7	40.2	51.0	63.3			Vial tare		74.7	14.7	2112	
start	INO3 wash	10:19	12-33	13:34	14:37	15:38	16:39 17-45	18:46	19:51	20:50	21:52	22:53	23:54	90:0	1.1.1	00-V	4.00	6:05	8:56	9:57					¥	0:21	17:0	61:0	07:0	07:0	01.0	4:31			At B	1:38	0:40	2:54	0:43			¥	5	0:40	0:37	KC:N	
Sample ID		API01L-EI	API01L-E2 AP1011_E3	AP101L-E4	AP101L-E5	AP101L-E6	AP101L-E7	AP101L-E9	AP101L-E10	AP101L-E11	AP101L-E12	AP101L-E13	API01L-E14	APIOIL-EIS	AFIVIL-EIU	AFIOLU-EIS	AF101L-E18 AP1011_E19	AP1011-E20	AP101L-E21	AP101L-E22	ΔT, total			1	End	11:23	11:45	14:04	14:25	14:40	15.33	ΔT, total			End	10:57	11:45	14:45	15:38	6:19		End		16:24	8:50	70.4	
San	:	A :	A A	A :	Ν	A	A A	<	AP	AP	AP	AP	đ :	\$ 5	7	2 7	7	4 A	AP 5	AP.	ΔT				Start	11:02	11:24	15:45	14:05	14:20	14:40			HO	Start	9:19	11:05	11:51	14:55			Ctart	DIGIL	15:44	8:13 0.63	CC:8	
Cs elution from lead column, Separate columns																				+drained bed			DI water		Sample ID	AP101-EDI-1	AP101-ED1-2	AP101-ED1-3	AP101-ED1-4	API01-EDI-5				Regeneration with 0.25M NaOH	Sample ID	APIOIL-RGN				ΔT, total	Rinse with DI water	Comula ID	API01_DIRing-	Final			

E.3

		0.01010 g in counting geometry			1.554E+09 total cpm
		g in countin			1.554E+09
	oL c)/Co ppm/g	0.01010	cpm/mL FileName 1.29E+6 A101F01 1.29E+6 A101F02 1.27E+6 A101F03	A101F04 A101F05 A101F07 A101F08 A101F10 A101F11 A101F12 A101F13 A101F13 A101F19 A101F19	-
	3000 sec MDL 0.29 cpm 1.13E-7 C/Co 0.118 cpm/g		cpm/mL 1.29E+6 1.29E+6 1.27E+6	1.31E+6 1.29E+6 1.36E+6 1.32E+6 1.30E+6 1.29E+6 1.29E+6 1.22E+6 1.32E+6 1.33E+6 1.33E+6	1.31E+6 2.44E+4 1.9
	e		mL 0.0080 0.0080 0.0080	0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080	
	FileName BKG1 BKG2 BKG3	/mL).1 M NaOH).	net cpm/g 1.03E+6 1.03E+6 1.01E+6	1.04E+6 1.03E+6 1.03E+6 1.05E+6 1.03E+6 1.03E+6 1.03E+6 1.03E+6 1.02E+6 1.03E+6 1.06E+6 1.06E+6	1.04E+6 1.94E+4 1.9
	nty %	1.256 g/mL y (diluent is 0.1 M	mass 0.0101 0.0101 0.0101	0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101	Average standard deviation % standard deviation
	uncertainty % 17% 27%	nL geometr	net cpm 10380.5 10353.5 10186.1	10542.5 10352.9 10919.3 10612.7 10439.9 10351.7 10639.1 1069.1 10324.7 10415.3 11097.9	A standar % standar
	cpm 0.13 0.22 0.14	density tted into a 2-1	cpm 10381 10353.6 10186.2	10542.6 10353 10353 10612.8 10612.8 10640 10351.8 10351.8 10324.8 1069.2 10692.8 10415.4 11098	
	me (sec) 56059 43074 3000 average	d 1 g pipett	Time (sec) 100 100	100 100 100 100 100 100 100 300 300	-
	sertainty ïr 21 3 8	then 0.10(Error 236 217 203	218 221 221 204 218 216 215 215 215 215 353 353	ated. exibhit
	Net counts Jncertainty ime (sec) 123 21 56059 104 20 43074 11 3 3000 average	tandard at to 5.0150g	Net counts 17301 17256 16977	17571 17255 17255 17253 17688 17400 17253 17400 17253 17268 17308 17359 53479 53479	than samples can be integri h smaller and se to Cs-137.
Background Counts	Date Date 3/27/2001 3/28/2001 4/2/2001	AP-101Comparitor Standard density 1.256 g/mL 0.5058g AP101 brought to 5.0150g then 0.1001 g pipetted into a 2-mL geometry (diluent is 0.1 M NaOH).	Date 1 4/25/01 4/26/01 4/26/01	4/27/01 4/27/01 4/30/01 5/2/01 5/3/01 5/3/01 5/16/01 5/16/01	ROI is slightly larger than samples so that the entire peak can be integrated. Sample peaks are much smaller and exibhit another small peak close to Cs-137.
Bac		AP- 0.50		E.4	ROJ so ti anoi anoi

Counting Data

Lead column, loading phase	ing phase								net						total net
Sample ID	Date	Net counts	Error	Time (sec)	net cpm	mass	mL	net cpm/g	cpm/mL	FileName	C/Co	ΒV	% C/Co	DF	cpm
AP101L-F1	4/25/01	319	37	3000	6.24	2.4747	1.9703	2.52	3.17	A101LF1	2.43E-6	6.3	2.43E-4		9
AP101L-F2	4/25/01	267	38	3000	5.20	2.4872	1.9803	2.09	2.63	A101LF2	2.01E-6	13.9	2.01E-4	4.97E+5	5
AP101L-F3	4/25/01	176	39	3000	3.38	2.1284	1.6946	1.59	2.00	A101LF3	1.53E-6	23.4	1.53E-4	6.54E+5	ę
AP101L-F4	4/25/01	254	73	3000	4.94	2.7638	2.2005	1.79	2.25	A101LF4	1.72E-6	32.5	1.72E-4	5.81E+5	S
AP101L-F5	4/25/01	236	42	3000	4.58	2.7046	2.1533	1.69	2.13	A101LF5	1.63E-6	41.5	1.63E-4	6.14E+5	5
AP101L-F6	4/25/01	226	43	3000	4.38	2.935	2.3368	1.49	1.88	A101LF6	1.44E-6	50.8	1.44E-4	6.96E+5	4
AP101L-F7	4/25/01	530	48	3000	10.46	2.8884	2.2997	3.62	4.55	A101LF7	3.48E-6	60.0	3.48E-4	2.87E+5	10
AP101L-F8	4/25/01	1879	60	3000	37.44	2.6742	2.1291	14.00	17.59	A101LF8	1.35E-5	69.1	1.35E-3	7.42E+4	37
AP101L-F9	4/25/01	6633	16	3000	132.52	2.3192	1.8465	57.14	71.77	A101LF9	5.50E-5	78.6	5.50E-3	1.82E+4	133
AP101L-F10	4/26/01	5417	76	600	541.56	2.5148	2.0022	215.3	270.5	A101LF10	2.07E-4	88.0	2.07E-2	4.83E+3	542
AP101L-F11	4/26/01	15867	136	600	1586.56	2.3005	1.8316	689.7	866.2	A101LF11	6.64E-4	97.4	6.64E-2	1.51E+3	1587
AP101L-F12	4/26/01	8354	105	120	4176.86	2.4369	1.9402	1714.0	2152.8	A101LF12	1.65E-3	106.7	1.65E-1	6.06E+2	4177
AP101L-F13	4/26/01	12514	173	120	6256.86	3.1203	3.9199	2005.2	1596.2	A101LF13	1.93E-3	112.0	1.93E-1	5.18E+2	6257
													% Cs (% Cs cpm (sum)	8.22E-4
AP-101 actual waste 4/24/01	te 4/24/01														
Lag column, loading phase	ng phase														
ł									net						total net
Sample ID	Date	Net counts	Error	Time (sec)	net cpm	mass	mL	net cpm/g	cpm/mL	FileName	C/Co	BV	C/Co, %	DF	cpm
AP101P-F1	4/26/01	742	38	3000	14.702	2.5134	2.0011	5.85	7.35	A101PF1	5.63E-6	6.2	5.63E-4		15
AP101P-F2	4/26/01	224	31	3000	4.342	2.1352	1.7000	2.03	2.55	A101PF2	1.96E-6	13.8	1.96E-4	5.11E+5	4
AP101P-F3	4/26/01	132	39	3000	2.502	3.1356	2.4965	0.80	1.00	A101PF3	7.68E-7	23.1	7.68E-5	1.30E+6	εn
AP101P-F4	4/26/01	138	36	3000	2.622	1.9781	1.5749	1.33	1.66	A101PF4	1.28E-6	31.8	1.28E-4	7.84E+5	£
AP101P-F5	4/26/01	431	40	3000	8.482	1.9157	1.5252	4.43	5.56	A101PF5	4.26E-6	40.6	4.26E-4	2.35E+5	80
AP101P-F6	4/26/01	150	38	3000	2.862	2.4262	1.9317	1.18	1.48	A101PF6	1.13E-6	49.7	1.13E-4	8.81E+5	£
AP101P-F7	4/26/01	92	37	3000	1.702	2.1304	1.6962	0.80	1.00	A101PF7	7.69E-7	58.6	7.69E-5	1.30E+6	3
AP101P-F8	4/26/01	211	36	3000	4.082	2.0266	1.6135	2.01	2.53	A101PF8	1.94E-6	67.6	1.94E-4	5.16E+5	4
AP101P-F9	4/25/01	131	37	3000	2.482	2.0211	1.6092	1.23	1.54	A101PF9	1.18E-6	76.8	1.18E-4	8.46E+5	7
AP101P-F10	4/26/01	238	41	3000	4.622	2.4134	1.9215	1.92	2.41	A101PF10	1.84E-6	86.1	1.84E-4	5.43E+5	\$
AP101P-F11	4/26/01	451	38	3000		2.0649	1.6440	4.30	5.40	AI01PF11	4.14E-6	95.3	4.14E-4	2.42E+5	6
AP101P-F12	4/26/01	147	40	3000		2.2695	1.8069	1.23	1.55	A101PF12	1.19E-6	104.4	1.19E-4	8.42E+5	£
AP101P-F13	4/27/01	159	33	3000	3.042	1.3962	1.1116	2.18	2.74	A101PF13	2.10E-6	109.4	2.10E-4	4.77E+5	£
AP101FEcomp1	5/1/01	245	18	3000	4.762	2,1272	1.6936	2.24	2.81	Fcomp1	2.15E-6	-	2.15E-4	4.64E+5	
AP101FEcomp2	5/1/01	228	32	3000		2.5005	1.9908	1.77	2.22	Fcomp2	1.70E-6		1.70E-4	5.88E+5	
AP101FEcomp3	5/1/01	198	41	3000		2.5129	2.0007	1.52	16.1	Fcomp3	1.46E-6		1.46E-4	6.83E+5	
AP101FEcomp4	5/1/01	379	39	3000	7.442	2.4539	1.9537	3.03	3.81	Fcomp4	2.92E-6		2.92E-4	3.43E+5	
													% Cs c	% Cs cpm (sum) 4.062E-06	.062E-06

Data Reduction TI-RPP-WTP-055, Rev. 0

Counting Data

AP-101 run starting 4/24/01

		122	
j,	b	J	1
ł	Ċ	1	
۰,	F	5	
1	٢	1	
	Ξ	2	
_	c	Ś	
ς)	

Feed Displacement

total net	cpm	236	171	277	295	242	247	262	271	295	301	1.67E-4		total nat	cpm	310	317	366	379	266	188	147	129	131	1.44E-4				BV	0.9	1.9	2.8	3.6	4.4	5.3	6.2	7.2	8.1
	Cum BV	114.2	119.9	126.5	134.3	142.9	152.4	162.9	174.3	186.6	6.991	% cpm			Cum BV	214.1	229.2	245.1	262.1	280.0	299.0	319.0	340.0	362.0	% cpm				C/Co	6.80E-5	5.99E-3	3.36E+1	1.01E+2	5.10E+1	4.05E+0	5.31E-1	8.60E-2	2.92E-2
	C/Co, %	1.85E-3	1.66E-3	2.70E-3	2.51E-3	2.43E-3	2.47E-3	2.48E-3	2.74E-3	2.87E-3	2.94E-3				C/Co, %	3.06E-3	3.11E-3	3.79E-3	3.53E-3	2.37E-3	1.66E-3	1.36E-3	1.14E-3	1.22E-3					FileName	A101LE1A	A101LE2A	A101LE3	A101LE4	A101LE5	A101LE6	A101LE7	A101E8	A101E9
	ΒV	4.8	5.7	6.7	T.T	8.6	9.5	10.5	11.4	12.3	13.3				ΒV	14.2	15.1	16.0	16.9	18.0	19.0	20.0	21.0	22.0				net	cpm/mL	8.89E+1	7.82E+3	4.40E+7	1.32E+8	6.67E+7	5.30E+6	6.95E+5	1.12E+5	3.82E+4
	C/Co	1.85E-5	1.66E-5	2.70E-5	2.51E-5	2.43E-5	2.47E-5	2.48E-5	2.74E-5	2.87E-5	2.94E-5				C/Co	3.06E-5	3.11E-5	3.79E-5	3.53E-5	2.37E-5	1.66E-5	1.36E-5	1.14E-5	1.22E-5					net cpm/g	8.79E+1	7.73E+3	4.35E+7	1.30E+8	6.59E+7	5.24E+6	6.86E+5	1.11E+5	3.77E+4
	File Name	A101FD1	A101FD2	A101FD3	A101FD4	A101FD5	A101FD6	A101FD7	A101FD8	A101FD9	A101FD10				FileName	AI01DI1	A101DI2	A101DI3	A101DI4	A101DI5	A101DI6	A101DI7	A101D18	A101DI9					mL	1.76E-3	1.55E-5	8.58E-6	8.76E-6	1.80E-5	3.54E-5	1.85E-3	1.80E-3	1.67E-3
net	cpm/mL	19.24	17.28	28.10	26.06	25.30	25.64	25.83	28.49	29.82	30.53			net	cpm/mL	31.78	32.31	39.38	36.66	24.63	17.22	14.13	11.86	12.65				counted	mass	1.78E-3	1.57E-5	8.69E-6	8.86E-6	1.82E-5	3.58E-5	1.87E-3	1.82E-3	1.69E-3
	net cpm/g	19.24	17.28	28.10	26.06	25.30	25.64	25.83	28.49	29.82	30.53				net cpm/g	31.78	32.31	39.38	36.66	24.63	17.22	14.13	11.86	12.65				mass for	counting	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	mL	2.1212	2.0060	1.9884	2.0053	2.0011	2.0010	2.0051	1.9922	1.9977	2.0057				mL	2.0075	2.0061	2.0019	2.0054	2.0074	1.9557	1.9551	1.9903	1.9887	17.9181			Dilution	mass	1	10.1419	10.1212	10.1397	5.0644	5.0425	1	1	1
	mass	2.121	2.006	1.988	2.005	2.001	2.001	2.005	1.992	1.998	2.006				mass	2.008	2.006	2.002	2.005	2.007	1.956	1.955	1.990	1.989	inse solution			Mass to	dilute	1	0.0932	0.0929	0.0938	0.0966	0.0982	1	1	1
Tare +	sample	19.672	19.3816	19.4854	19.4236	19.1819	19.3676	19.3977	19.4663	19.4561	19.2547			Tare +	sample	19:243	19.3442	19.1921	19.1773	19.2884	19.3384	19.1837	19.3223	19.3105	of DI water r			Dilution	mass	5.2896	5.0544	10.1239	10.1252	10.1316	5.0589	5.055	5.0226	5.044
	Tare	17.550	17.3756	17.497	17.4183	17.1808	17.3666	17.3926	17.4741	17.4584	17.249				Tare	17.236	17.3381	17.1902	17.1719	17.281	17.3827	17.2286	17.332	17.3218	cpm in 90 mL of DI water rinse solution			Mass to	dilute	0.0944	0.0861	0.0958	0.097	0.0965	0.0931	0.0945	0.0914	0.0853
	net cpm	40.82	34.66	55.88	52.26	50.62	51.30	51.78	56.76	59.56	61.24				net cpm	63.80	64.82	78.84	73.52	49.44	33.68	27.62	23.60	25.16	1982 c				net cpm	0.16	0.1	377.4	1155	1197.3	187.7	1283.3	202.1	64
	Time (sec)	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000				Time (sec)	3000	3000	3000	3000	3000	3000	3000	3000	3000	total				Time (sec)	1830	925.6	605.32	300	300	300	300	300	3000
	Error	49	43	54	52	51	51	51	54	55	55				Error	58	57	64	61	50	41	37	34	35					Error	ę	7	62	78	19	30	82	32	57
	Net counts	2048	1740	2801	2620	2538	2572	2596	2845	2985	3069				Net counts	3197	3248	3949	3683	2479	1691	1388	1187	1265					Net counts	6	4	3,809	5777	5987	939	6417	1011	3198
	Date	4/27/01	4/27/01	4/27/01	4/27/01	4/27/01	4/30/01	4/30/01	4/30/01	4/30/01	4/30/01				Date	5/1/01	5/1/01	5/1/01	5/2/01	5/2/01	5/2/01	5/2/01	5/2/01	5/2/01		o 4/24/01.	ing phase		Date	4/27/01	4/27/01	4/27/01	4/27/01	4/27/01	4/27/01	4/27/01	4/27/01	4/30/01
	Sample ID	AP101-FD-1	AP101-FD-2	AP101-FD-3	AP101-FD-4	AP101-FD-5	AP101-FD-6	AP101-FD-7	AP101-FD-8	AP101-FD-9	AP101-FD-10		DI Dinse		Sample ID	AP101-FDI-1	HAP101-FDI-2	OAP101-FDI-3	AP101-FDI-4	AP101-FDI-5	AP101-FDI-6	AP101-FDI-7	AP101-FDI-8	AP101-FDI-9		AP-101 run starting 4/24/01.	Lead column. eluting phase		Sample ID	AP101L-E1	AP101L-E2	AP101L-E3	AP101L-E4	AP101L-E5	AP101L-E6	AP101L-E7	AP101L-E8	AP101L-E9

	8.9	9.8	10.6	11.5	12.3	13.2	14.1	14.9	15.8	16.7	17.6	18.5	19.3	
	2.20E-2	1.63E-2	1.16E-2	9.26E-3	7.52E-3	6.06E-3	5.24E-3	4.38E-3	4.00E-3	3.40E-3	3.22E-3	4.29E-3	4.16E-3	
	A101E10	A101E11	LE12D	LE13D	LE14D	LEISD	LE16D	LE17	LE18	LE19	LE20	LE21D2	LE22D	
	2.87E+4	2.13E+4	15147	12098	9826	7921	6843	5728	5226	4439	4215	5611	5433	
	2.84E+4	2.10E+4	14968	11955	60/6	7827	6762	5660	5164	4387	4165	5545	5368	
	1.95E-3	1.89E-3	0.0384	0.0373	0.0384	0.0378	0.0382	0.0336	0.0310	0.0376	0.0369	0.0370	0.0383	
	0.0020	0.0019	0.0388	0.0378	0.0388	0.0383	0.0387	0.0340	0.0314	0.0380	0.0374	0.0374	0.0388	
	0.1	0.1	2.0325	2.0343	2.0429	2.0345	2.0349	1.9857	2.0009	2.0087	2.0149	2.047	2.0391	
	1	1	1	1	1	1	1	1	1	1	1 .	1	1	
	1	1	1	1	1	1	1	1	1	1	1	1	1	
	5.0491	5.0441	5.0619	5.0541	5.0598	5.0675	5.0539	5.0455	5.0241	5.0485	5.035	5.0677	5.086	g mL
	0.0994	0.0963	0.0967	0.0939	0.0962	0.0953	0.0961	0.0864	0.0788	0.0956	0.0934	0.0926	0.0968	2.0516 2.021
	56	40	581	452	377	299	262	192	162	167	156	207	208	mns
	3000	3000	600	700	800	1100	1000	300	300	300	300	1700	1700	
	54	45	77	74	72	74	67	31	29	28	27	77	78	
	2798	2015	5813	5273	5030	5493	4363	963	811	835	<i>611</i>	5880	5907	
ŀ	4/30/01	4/30/01	5/3/01	5/3/01	5/3/01	5/8/01	5/3/01	4/27/01	4/27/01	4/27/01	4/27/01	5/8/01	5/3/01	
	AP101L-E10	AP101L-E11	AP101L-E12	AP101L-E13	AP101L-E14	AP101L-E15	AP101L-E16	AP101L-E17	AP101L-E18	AP101L-E19	AP101L-E20	AP101L-E21	AP101L-E22	

Deionized water rinse following elution

							I are +				net				BV post	total net
Sample ID	Date	Net counts Error Time (sec) net cpm	Error	lime (sec)	net cpm	Tare	sample	mass	mL	net cpm/g	cpm/mL	FileName	c/Co	ВV	Elution	cpm
TAP101-EDI-1	5/16/01	28825	207	300	5765	17.1953	19.2215	2.0262	2.0000	2845	2882	EDII		1.0	20.3	30053
AP101-EDI-2	5/16/01	19985	158	300	3997	17.5255	19.5530	2.0275	2.0000	1971	1998	ED12		2.0	21.3	21317
AP101-EDI-3	5/16/01	15812	142	300	3162	17.2598	19.2555	1.9957	2.0000	1585	1581	EDI3		2.9	22.1	14489
AP101-EDI-4	5/16/01	8898	101	300	1779	17.3038	19.2953	1.9915	2.0000	894	890	EDI4		3.9	23.2	9490
AP101-EDI-5	5/16/01	5221	73	700	447	17.3641	19.3512	1.9871	2.0000	225	224	EDI5		4.8	24.1	2299
AP101-EDI-6	5/16/01		83	1700	223	17.4638	19.4564	1.9926	2.0000	112	112	EDI6	8.53E-5	5.7	25.0	1007
AP101-EDI-7	5/16/01	5848	78	2000	175	17.4013	19.4029	2.0016	2.0000	88	88	EDI7		6.9	6.9 26.2	1156
													•	% Cs in D	I water rinse	5.14E-3

		I	
	C/Co	5.89E-4	
	FileName	RGN	
net	cpm/mL	770	
	net cpm/g	765	
	mL	2.0107	
	mass	2.0228	
Tare +	sample	19.5629	
	Tare	17.5401	
	net cpm	1548	
	Time (sec) net cpm	200	
	Error	74	
	Net counts	5161	
	Date	5/8/01	
	Sample ID	AP101-RGN	

5.85E-02 2.55 4.64E-04 1.95E-3 % Cs in Regeneration solution C/Co error, %
 Regeneration with 0.25 M NaOH Analytical Lab Data

 Sample ID
 CMC ID
 Cs-137, μCi/mL

 AP101-RGN
 01-00810
 5.85E-02

Data Reduction TI-RPP-WTP-055, Rev. 0

Counting Data

AP101-F0A 01-00780 AP101L-F3 01-00781 2 AP101L-F6 01-00782 1 AP101L-F9 01-00782 1 AP101L-F9 01-00783 4 AP101L-F11 01-00783 4 AP101L-F11 01-00783 4 AP101L-F11 01-00785 2 AP101L-F13 01-00785 2 AP101L-F13 01-00785 5 AP101L-F13 01-00785 6 AP101P-F1 01-00785 6 AP101P-F2 01-00786 6 AP101P-F3 01-00786 6 AP101P-F3 01-00786 6 AP101P-F3 01-00787 9 AP101P-F3 01-00787 9 AP101P-F3 01-00787 9 AP101P-F3 01-00789 9 AP101P-F11 AP101P-F10 7 AP101P-F12 01-00789 9	Cs-137, µCi/mL	error, %	C/Co	% C/Co	katio analytical/ lab GEA C/Co	total Cs-137, µCi/mL
 01-00781 01-00782 01-00782 01-00783 01-00783 01-00785 11 01-00785 11 01-00786 11 01-00786 11 01-00786 11 01-00787 01-00789 01-00789 01-00789 01-00789 01-00789 	126	1.32	1.00E+0			1.50E+05
 01-00782 01-00783 01-00783 01-00784 01-00785 11 10, 100786 11 01-00787 01-00787 01-00787 01-00788 01-00789 01-00789 01-00789 01-00789 01-00789 	2.18E-04	3.5	1.73E-6	1.73E-04	1.13	
 01-00783 11 01-00784 13 01-00785 13 01-00785 tual waste 4/24/01 <litual 01<="" 24="" 4="" li="" waste=""> <</litual>	1.28E-04	3.76	1.02E-6	1.02E-04	0.71	
11 01-00784 13 01-00785 13 01-00785 1 loading phase CMC ID 1 2 3 01-00786 5 6 7 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	4.69E-03	2.44	3.72E-5	3.72E-03	0.68	
[3 01-00785 tual waste 4/24/01	6.49E-02	2.51	5.15E-4	5.15E-02	0.78	
tual waste 4/24/01 in, loading phase CMC ID CMC ID CMC ID 01-00786 01-00787 01-00787 01-00789 00789 01-00790 01-00790	2.76E-01	1.33	2.19E-3	2.19E-01	1.14	
2 4 01-00786 5 0 0 0 0 0 0 0 0 0 0 0 0 0	Cs-137, µCi/mL	error, %	C/Co	% C/Co	Ratio analytical/ lab GEA C/Co	DF
01-00786 01-00787 01-00788 01-00789 01-00790						
01-00787 01-00788 01-00789 01-00790	6.17E-05	7.02	4.90E-7	4.90E-05	3.84E-1	
01-00787 01-00788 01-00789 01-00790						
01-00788 01-00789 01-00790	9.00E-05	7.38	7.14E-7	7.14E-05	3.69E-1	
01-00788 01-00789 01-00790						
01-00789 01-00790	7.40E-05	9.83	5.88E-7	5.88E-05	2.80E-1	1.70E+06
	9.79E-05 1 09F-04	4.84 7 98	7.77E-7 8 61E-7	7.77E-05 8 61E-05	4.57E-1 5 88F-1	1.29E+06 1.16E+06
01-00791	2.31E-04	3.08	1.83E-6	1.83E-04	6.28E-1	5.46E+05

Counting Data

۶

.

Counting Data

Data Reduction TI-RPP-WTP-055, Rev. 0

Feed Displacement						Ratio analytical/
Sample ID	CMC ID	Cs-137, µCi/mL	error, %	C/Co	% C/Co	lab GEA C/Co
AP101-FD-1		-				
AP101-FD-2	01-00792	5.93E-03	1.51	4.70E-5	4.70E-03	2.83E+0
AP101-FD-3	01-00793	2.08E-03	2.67	1.65E-5	1.65E-03	6.10E-1
AP101-FD-4			,			
AP101-FD-5						
AP101-FD-6	01-00794	1.61E-03	2.73	1.28E-5	1.28E-03	5.18E-1
AP101-FD-7						
AP101-FD-8						
AP101-FD-9						
AP101-FD-10						
DI Rinse						Ratio analytical/
Sample ID	CMC ID	Cs-137, µCi/mL	error, %	C/Co	% C/Co	lab GEA C/Co
AP101-FDI-1						
AP101-FDI-2	01-00795	2.05E-03	2.56	1.63E-5	1.63E-03	5.23E-1
AP101-FDI-3						
AP101-FDI-4						
AP101-FDI-5	01-00796	1.82E-03	2.67	1.45E-5	1.45E-03	6.11E-1
AP101-FDI-6						
AP101-FDI-7						
AP101-FDI-8						
AP101-FDI-9						

Counting Data

Data Reduction TI-RPP-WTP-055, Rev. 0

AP-101 run starting 4/24/01.

Sample IDCMC IDAP101L-E1 $01-00797$ AP101L-E2 $01-00799$ AP101L-E3 $01-00799$ AP101L-E4 $01-00800$ AP101L-E5 $01-00802$ AP101L-E6 $01-00802$ AP101L-E1 $01-00803$ AP101L-E10 $01-00803$ AP101L-E10 $01-00803$ AP101L-E10 $01-00805$ AP101L-E10 $01-00806$ AP101L-E11 $01-00806$ AP101L-E12 $01-00806$ AP101L-E13 $01-00806$ AP101L-E13 $01-00806$ AP101L-E13 $01-00807$ AP101L-E13 $01-00807$ AP101L-E13 $01-00807$ AP101L-E13 $01-00807$ AP101L-E13 $01-00808$ AP101L-E14 $01-00808$ AP101L-E15 $01-00808$ AP101L-E15 $01-00808$ AP101L-E16 $01-00808$ AP101L-E16 $01-00808$ AP101L-E19 $01-00808$ AP101L-E22 $01-00809$ AP101L-E22				man fimm anns	
comp comp	Cs-137, μCi/mL	error, %	C/Co	lab GEA C/Co	Cs-137, µCi
duo	1.21E-2	2.9	9.58E-5	1.41E+0	0.12
duo	1.08E-2	2.98	8.57E-5	1.43E-2	0.11
duuc	2.66E+3	5	2.11E+1	6.28E-1	24337
duuc	8.11E+3	2	6.43E+1	6.37E-1	72484
duu	4.75E+3	2	3.77E+1	7.39E-1	41687
duo	3.61E+2	2	2.87E+0	7.07E-1	3423
duo	4.94E+1	1.36	3.92E-1	7.38E-1	463
duo	7.83E+0	2.65	6.21E-2	7.23E-1	79.48
duo	3.66E+0	2.5	2.91E-2	9.95E-1	36.39
duo	2.01E+0	2.52	1.60E-2	7.27E-1	16.79
duo	1.32E+0	2.48	1.04E-2	6.41E-1	12.15
duo					
duc					
duc					
duu	5.50E-1	2.49	4.37E-3	7.21E-1	5.24
duu					
duu					
duuc	3.76E-1	2.59	2.98E-3	7.45E-1	3.60
duc					
	3.59E-1	2.43	2.85E-3	6.63E-1	
					sum 1.43E+5
	7.97E+2	7	6.33E+0	NA	1.63E+5 from total beta analysis
	7.65E+02	7	6.07E+0	NA	1.56E+5 from Cs-137 report
					104 % recovery in Cs eluent

E.10

-

AP-101DF Lead column loading with Cs-137

 $C_0 = 126 \text{ uCi/mL}$

C/Co	C/Co midpoint	C, uCi/mL	mL processed	mL	area, uCi
2.43E-06		3.06E-04	66.50	66.5	2.03E-02
2.01E-06	2.22E-06	2.80E-04	147.60	81.10	2.27E-02
1.53E-06	1.77E-06	2.23E-04	248.50	100.90	2.25E-02
1.72E-06	1.62E-06	2.05E-04	344.20	95.69	1.96E-02
1.63E-06	1.68E-06	2.11E-04	439.88	95.68	2.02E-02
1.44E-06	1.53E-06	1.93E-04	538.68	98.81	1.91E-02
3.48E-06	2.46E-06	3.10E-04	635.77	97.09	3.01E-02
1.35E-05	8.48E-06	1.07E-03	732.71	96.94	1.04E-01
5.5E-05	3.42E-05	4.31E-03	832.92	100.21	4.32E-01
0.000207	1.31E-04	1.65E-02	932.78	98.66	1.65E+00
0.000664	4.35E-04	5.49E-02	1032.78	100.01	5.49E+00
0.001649	i.16E-03	1.46E-01	1130.87	98.09	1.43E+01
0.001929	1.79E-03	2.25E-01	1187.71	56.84	1.28E+01

3.49E+01 uCi Cs-137 loaded onto lag column 2.33E-02 % loaded onto the lag column

Total Cs loaded

1.50E+05 uCi Cs-137

Appendix F

AP-101DF Column Processing Analytical Results

42365 Project / WP#: @42040 / F22626 ASR#: 6031 M. Urie Client: **Total Samples:** 1

	From	То
RPL#:	01-00520	01-00520
Client ID:	AP-101 DF *	AP-101 DF *

Procedure: <u>PNNL-ALO-211</u> , "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).											
Analyst: D.R. Sanders											
Analysis Date (File): <u>03-08-01</u> (A0652)											
See Chemical Measurement Center 98620 file: ICP-325-405-1 (Calibration and Maintenance Records)											
M&TE Number:WB73520 360-06-01-029(ICPAES instrument) (Mettler AT400 Balance)											

7-9-01 ame Reviewed by 12-05 Concur

7/9/2001

Page 1 of 4

One sample, "AP-101-DF A" (RPL ID# 01-00520), was processed by 325 Shielded Analytical Laboratory (SAL) using PNL- ALO-128 acid digestion of the diluted feed material. Approximately 1 mL of the diluted feed material (density 1.258 g/mL) prepared in duplicate; duplicate digestion process blanks (reagents only) and a blank-spike were processed and analyzed by ICPAES.

ICPAES results are reported as μ g/mL and have been corrected for dilution resulting from acid digestion of the supernatant material. Sample material was transferred to digestion vessels using a 1 mL pipette then weighed. Sample volume was determined by dividing sample weight by sample density. After digestion, samples were diluted to a final volume of approximately 26 mL.

Analytes of interest and MRQ's listed in Table 1, Supernatant Analyses of Special Instructions include the following: Al, Ba, Ca, Cd, Cr, Fe, K, La, Mg, Na, Ni, P, Pb, and U. Detection limits, adjusted for sample preparation dilution and analytical dilution, exceeded MRQ's for the nearly all analytes listed in Table 1 except: Fe, Mg, P, and Pb. A 5-fold analytical dilution resulted in the poor detection limit. Concentration of the following analytes was above MRQ: Al, Cr, K, and Na. The remaining analytes requested were below MRQ.

See attached ICPAES Data Report for final results.

Quality control check-standard results met tolerance requirements for all analytes of interest reported except where noted below. Following is a list of quality control measurement results relative to ICPAES analysis tolerance requirements of the controlling QA plan.

Five fold serial dilution:

All analytes of interest were within tolerance limit of 10% after correcting for dilution except potassium. Potassium differed by 18%. Other analytes such as aluminum, chromium, and phosphorous differed by less than 9%. No explanation can be given for the discrepancy.

Duplicate RPD (Relative Percent Difference):

The original and duplicate sample was within tolerance limit of $\leq 20\%$ RPD for all analytes of interest greater than EQL.

Post-Spiked Samples (Group A):

All analytes of interest were recovered within tolerance of 75% to 125% post-spike recovery except for potassium. Recovery for potassium was about 57%. The concentration of potassium spike added was about 1/5th of the sample concentration tested.

Post-Spiked Samples (Group B):

All analytes of interest were recovered within tolerance of 75% to 125%.

7/9/2001

<u>Blank Spike:</u>

All analytes of interest were recovered within tolerance of 80% to 120% except silver. Silver recovery was low (about 22%). Low recovery may be due to the amount of hydrochloric acid used to process the sample (or from chloride present in the original sample) causing silver to precipitate. Silver was not detected in any of the samples.

Matrix Spiked Sample:

All analytes of interest were recovered within tolerance of 75% to 125% except silver. Silver recovery was low (about 22%). Low recovery may be due to the amount of hydrochloric acid used to process the sample (or from chloride present in the original sample) causing silver to precipitate. Silver was not detected in any of the samples.

Quality Control Check Standards:

Concentration of all analytes of interest is within tolerance limit of $\pm 10\%$ accuracy in the check standards: QC_MCVA, QC_MCVB, and QC_SSTMCV with the following exceptions. Sodium and potassium measurements of QC_MCVA were slightly higher than 10% (11% to 17% for potassium and 11% to 14% for sodium). In QC_SSTMCV potassium (15% & 18% high) and sodium (15% & 16%) were high. The high concentration of these two analytes from the samples may have resulted in analyte carry-over in the instrument spray chamber resulting in higher than expected results.

High Calibration Standard Check:

Verification of the high-end calibration concentration in QC_SST for all analytes contained in the standard is within tolerance of \pm 5% accuracy except for one of two measurements of potassium. One of the two potassium measurements was 13% high. All other analytes measured were within tolerance.

Process Blank:

Concentration of all analytes of interest is within tolerance limit of \leq EQL or less than \leq 5% of the sample.

Laboratory Control Standard (LCS):

A blank-spike containing analytes of interest was prepared and analyzed instead of an LCS.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

7/9/2001

Page 3 of 4

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- 2) Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically \pm 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight).
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

Page 1 of 1

	Multiplier=	27.0	1	27.3		136.8	1	135.4]		
	RPL/LAB #=	01-520-PB1		01-520-PB2		01-520 @5		01-520-DUP	@5		
		Process		Process		AP-101 DF		AP-101 DF	Ĭ		
	Client ID=	Blank		<u>Blank</u>		A		B			
Det. Limit	Run Date=	3/8/2001		3/8/2001		3/8/2001		3/8/2001			
(ug/mL)	(Analyte)	(ug/mL)		(ug/mL)		(ug/mL)		(ug/mL)			
0.025	Ag										
0.060	AI	[4.7]	1	[4.7]		6,930		7,030			
0.250	As		1								
0.050	В	47.3		42.6		[54]		[56]			
0.010	Ba		1]		
0.010	Be		1							'	
0.100	Bi										
0.250	Ca			[47]		[210]		[210]	1		
0.015	Cd								1		
0.200	Ce										
0.050	Co								1		
0.020	Cr					151		153	1		
0.025	Cu										
0.050	Dy										
0.100	Eu										
0.025	Fe	[1.2]		[0.73]		[3.8]					
2.000	ĸ					29,800		29,700			
0.050	La						· · · · · · · · · · · · · · · · · · ·				
0.030	Li										
0.100											
0.100	Mg Mn										
0.050	Mo					[14]		[14]			
0.150	Na	76.5		61.2		113,000		115,000			
0.100	Nd										
0.030	Ni	[2.2]		[1.7]		[4.4]			1		
	P					381		389			
0.100	Pb										
0.100											
0.750	Pd										
0.300	Rh										
1.100	Ru										
0.500	Sb		tan Kulong Kara		يحتر والمحتر		and the second		A Report of the second	un en tarrige en travel	
0.250	Se			[130]		[420]		[300]			
0.500	Si Sn	[120]									
1.500											
0.015	Sr										
1.500	Те										
1.000	Th										
0.025	Ti										
0.500	TI										
2.000	U										
0.050	V										
2.000	W								1		
0.050	Y							[8.4]	1		
0.050	Zn			[2.7]		[7.6]					
0.050	Zr			er than 10-time	 na dataction lin	mit is estimated	to he within -	1	1		
		Note: 1) Over	all error great	<u>er than</u> 10-time	es detection lin	IIII IS ESUIIIALEC		, , , , , , , , , , , , , , , , , , , ,			

Note: 1) Overall error <u>greater than</u> 10-times detection limit is estimated to be within +/- 15%. 2) Values in brackets [] are <u>within</u> 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is <u>below</u> detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column).

7/9/2001 @ 5:22 PM

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

Client:	WTP (M. Urie)	Charge Code/Project	W57922 / 42365
RPL Numbers:	01-0520	ASR Number:	6031
Analyst:	MJ Steele	Analysis Date:	7/24, 8/22, & 8/23 2001

Procedure: PNL-ALO-380, "Determination of Carbon in Solids Using the Coulometrics Carbon Dioxide Coulometer"

M&TE: Carbon System (WD13071); Balance (360-06-01-023).

		TOC		TC	7/24/01	TC	8/23/01	TIC (a)				
		MDL	TOC	MDL	TC	MDL	TC	MDL	TIC (b)			
RPL Number	Sample ID	µgC/mL	µgC/mL	µgC/mL	µgC/mL	µgC/mL	µgC/mL	µgC/mL	µgC/mL			
01-00520 PB	Hot Cell Blank		138		23		58	-	n.d.			
01-00520 A	AP101 DF-A	220	8,000	15	7,400	170	8,200	170	n.d.			
01-00520 A Dup	AP101 DF-A	220	7,800	15	7,400	170	7,700	170	n.d.			
	RPD		3%		0%		6%					
	RSD		2%		0%		4%					
01-00520 B	AP101 DF-B	220	8,100	30	7,500	170	7,900	170	n.d.			
01-00520 B Dup	AP101-DF-B	220	7,900	30	7,600	170	7,800	170	n.d.			
	RPD		3%		1%		1%					
	RSD		2%		1%		1%					
01-00520 B MS	AP101-DF-B		96%		101%		101%					
BS/LCS	Blank Spike		99%		99%		102%	2				
(a) TIC MDL set t	o TC MDL											
(b) TIC is determine	ned by difference	(TC - TOC)									

AP-101 Diluted Feed Results

The TOC/TIC analyses of the samples submitted under ASRs 6031 were to be performed by both the hot persulfate and furnace methods. This report presents the results from the furnace oxidation method and the results are compared to the results obtained from the hot persulfate method. Determination of total organic carbon (TOC) is performed by combusting an aliquot of the sample (solids or liquid) in oxygen at 750 °C for 30 minutes. The total carbon is determined on another aliquot of the sample by combusting at 1000 °C for 30 minutes. The total inorganic carbon is obtained by difference.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-380.

Q.C. Comments:

The calibration and QC standards for TC and TOC analysis are liquid or solid carbon standards or pure chemicals from Ricca, JT Baker, Aldrich, Sigma, Mallinckrodt and VWR. The identification

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

of the standards and their Chemical Management System (CMS) numbers and expiration dates are included on the raw data benchsheets.

The coulometer analysis system calibration is checked by analyzing calibration standards at the beginning, middle, and end of each day's run. The average recovery from these calibration check standards is applied as a correction factor to the 'raw data' results obtained for the samples. The average recovery for each of the three analysis days was 92%, 100%, and 98%.

System blanks were analyzed similarly to the calibration check, averaged, and subtracted from the sample 'raw data' results prior to calculating the final reported result. The TOC determination produced average blank of 15 μ C. The TC determination produced average blanks of 4 and 54 μ C. The 54 μ C blank level is unusually high; however, the reproducibility of the blank was reasonably good (i.e., 49 to 59 μ C).

For each days analysis run, the QC for the analyses include sample duplicates, blank spikes (as a laboratory control sample), and matrix spikes.

<u>Blank Spike/Laboratory Control Sample</u>: The BS/LCS was within acceptance criteria of 80% to 120% required by the client's Test Specification for both the TC and TOC analysis of the supernatant and solids.

<u>Duplicates</u>: The precision between the duplicates (replicates), as demonstrated by the Relative Percent Difference (RPD), is within the acceptance criteria of the governing QA Plan (i.e., <20%). Also, the relative standard deviations (RSD) meet the acceptance criteria of <15% established by the client's Test Specification.

<u>Matrix Spike</u>: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. At a TOC recovery of 96% and a TC recovery of 101%, the matrix spike demonstrates recoveries well within the acceptance criteria of 75% to 125%.

		Т	IC	T	C		TC		
RPL Number	Sample ID	Persul. µgC/mL	Furn. (a) µgC/mL	Persul. µgC/mL	Furn. µgC/mL	Persul. (b) μgC/mL	Furn. 7/24 µgC/mL	Furn. 8/23 µgC/mL	
01-00520A	AP101 DF-A	5,350	nd	1,650	8,000	6,990	7,400	8,200	
01-00520A Dup	AP101 DF-A	5,370	nd	1,650	7,800	7,010	7,400	7,700	
01-00520B	AP101 DF-B	5,450	nd	1,630	8,100	7,080	7,500	7,900	
01-00520B Dup	AP101-DF-B	5,240	nd	1,610	7,900	6,850	7,600	7,800	

Furnace Results Compared to Hot Persulfate Results

'nd' = not detected

Persul. = Results from hot persulfate method

Furn. = Results from furnace combustion method – 750 °C for TOC and 1000 °C for TC

(a) TIC Furn. is determined by difference (TC - TOC)

(b) TC HP is determined by sum (TIC + TOC)

The two method appear to produce comparable results for TC, with the furnace producing slightly higher results. However, there are significant differences between the TIC and TOC results

Battelle PNNL/RPG/Inorganic Analysis ---- TOC/TIC Report PO Box 999, Richland, WA 99352

reported by each method. The reason for the discrepancy between the hot persulfate method and furnace method is unknown, but it appears that the inorganic carbon, perhaps in the form of easily oxidized metal carbonate, is being combusted at 750 °C (as TOC) with the furnace method. No organic analyses were performed as part of the AP-101 diluted feed analyses. However, TOC from acetate, formate, oxalate, and citrate analysis of the AP-101 as-received material is about 1500 μ gC/mL. Although there may be more organic compounds present than were analyzed for on the AP-101 as-received material, the sum from these major organic species more closely fits the hot persulfate results than the furnace results.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- Routine precision and bias are typically ±15% or better for non-complex samples that are free of interferences.
- For both the TC and TOC, the analysis Method Detection Limit (MDL) is based on the standard deviation calculated from the number (n) of system blanks analyzed with the batch of samples. The standard deviation is multiplied by the Student's *t* values for n-1 degrees of freedom to establish the daily MDL. The sample MDL (in ug C/ml or ug C/g) are calculated by using the analysis MDL adjusted for the sample volume or weight.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and RPDs are not calculated for any results less than 5 times the MDL.

Report Prepared by:

Review/Approval by:

Raw Data Calculation/Archive Information: File: ASR 6019L&S 6025L 6031L 6107S.xls

Battelle PNWD PO Box 999, Richland WA 99352

Analytical Chemistry Group (ACG)

ICP/MS Data Analysis Report

Revision 3

Project / WP#: 42040 / W57922 ASR#: 6031 **Client:** Mike Urie **Total Samples:** 1

RPL #	Client ID
01-00520	AP-101-DF A

PNL-ALO-280 Rev. 1, Inductively-Coupled Plasma-Mass Spectrometric (ICP-**Procedure:** MS) Analysis

M&TE Number:	WB36913 512-06-01-014	ICP/MS, VG Elemental Mettler AJ100 Balance
Analyst:	James P Bramson	
Analysis Date:	3/27/01, 4/4/01, 4/12	2/01
Analysis Files:	Experiment - 27MA Procedure - 010327a Element Menu - CsF	
Revised Report Da		net e change komplet soft at the estage of 004

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

mpAlomas Revised By unit Reviewed By

<u>3 Acbor</u> Date <u>3 Feb0 4</u>

Revision 1	Effective Date August 2001	Description of Change Format of the narrative report was redone for consistency with reports associated with other analytical techniques within the ASO.
2	January 2004	Text has been added in the appropriate narrative section(s) to address issues surrounding the use of biased standards prepared and provided by the RPL Standards Laboratory to the ICP-MS analytical laboratory (reference: project #98620, memo KN Pool to GH Beeman, 9/15/03).
3 Han te estate telefor for Han	February 2004	Text has been added in the appropriate narrative section to include Pu-240 when addressing issues surrounding the use of biased standards (reference: project #98620, memo KN Pool to GH Beeman, 9/15/03).

One sample, AP-101 Diluted Feed submitted for analysis, was analyzed on a radioactivematerial-contained ICP/MS for the requested analytes.

1. Analysis

and the

See attached ICP/MS data reports for final results and run order for the analytical batch. The final results have been corrected for all laboratory dilutions performed on the sample during analysis. Two preparation blanks, a blank spike, duplicate, and matrix spike was submitted with the samples. In addition, replicate and post spike (PS) analyses were also performed.

2. Quality Control

<u>Duplicate (DUP)</u>. The duplicate and replicate analyses met the QC criterion of \pm 20% for the Cs, Rb, and Tc analysis. RPDs were not calculated for the actinides since their concentration was below detection level.

<u>Matrix Spike (MS).</u> MS and PS recoveries met the QC criterion of 70-130% for the Cs, Rb, and Tc analysis. The actinides did not appear to be spiked into the sample, however the PS met the MS QC criterion of 75-125%.

<u>Preparation Blank (PB)</u>. The PBs were below detection level for all analytes and met the QC criterion.

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB). The ICB/CCB standards are 1% high purity nitric acid solution used as the diluent for the samples. The QC criterion of less than the estimated quantitation limit (< EQL) was met.

<u>Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV).</u> The ICV/CCV standards met the QC criteria of \pm 10% for the Cs, Tc, and Rb analysis. Some of the QC criteria were not met during the actinide analysis of the PBs: Pu-239 (87%), Pu-240 (82%, 81%), and Pu/Am-241 (89.8%, 89.8%). Some of the QC criteria were not met during the actinide analysis of the samples: Np-237 (113%), Pu-240 (115%, 83%, 83%), and Pu/Am-241 (112%, 116%)

Internal Standard (IS). The ISs met the QC criteria of 30% to 120.

Analytical results generated were influenced by an identified bias in the calibration and calibration verification standards. The effect on the results, based on the observed bias, will widen the error band for these results:

- The bias in the standards caused results for Tc-99 to be biased low for this report. The error band that should be applied to these results is -10% to +30%.
- The bias in the standards caused results for AMU-241 to be biased low for this report. The error band that should be applied to these results is -10% to +20%.
- The bias in the standards caused results for Np-237 to be biased high for this report. The error band that should be applied to these results is -20% to +10%.
- The bias in the standards caused results for Pu-239 to be biased low for this report. The error band that should be applied to these results is -10% to +20%.
- The bias in the Pu-239 standards, which were used to quantify Pu-240, caused results for Pu-240 to be similarly biased (low) for this report. The error band that should be applied to these results is approximately -10% to +20%.

Project No. 42040

Internal Distribution

File/LB

... Putting Technology To Work

Date May 3, 2001

To Mike Urie

From LMP Thomas 5.3.01

Subject ICPMS Analysis of ASR 6031 samples {ALO# 01-(00520)}

Pursuant to ASR 6031, the samples submitted for analysis were analyzed by ICPMS for the requested analytes. The results are tabulated on the attached report forms. The concentrations are reported in μ Ci/ml of original sample for ²³⁷Np, ²³⁹Pu, ²⁴⁰Pu and ⁹⁹Tc; $^{2}\mu$ g/ml of original sample for Cs, Rb and ²⁴¹Pu/²⁴¹Am.

Standards

Dilutions of Isotope Products standards for ²³⁷Np and ²⁴¹Am, an Amersham ⁹⁹Tc standard, an NIST ^{239/240}Pu standard, and CPI single element standards for Cs and Rb were used to generate the calibration curves. Independent standards of each analyte were used for the independent calibration verification (ICV) standards. The analyses of the CCV standards for the Cs, Rb, and ⁹⁹Tc analysis were within ±10%. The analyses of the CCV standards for the ²³⁷Np, ²³⁹Pu, ²⁴⁰Pu and ²⁴¹Pu/²⁴¹Am analysis were outside ±10% (but within ±20%). However, since there were non-detectable levels of the analyte in the samples, no reruns were performed. The reagent blank and diluent for the standards and samples was a 1% high purity nitric acid solution.

<u>Analysis</u>

Inter-laboratory (AIA) spikes and duplicates were prepared and analyzed in addition to the duplicate and spike samples submitted. These are denoted in lower case as 'duplicate' and 'spike' (vs. DUP and MS for the samples submitted). The inter-laboratory spikes were within $\pm 25\%$ recovery and inter-laboratory duplicates were within $\pm 5\%$ RPD.

Technetium Isotopic Analysis. The ⁹⁹Tc values reported assume that the ruthenium present is exclusively fission product ruthenium and therefore does not have an isotope at m/z 99. The isotopic analysis observed for Ru is not a natural distribution and is consistent with previous tank waste analysis.

If you have questions regarding this analysis please call me at 376-5936 or Tom Farmer at 372-0700.

Analytical Chemistry Group, Battelle PNNL ICP/MS Analysis Data Report

Client: Mike Urie WP/Project: F22630/42040 ASR: 6031 Log-In: 01-00520 Report Date: 5/3/01

Page 1 of 14

Unless otherwise specified; the results are reported in µg analyte/ml (ppm) of the original sample for Cs, Rb and µCi analyte/ml of the original sample for ⁹⁹Tc

															,		
1SD					1.3E-06	2.6E-06	2.1E-06	6.4E-07	2.3E-06	6.25E-02				3.73E-01	1.47E-02 3.31E-02 6.53E-02	3.61E-02	2.64E-02
Cs ⊔α/ml ±	0 0	2.8E-06	2.3E-06	2.3E-06	1.9E-04 ±	1.9E-04 ±	1.9E-04 ±		1.8E-04 ± 2.00E-04	8.22E-02 5.20E+00 ±	1.87E-04	34 /0	7.50E-02	2.77E+01 ± 1.04E-04 92%	2.99E+00 ± 2.93E+00 ± 7.68E+00 ± 1.71E-04 86%	2.92E+00 ±	2.89E+01 ± 1.09E-04 96%
MDL. u q/m l		v	V	v						8.22E-02 < 7.46E-02			7.50E-02 <	6.76E-01	5.71E-02 5.87E-02 5.93E-02	5.67E-02	6.21E-01
1SD					2.7E-08	3.7E-08	5.3E-08	4.4E-08	8.0E-08	1.09E-03					9.62E-04 5.84E-04 1.72E-03	1.14E-03	4.51E-04
%Tc μCi/ml ±		7.8E-08	6.4E-08	6.5E-08	3.3E-06 ±	3.2E-06 ±	3.3E-06 ±	3.0E-06 ±	3.0E-06 ± 3.39E-06	2.32E-03 8.94E-02 ±	3.18E-06	0/ 1-0	2.12E-03	1.91E-02	4.00E-02 ± 3.86E-02 ± 1.15E-01 ± 2.75E-06 81%	3.83E-02 ±	3.93E-02 ±
MDL µ Ci/ml	v v	v	V	•						2.32E-03 < 2.10E-03			2.12E-03 <	1.91E-02 <	1.61E-03 1.65E-03 1.67E-03	1.60E-03	1.75E-02
1SD					2.1E-06	3.1E-07	5.4E-06	2.7E-06	2.2E-U0	4.63E-02				5.26E-01	3.83E-02 2.50E-02 8.36E-02	6.23E-02	3.96E-01
Rb µg/ml ±	00	3.6E+00	2.9E+00	3.0E+00	2.0E-04 ±	2.0E-04 ±	2.1E-04 ±	2.1E-04 ±	2.1E-04 ± 2.00E-04	1.06E-01 5.58E+00 ±	2.00E-04	2	9.71E-02	2.07E+01 ± 7.78E-05 103%	3.99E+00 ± 4.00E+00 ± 9.61E+00 ± 2.05E-04 103%	3.88E+00 ±	2.45E+01 ± 9.25E-05 123%
MDL µg/m1	V V	v	v	•						1.06E-01 < 9.65E-02	-		9.71E-02 <	8.75E-01	7.39E-02 7.59E-02 7.67E-02	7.34E-02	8.04E-01
ICP/MS ID	ICB CCB1	CCB2	CCB3	CCB4	ICV1	CCV1a	CCV2a	CCV3a	00048	PB3 PBS2		7. v	PB4	BS2	Sample9 Sample11 Sample13	Sample10	Sample12
Client ID										PROCESS BLANK PROCESS BLANK			PROCESS BLANK	BLANK SPIKE	AP-101-DF A AP-101-DF A AP-101-DF A	AP-101-DF B	AP-101-DF B
Sample ID	1%HNO3 1%HNO3	1%HNO3	1%HNO3	1%HNO3	ICV	CCV	CCV	CCV	~~~	01-00520-PB1 01-00520-PB1 + spike	L.		01-00520-PB2	01-00520-BS2	01-00520 01-00520 duplicate 01-00520 + spike	01-00520-DUP	01-00520-MS2 Jn
Log-In Number									True Value	01-00520-PB1 01-00520-PB1	Spike Concentration		01-00520-PB2	01-00520-BS2 Spike Concentration Spike Recovery	01-00520 01-00520 01-00520 Spike Concentration Spike Recovery	01-00520-DUP	01-00520-MS2 Spike Concentration Spike Recovery

Analytical Equipment: ICP/MS VG WB36913 Balance: Mettler 512-06-01-014 Procedure: NPL-ALD-280 Analysis Date: 3/27/0-10 Instrument Filenames: Experiment (27/MAR01), Procedure(010327a), Element Menu (CsRbTc)

Client: Mike Urie WPPProject: F22630/42040 ASR: 60331 Log-In: 01-00520 Report Date: 5/2/01

Analytical Chemistry Group, Battelle PNNL ICP/MS Analysis Data Report

Reveiwed by: 4m PJ S.301

Analyst:

Page 2 of 14

Unless otherwise specified; the results are reported in µg analyte/ml (ppm) of the original sample for ²⁴¹Pu/²⁴¹Am and µCi analyte/ml of the original sample for all others.

		9 9 9 9 9 9 9 9	-07 -07 -06				-02			-03		
1SD	n an	1.01E-06 1.74E-06 1.12E-06 1.50E-06	9.44E-07 9.97E-07 1.12E-06 2.78E-06				2.86E-02			3.21E-03		
²⁴¹ Pu/ ²⁴¹ Am μg/ml ±	2.46E-07 3.04E-07 2.13E-07 5.77E-07 6.02E-07 6.00E-07 4.82E-07	4.49E-05 ± 4.49E-05 ± 4.03E-05 ± 4.78E-05 ± 5.00E-05	5.17E-05 ± 5.10E-05 ± 5.59E-05 ± 5.81E-05 ± 5.81E-05 ±	2.38E-07	7.34E-07	2.72E-07 2.21E-07	1.29E-03 4.90E-01 ± 8.93E-05 89%	1.27E-03	2.34E-03	2.46E-03 2.39E-03 2.69E-01 ± 4.87E-05 97%	2.59E-03	2.48E-03
MDL ² µg/m1	v v v v v v v			v	v		1.29E-03 < 1.45E-03	1.27E-03 <	2.34E-03 <	2.46E-03 < 2.39E-03 < 2.41E-03	2.59E-03 <	2.48E-03 <
1SD		1.55E-08 2.75E-08 3.50E-09 1.28E-08	2.92E-09 4.28E-08 5.76E-09 3.96E-08				2.37-04			1.17E-04		
²⁴⁰ Pu μCi/ml ±	4.37E-08 5.40E-08 3.79E-08 1.56E-07 1.63E-07 1.63E-07 1.63E-07	1.90E-07 ± 2.25E-07 ± 1.89E-07 ± 2.19E-07 ± 2.33E-07	2.34E-07 ± 2.68E-07 ± 1.94E-07 ± 1.94E-07 ± 2.33E-07	4.23E-08	1.99E-07	4.83E-08 3.92E-08	2.29E-04 2.24E-03 ± 2.37-04 3.68E-07 79%	2.26E-04	4.16E-04	6.67E-04 6.47E-04 2.12E-03 ± 2.66E-07 114%	7.03E-04	6.71E-04
MDL µCi/mI	v v v v v v v			v	•	• •	2.29E-04 < 2.57E-04	2.26E-04 <	4.16E-04 <	6.67E-04 < 6.47E-04 < 6.53E-04	7.03E-04 <	6.71E-04 < 6.71E-04
1SD		1.94E-07 4.15E-08 6.37E-08 5.08E-08	2.84E-08 6.69E-08 1.66E-07 2.50E-08			2.87E-09	1.76E-03			1.37E-04		
²³⁹ Pu μCi/ml ±	6.05E-08 7.47E-08 5.24E-08 1.70E-07 1.77E-07 1.77E-07 1.42E-07	3.22E-06 ± 3.04E-06 ± 2.64E-06 ± 3.17E-06 ± 3.04E-06	2.97E-06 ± 3.19E-06 ± 2.89E-06 ± 2.89E-06 ± 3.04E-06	5.86E-08	2.17E-07	7.82E-08 ± 5.43E-08	3.18E-04 3.20E-02 ± 5.79E-06 93%	3.13E-04	5.75E-04	7.26E-04 7.05E-04 2.15E-02 ± 3.80E-06 122%	7.65E-04	7.31E-04
MDL µCi/ml				~	v		3.18E-04 < 3.56E-04	3.13E-04 <	5.75E-04 <	7.26E-04 < 7.05E-04 < 7.11E-04	7.65E-04 <	7.31E-04 <
1SD		5.70E-10 1.00E-09 6.00E-10 1.25E-09	3.93E-10 4.04E-10 2.46E-10 1.33E-09		- 		9.46E-06			7.68E-06		
²³⁷ Np μCi/ml ±	2.53E-10 3.12E-10 2.19E-10 8.70E-10 9.08E-10 9.05E-10 7.26E-10	3.24E-08 ± 3.26E-08 ± 3.18E-08 ± 3.77E-08 ± 3.77E-08 ±	3.70E-08 ± 3.55E-08 ± 3.86E-08 ± 3.97E-08 ± 3.52E-08	2.45E-10	1.11E-09	2.79E-10 2.27E-10	1.33E-06 3.76E-04 ± 6.85E-08 97%	1.31E-06	2.40E-06	3.71E-06 3.60E-06 1.90E-04 ± 3.41E-08 97%	3.91E-06	3.74E-06
MDL µCi/m1	1 444			v	V	V V	1.33E-06 < 1.49E-06	1.31E-06 <	2.40E-06 <	3.71E-06 < 3.60E-06 < 3.63E-06	3.91E-06 <	3.74E-06 <
ICP/MS ID	CB CCB1 CCB1 CCB1 CCB1 CCB1 CCB1 CCB1 C	ICV CCV1 CCV2 CCV3	ICV CCV1 CCV2 CCV3	U030a	4321b	4321b1 4321b2	k PB7 K PBS4	K PB8	BS4	Sample9 Sample11 Sample19	Sample10	Sample12
Client ID				(Blanks)	(Samples)	(Blanks) (Blanks)	PROCESS BLANK PB7 PROCESS BLANK PBS4	PROCESS BLANK PB8	BLANK SPIKE	AP-101-DF A AP-101-DF A AP-101-DF A	AP-101-DF B	AP-101-DF B
Sample ID	1%-HNO3 (Blanks) 1%-HNO3 (Blanks) 1%-HNO3 (Blanks) 1%-HNO3 (Bamples) 1%-HNO3 (Samples) 1%-HNO3 (Samples) 1%-HNO3 (Samples)	ICV (Blanks) CCV (Blanks) CCV (Blanks) CCV (Blanks)	ICV (Samples) CCV (Samples) CCV (Samples) CCV (Samples)	20ppb U030 uranium	10ppb 4321B uranium	30ppb 4321B uranium 30ppb 4321B uranium	1-00520-PB1 1-00520-PB1 + spike	01-00520-PB2	01-00520-BS2	1-00520 1-00520 duplicate 1-00520 + spike	01-00520-DUP	01-00520-MS2
Log-In Number		True Value	True Value				01-00520-PB1 0 01-00520-PB1 0 Spike Concentration Spike Recovery	01-00520-PB2	01-00520-BS2	01-00520 0 01-00520 0 01-00520 0 01-00520 0 Spike Concentration Spike Recovery	01-00520-DUP	01-00520-MS2

Analytical Equipment: ICP/MS VG WB36913 Balance: Mettler 512-06-01-014 Parabolis: PNL-ALO-280 Analysis Date: 41401 Instrument Filenames: Experiment (4APR01,12APR01), Procedure(010404a, 010412a), Element Menu (actinides)

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Client:	M. Urie	Charge Code/Pi	roject: F22630 / 42040
			New W57922 / 42365
RPL Numbers:	01-00520	ASR Number:	6031
Analyst:	MJ Steele	Analysis Date:	July 19/20, 2001

Procedure: PNL-ALO-381, "Direct Determination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method"
 M&TE: Carbon System (WA92040); Balance (360-06-01-023)

		TIC	TIC	TIC	тос	тос	тос	TC	TC
		MDL	Results		MDL	Results		Results	
RPL Number	Sample ID	ugC/mL	ugC/mL	RPD	ugC/mL	ugC/mL	RPD	ugC/mL	RPD
01-0520 PB	Hot Cell Blank	7	10		18	<18		10	
01-0520 A	AP101-DF A	13	5,350	1. A.	36	1,650		6,990	
01-0520 A Dup	AP101-DF A	13	5,370	0%	36	1,650	0%	7,010	0%
01-0520 B	AP101-DF B	13	5,450		36	1,630		7,080	(
01-0520 B Dup	AP101-DF B	13	5,240	4%	36	1,610	2%	6,850	3%
01-0520 B MS	Recovery		97%			92%		95%	
Blank Spike/LCS	Recovery		102%			105%			
Blank Spike/LCS	Recovery		103%			102%			

Analysis Results

The TOC/TIC analyses of the sample submitted under ASRs 6031 are to be performed by both the hot persulfate and furnace methods. This report presents the results from the hot persulfate wet oxidation method. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92-95°C for TOC, all on the same sample, with TC being the sum of the TIC and TOC.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-381.

Q.C. Comments:

The standards for TIC and TOC supernatant analysis are liquid carbon standards from VWR. The lot numbers and Chemical Management System numbers for the standards are included on the raw data benchsheets.

The QC for the methods involves calibration blanks, sample duplicates, laboratory control sample, and matrix spikes. The ASR indicates that the analyses are to be performed to "Conducting Analytical Work in Support of Regulatory Programs". The performance of the QC samples is compared to this QA Plan as well as against the Table 3 "Quality Control Parameters for Liquid Samples" provided with the ASR.

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Laboratory Control Sample (LCS)/Blank Spike(BS): A LCS/BS was analyze each day that the AP-101 supernatant samples were analyzed. The LCS/BSs were within acceptance criteria of 80% to 120%.

<u>Matrix Spike</u>: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The matrix spike for the AP-101 DF B sample demonstrates recoveries well within the acceptance criteria of 75% to 125% recovery.

<u>Duplicates</u>: The precision between the duplicates (replicates), as demonstrated by the Relative Percent Difference (RPD) between sample and duplicate. The TIC and TOC meet the acceptance criteria of <20% RPD for the QA Plan and <15% RSD from Table 3. It should be noted that AP-101 DF A and AP-101 DF B are identical samples but have been aliquotted from different bottles (i.e., Bottles DF A and DF B). The RPD between the averages is <2% for TIC, TOC, and TC.

<u>Hot Cell Trip Blank</u>: Water resident in the SAL hot cells was sub-sampled, handled, and transferred to the laboratory for TOC/TIC analysis. This 'trip' blank showed a very small TIC contamination level (i.e., about 2x the estimated method detection limit) and no TOC.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- Routine precision and bias are typically ±15% or better for non-complex samples that are free of interferences.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and RPDs are not calculated for any results less than 5 times the MDL. The analysis MDLs (total ug C) are based on 3 times the standard deviation of a set of historical data. The sample MDLs (in ug C/ml or ug C/g) are calculated by using the analysis MDL adjusted for the sample volume or weight.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis. The system MDL is based on the attached pooled historical blank data. The evaluation and calculation of the system MDL is included in the data package.

Report Prepared by:

Review/Approval by:

Date 10-02-01

Date 10-20-01

Excel Archive File: ASR 6014L 6031L 6107L&S 6121L.xls

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Client:	MIT.	8		
	M Urie		Charge Code/Project:	F22626/42040
ASR Number:	6031		Sample Receipt Date:	00/29/2001
Sample Prep Date:	N/A		Sample Analysis Date:	04/03-04/2001
Analyst:	MJ Steele		Revision Date:	07/23/2001

Preparation Procedure: N/A

Procedure:PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography"M&TE:IC system (WD25214); Balance (360-06-01-031) --- See Chemical Measurement Center
98620 RIDS IC File for Calibration, Standards Preparations, and Maintenance Records.Raw data, standards information, preparation benchsheets filed with ASR 6019 Urie:Project 42365

Sample 01-005	20 Fillal Results. REVIS		1	1	1				
		F	CI	NO ₂	Br	NO ₃	PO ₄	SO ₄	
RPL Number	Sample ID	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	μg/ml
	EQL	0.28	0.28	0.55	0.28	0.55	0.55	0.55	0.55
01-00520 PB	Hot Cell Blank	< 0.28	< 0.28	< 0.55	< 0.28	< 0.55	< 0.55	< 0.55	< 0.5
	. EQL	480	480	950	480	1,900	950	1,900	950
01-00520	AP-101-DF A	2,300	1,400	31,200	< 480	103,400	< 950	4,660	< 95(
01-00520 Dup	AP-101-DF B	2,300	1,500	33,800	< 480	104,700	< 950	4,600	< 95(
	RPD	0	5	6	n/a	1	n/a	1	n/a
01-00520 MS %Rec	AP-101-DF MS	97	93	102	97	102	97	91	105
LCS %Rec	60/160 Spike Solution	107	105	105	106	101	104	102	107
	be considered the upper bound con p-eluting anion(s), possibly formate			uoride. Si	gnificant	peak distor	rtion of th	e fluoride	peak

Sample 01-00520 Final Results: REVISION 1

The sample was prepared for ion chromatography anion analysis by dilution at 1900-fold and 3800-fold in order to ensure that the anions were measured within the calibration range. Column overloading prohibited analysis of the sample as dilutions less than 1900-fold. The estimated quantitation limits (EQL) which are based on the lowest calibration standard and the dilutions used for reporting the results are provided in the table.

Q.C. Comments:

<u>Duplicates</u>: The duplicates were sub-sampled in the hot cells, the sample was aliquotted from container labeled AP-101-DF A and the duplicate from container labeled AP-101-DF B. The duplicate relative percent difference (RPD) meets the acceptance criteria of <20%.

<u>Matrix Spike (HCV 010328)</u>: A matrix spike was prepared from the sample and all anion recoveries were within the 75% to 125% recovery acceptance criteria.

Laboratory Control Sample-LSC/BS (LSC 010328): A Blank Spike (i.e., the spike solution used to prepare the matrix spike samples) was prepared and measured at the same time as the Matrix Spike sample and demonstrated recoveries within the 80% to 120% acceptance criteria.

System Blank/Processing Blanks: Eighteen system blanks were analyzed throughout the analysis runs. No anions were detected in the system blanks above the estimate quantitation level. Also, no anions were detected in the hot cell blank (01-00520 PB).

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

<u>Quality Control Calibration Verification Check Standards</u>: Nine mid-range verification standards were analyzed throughout the analysis runs. Except for one chloride measurement and two oxalate measurement, all anions recoveries were within the acceptance criteria from 90% to 110% for the verification standard. The chloride measurement that failed produced a recovery of 89% and the oxalate measurements produced recoveries of 112%.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- Routine precision and bias are typically ±15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

Report Prepared by:

Review/Approval:

Date 7 - 23 - 0/Date 7 - 23 - 0/

Archive Information:

Files: ASR 6031 Urie.doc

ASR 6014 6019 6025 6031 6057.xls

... Putting Technology To Work

Project No. <u>42040</u>

Internal Distribution File/LB

Date June 29, 2001

To M. W. Urie

L. R. Greenwood J Dieenvero

Subject

From

Radiochemical Analyses for AP-101 - ASR 6031,32

Samples of the supernates from tank AP-101 were analyzed for gamma emitters, ⁹⁰Sr, total alpha, U, Pu, Am/Cm, and ⁹⁰Tc according to ASRs 6031 and 6032. The samples were acid digested in the hot cells according to procedures PNL-ALO-128 and -129 and aliquots were delivered to the laboratory for analysis. The attached reports list measured analyte activities in the original sample material in units of μ Ci/ml for the supernates. The reported errors (1- σ) represent the total propagated error including counting, dilution, yield, and calibration errors, as appropriate. Laboratory and process blank values given with each analysis are the best indicators of the method detection limits, taking into account the actual sample sizes and counting times used for each analysis.

The hot cell sample preparations were performed in two separate batches, as indicated by the horizontal lines separating the results in the attached tables. However, all of the samples were initially run together in one batch in the laboratory. The hot cell process blanks prepared with each batch of samples showed significant alpha contamination, especially for the AP-101 samples, as is discussed below for each analysis. The hot cell blanks also showed high contamination with ⁹⁰Sr for sample AP-101-DF-A and -B. Consequently, this sample was reprepared in the hot cell and reanalyzed for ⁹⁰Sr and the actinides. The reanalyses showed some contamination for ⁹⁰Sr; however, no contamination was seen for Pu and Am/Cm.

Gamma Spectrometry

Sample aliquots were directly counted for gamma emitters according to procedure PNL-ALO-450. Since no sample preparation was involved, no laboratory blanks or spikes were prepared for these analyses other than the standard laboratory control samples and background counts. Initially, the samples were diluted prior to gamma analysis. However, in order to meet the requested detection limits, direct aliquots of the hot cell preparations were counted for periods of 4 to 14 hours. All of the samples showed the presence of significant ¹³⁷Cs activity. The AP-101 samples also showed ⁶⁰Co and ¹³⁴Cs. The MRQ values for extended counting time GEA were met in all cases except for the opportunistic analyte ²⁴¹Am for sample AP-101-AR, where the detection limit was twice the MRQ value of 1.E-2 μ Ci/ml. For sample AP-101-AR we detected the opportunistic analyte ¹³⁴Cs; however we did not see any of the others. Detection limits are listed in the tables except for ¹⁰⁶Ru/Rh (< 8.E-2 μ Ci/ml) and ¹²⁵Sb (< 5.E-2 μ Ci/ml). All of the hot cell process blanks showed the presence of ¹³⁷Cs and some of them also showed ¹³⁴Cs. However, in all cases, the activities in the blanks were negligible with respect to the samples. Sample duplicates showed excellent repeatability with RPD or RSD values less than 10%.

M. W. Urie June 29, 2001 Page 2

Total Alpha

The total alpha activity was determined by evaporating small aliquots of the acid-digested samples onto planchets according to RPG-CMC-4001. The samples were then counted on Ludlum detectors according to RPG-CMC-408. The sums of the individual alpha emitters, as discussed below, agree well with the total alpha data indicating minimal losses due to alpha self-absorption. The hot cell process blank did not show any alpha contamination. It should be noted that the sum of the alpha emitters is well below the MRQ value of 0.23 μ Ci/ml for this sample. The LCS and matrix spike recoveries with ²³⁹Pu were 112% and 79%, respectively. No alpha contamination was detected in the laboratory blank. RPD value was 13%.

Plutonium, Americium, and Curium

The Pu and Am/Cm separations were performed according to PNL-ALO-417. The separated fractions were precipitation plated according to PNL-ALO-496 and the samples were counted by alpha spectrometry according to PNL-ALO-422. Plutonium recovery was traced with ²⁴²Pu. The curium is known to follow the americium and both these isotopes were traced with ²⁴³Am. Both the plutonium and americium radiochemical yields were excellent, averaging about 95%. Neither Pu, Am nor Cm were detected in the laboratory preparation blank. The hot cell process blanks and laboratory blanks did not show any significant alpha contamination for Pu, Am, or Cm.

The LCS and matrix spike recoveries were 98 to 113% for both Pu and Am. RPD and RSD values were generally quite good except for ^{243,244}Cm in sample AP-101-DF, where the counting uncertainties are quite high.

Strontium-90

The Sr separation was performed according to PNL-ALO-476 and radiochemical yields were traced with ⁸⁵Sr. The separated fractions were then beta-counted according to RPG-CMC-408 and gamma counted according to PNL-ALO-450 (for ⁸⁵Sr determination and ¹³⁷Cs impurity assessment). Two of the separated fractions contained a small amount of ¹³⁷Cs and a correction to the beta count rate was applied for these samples. However, this correction was negligible with respect to the activity in the samples. No ⁹⁰Sr was found in the laboratory preparation blank. All of the hot cell process blanks showed ⁹⁰Sr activities. However, the levels are not significant except for sample AP-101-DF where the initial hot cell contamination was about 15% of the sample activity. Due to the hot cell contamination, this sample was reanalyzed. However, the reanalysis showed about the same level of contamination as the original analysis, although the activities in the samples were lower for the reanalyses. It should be noted that the level of ⁹⁰Sr in the AP-101-DF sample is about half the requested MRQ value of 0.15 uCi/ml. The RPD value was 10%, indicating good sample reproducibility. The LCS and matrix spike recoveries were 105% and 95%, respectively, for the reanalysis of sample AP-101-DF.

M. W. Urie June 29, 2001 Page 3

Total Uranium

Total uranium was measured according to procedure PNNL-ALO-4014 using Kinetic Phosphoresence Analysis (KPA). Sample solutions from the hot cell were evaporated dry with nitric acid, then re-dissolved in dilute nitric acid for uranium measurement. No uranium separation was done. The repeatability of duplicate samples is excellent with RPD values of 2%. Uranium was found in the hot cell blanks, but at a negligible concentration compared to the samples.

No instrument blanks had detectable uranium. All the instrument standards gave results within expected uncertainty. The instrument standards at 10 or more times the detection limit were all within 3% of the known concentration. The lowest standard, at 2.5 times the detection limit, has an inherently higher uncertainty.

Pertechnetate ⁹⁹Tc

The radiochemical ⁹⁹Tc determination was requested to measure only Tc in the +7 oxidation state (pertechnetate). To this end, all sample manipulations had to be non-oxidizing so as not to alter the original Tc oxidation state. Small aliquots from the as-received material (no digestion) were taken for analysis according to procedure PNL-ALO-432. This procedure normally requires the use of sodium dichromate addition to oxidize the Tc to the +7 oxidation state. The sodium dichromate addition was omitted and the procedure otherwise was performed as written. The separated fractions were then counted according to procedure RPG-CMC-408. The samples were also counted by liquid scintillation counting according to procedure PNL-ALO-474 to confirm that the beta energy spectra matched that of ⁹⁹Tc and that no other beta emitters were present. The LCS blank spike recovery of a 99Tc standard was 92%. However, a matrix spike gave a standard recovery of 248%. The reason for this high recovery is not known. Sample duplicates and lab replicates gave good agreement with RPD values less than 12%. The ⁹⁹Tc activities in the hot cell and laboratory blanks were negligible or non-detectable and well below the requested MRQ values.

Kerlergus 6-29-01

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurement Center

Client : Mike Urie

-

Cognizant Scientist:

Concur:

PNL-ALO-476 (Sr-90) PNL-ALO-450 (GEA)

Measured Activities (uCi/ml) with 1-sigma error

ALO ID Client ID		Sr-90 Error %	Cs-134 Error %	Cs-137 Error %	Co-60 Error %		SnSb-126 Error %				Am-241 Error %
01-0520PB1 Process Blank	MDA	1.05E-2 5% <4.E-4	<3.E-4	8.49E-3 4% <3.E-4	<6.E-4	<6.E-4	<2.E-4	<3.E-4	<1.E-3	<8.E-4	<1.E-3
01-0520PB2 Process Blank	MDA		<3.E-4	1.00E-2 3% <3.E-4	<6.E-4	<6.E-4	<2.E-4	<3.E-4	<9.E-4	<8.E-4	<1.E-3
01-0520 AP-101-DF A		6.79E-2 4% <3.E-3	2.96E-2 2% <1.E-3	1.27E+2 2% <6.E-3	5%	<3.E-2	<1.E-2	<7.E-4	<1.E-3	<1.E-2	<1.E-2
01-0520 DUP AP-101-DF B		7.49E-2 4% <4.E-3	2.77E-2 2% <1.E-3	1.25E+2 2% <6.E-3	2.53E-3 5% <2.E-4	<2.E-2	<1.E-2	<7.E-4	<1.E-3	<1.E-2	<1.E-2
	RPD	10%	7%	2%	1%						
01-0521PB1 Process Blank	MDA		<3.E-4	1.63E-3 6% <2.E-4	<4.E-4	<4.E-4	<1.E-4	<1.E-4	<7.E-4	<5.E-4	<7.E-4
01-0521PB2 Process Blank	MDA		<3.E-4	1.53E-3 8% <2.E-4	<4.E-4	<4.E-4	<1.E-4	<1.E-4	<7.E-4	<5.E-4	<8.E-4
01-0521 AP-101-AR-1R	MDA		3.52E-2 3% <2.E-3	1.51E+2 2% <1.E-2	3.01E-3 7% <5.E-4	<4.E-2	<2.E-2	<1.E-3	<2.E-3	<2.E-2	<2.E-2
01-0521 DUP					3.17E-3						

MDA <2.E-3 <1.E-2 <4.E-4 <4.E-2 3.57E-2 1.59E+2 3.34E-3 01-0521 TRIP 2% 7% AP-101-AR-3R 3% <2.E-2 <1.E-3 <2.E-3 <2.E-2 <2.E-2 <2.E-3 <1.E-2 <4.E-4 <4.E-2 MDA RSD 2% 3% 5%

Sample spike 105%

Blank spike 95%

Blank

<3.E-4

01-0520

08/20/01

Date : 8 30 Date :

Page 1

F.22

Battelle Pacific Northwest Laboratory

Radiochemical Processing Group-325 Building Chemical Measurement Center

Client: Mike Urie

Cognizant Scientist:

heen Izang-le Concur:

Date : <u>8 23 0</u>

RPG-CMC-408 (Total Alpha) PNL-ALO-417,496 (Pu, Am/Cm)

Measured Activities (uCi/ml) with 1-sigma error

ALO ID Client ID		Alpha Error %	Pu-238 Error %	Pu-239/240 Error %	Am-241 Error %	Cm-243/244 Error %	Cm-242 Error %	Sum of Alpha Error %
01-0520PB Process Blank	MDA	<2.E-4	<6E-7	<6E-7	9.91E-7 28% <7E-7	<6E-7	<4E-7	9.91E-7 4% <3E-6
01-0520 AP-101-DF A	MDA	2.03E-04 17% <9E-5	1.51E-5 5% <4E-7	1.10E-4 2% <5E-7	1.37E-4 2% <6E-7	2.89E-6 13% <4E-7	<4E-7	2.65E-4 4% <2E-6
01-0520 DUP AP-101-DF B	MDA	2.31E-04 16% <9E-5	1.29E-5 6% <8E-7	1.10E-4 3% <7E-7	1.39E-4 3% <5E-7	1.34E-6 22% <5E-7	<4E-7	2.63E-4 4% <3E-6
	RPD	13%	16%	0%	1%	73%		1%
Sample spike		79%		113%	99%			
Blank spike		112%		112%	98%			
Blank		<2.E-4	<9.E-7	<1.E-6	<2.E-6	<2.E-6	<1.E-6	

F.23

01-0520

08/20/01

Battelle Pacific Northwest Laboratory

01-0520

Radiochemical Processing Group-325 Building Chemical Measurement Center

08/20/01

Client : Mike Urie	1 201		
Cognizant Scientist:	FRAcement	Date :	8/20/01
Concur :	I Izang-le	Date :	82301
PNL-ALO-432 (Tc-99)	\mathcal{L}		1 1

Measured Activities (uCi/ml) with 1-sigma error

ALO ID	Per	technetate Tc-	99
Client ID		Error %	MDA
01-0520 CB Process Blank		4.46E-6 15%	<2.E-6
01-0520 AP-101-DF A		3.24E-2 4%	<4.E-6
01-0520 DUP AP-101-DF B		3.67E-2 4%	<5.E-6
	RPD	12%	
Sample spike		248%	
Blank spike		92%	
Blank		7.89E-06 23%	

Battelle	Pacific	Northwest	Laboratory	
----------	---------	-----------	------------	--

Radiochemical Processing Group-325 Building **Chemical Measurement Center**

Client : Mike Urie

Cognizant Scientist:

IR Summed Concur: C. Soderque

Date :	8,
Date :	8.

RPG-CMC-4014 (Uranium KPA)

Measured Activities (ug/ml) with 1-sigma error

ALO ID Client ID	Uranium Error %	MDL
01-0520PB1 Process Blank	3.41E-1 2%	6.E-3
01-0520PB2 Process Blank	1.92E-1 2%	6.E-3
01-0520 AP-101-DF A	4.11E+1 4%	6.E-3
01-0520 DUP AP-101-DF B	4.02E+1 4%	6.E-3
RPD	2%	
01-0521PB1 Process Blank	3.30E-2 2%	6.E-3
01-0521PB2 Process Blank	2.28E-2 2%	6.E-3
01-0521 AP-101-AR-1R	4.87E+1 4%	6.E-3
01-0521Rep AP-101-AR-1R	4.95E+1 4%	6.E-3
01-0521 DUP AP-101-AR-2R	4.78E+1 4%	6.E-3
01-0521 TRIP AP-101-AR-3R	4.95E+01 4%	6.E-3
RSD	2%	
Blank	<6.E-3	

Instrument Standards, µ	ıg/mL	Observed	Expected	Spike Yield	
	Blank 1	0.00E+0			
	Blank 2	4.60E-7			
	Blank 3	7.60E-7			
	IV 5E-1	5.07E-1	5.02E-1	101%	
	IV 5E-5	6.25E-5	5.07E-5	123%	(This standard is near the detection limit)
	IV 5E-1	5.07E-1	5.02E-1	101%	
	AA 5E-1	5.01E-1	5.05E-1	99%	
	AA 5E-3	4.93E-3	5.03E-3	98%	
	O	a second frame Of	5 5 to 1 0 5 1	a/mal	

Sample solutions ranged from 8E-5 to 1.9E-1 µg/mL

Page	1
F.25	

01-0520,

08/27/01

2.71 0

27-0

Narrative

Date: 03/21/01

Subject: Hydrox: ASR: 60

Hydroxide Analyses for: 6031 AP-101 Diluted Feed

To: Mike Urie

From: Bob Swoboda

voboda rationa 3/22/01

Two sample replicates of the composite from tank **AP-101 (0100520)** were analyzed in duplicate for the hydroxide content following procedure PNL-ALO-228. Direct sample aliquots were analyzed using a Brinkman 636 Auto-Titrator. A 0.1186 N NaOH solution was prepared for use as a standard and sample spike and the titrant was a 0.2040 M HCl prepared solution. The sample and duplicate results and their replicate runs gave an average OH molarity of 1.94 with a standard deviation of <1%. This result is equivalent to 3.29E+4 ug/ml, well below the required MRQ value of 7.5E+4 ug/ml. The hydroxide standard recovery averaged 93% and a sample spike recovered at 97%. No hydroxide was detected in the cell blanks or a reagent blank. The second and third inflection points frequently associated with carbonate and bicarbonate, were detected in the samples at an average of 0.79 moles, with a standard deviation of 4%, and at 0.56 moles, with a standard deviation of 7%, respectively, for the quadruplicate measurements. All of the results meet the QC acceptance criteria for spike recovery and RSD of duplicate measurements. The titration curves are included with the report.

Review ; FR Freewood 3/22/01

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center ASR # 6031

WP# **k88**

Concentration, moles

k88426

Hydroxide and Alkalinity Determination

Procedure: PNL-ALO-228 Equip # **WB76843** Loui P. Danel 3.22.01 Analyst:

Reviewer: V Hurtune 3/22/01

RPG # Client ID First Point Second Point Third P 01-0520-CB Cell Blank 0 0 0 0 01-0520-CB Cell Blank Rep 0 0 0 0 01-0520-CB Cell Blank Rep 0 0 0 0 01-0520-CB Cell Blank Rep 1.90 0.78 0.5 01-0520 AP-101-DF A Rep 1.91 0.83 0.5 01-0520 AP-101-DF A Rep 1.91 0.77 0.5 01-0520-DUP AP-101-DF B Rep 1.97 0.77 0.5 01-0520-DUP AP-101-DF B Rep 1.96 0.78 0.6 RPD 0.2% 1% 0.79 0.5	
01-0520-CB Cell Blank Rep 0 0 0 RPD RPD 1.90 0.78 0.59 01-0520 AP-101-DF A Rep 1.91 0.83 0.59 01-0520 AP-101-DF A Rep 1.91 0.83 0.59 01-0520 AP-101-DF A Rep 1.91 0.83 0.59 01-0520-DUP AP-101-DF B RPD 1% 7% 2% 01-0520-DUP AP-101-DF B Rep 1.97 0.77 0.55 01-0520-DUP AP-101-DF B Rep 1.96 0.78 0.60 RPD 0.2% 1% 13%	oint
NP RPD 01-0520 AP-101-DF A 01-0520 AP-101-DF A Rep 1.90 01-0520 AP-101-DF A Rep 1.91 0.83 0.5 RPD 1% 01-0520-DUP AP-101-DF B Rep 1.97 0.77 0.5 01-0520-DUP AP-101-DF B Rep 1.96 0.78 01-0520-DUP AP-101-DF B Rep 1.96 0.78 0.6 RPD 0.2% 1% 139	
01-0520 AP-101-DF A 1.90 0.78 0.53 01-0520 AP-101-DF A Rep 1.91 0.83 0.53 01-0520-DUP AP-101-DF B RPD 1% 7% 2% 01-0520-DUP AP-101-DF B 1.97 0.77 0.53 01-0520-DUP AP-101-DF B Rep 1.96 0.78 0.64 RPD 0.2% 1% 13%	
01-0520 AP-101-DF A Rep 1.91 0.83 0.57 RPD 1% 7% 2% 01-0520-DUP AP-101-DF B 1.97 0.77 0.53 01-0520-DUP AP-101-DF B Rep 1.96 0.78 0.66 RPD 0.2% 1% 13%	
NIT NIT NIT NIT NIT NIT RPD 1% 7% 2% 01-0520-DUP AP-101-DF B 1.97 0.77 0.55 01-0520-DUP AP-101-DF B Rep 1.96 0.78 0.6 RPD 0.2% 1% 13%	5
01-0520-DUP AP-101-DF B 1.97 0.77 0.53 01-0520-DUP AP-101-DF B Rep 1.96 0.78 0.6 RPD 0.2% 1% 13%	4
01-0520-DUP AP-101-DF B Rep 1.96 0.78 0.6 RPD 0.2% 1% 13%	•
RPD 0.2% 1% 13%	3
	D
Average (4) 1.94 0.79 0.5	6
	5
Hydroxide concentration in ug/ml 3.29E+4	
Reag. Blk.3 0	
Standard 1 93%	
Standard 2 93%	
MS 01-0520 Matrix spike 97%	

Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

Project / WP#:	42365 / W58168
ASR#:	6097
Client:	S. Fiskum
Total Samples:	1

	From	То				
RPL#:	01-00810					
Client ID: "AP101L-RGN-A"						
Sample Preparation: PNL-ALO-106/SRPL/ms (1 mL/20mL) [0.25 M NaOH, AOI: Na]						

Procedure: <u>PNNL-ALO-211</u> , "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).
Analyst: D.R. Sanders
Analysis Date (File): 07-16-01 (A0698)
See Chemical Measurement Center 98620 file: <u>ICP-325-405-1</u> (Calibration and Maintenance Records)
M&TE Number:WB73520 360-06-01-029(ICPAES instrument) (Mettler AT400 Balance)

Magner 8-22-01 Reviewed by MM 8/30/01 Concur

Concur

8/22/2001

Page 1 of 4

One AP101 sample, **AP101L-RGN-A** (RPL# 01-00810), was processed by SRPL using PNL-ALO-106 acid digestion procedure. Sample was prepared using 1 mL of liquid material. After digestion the sample was diluted to a final volume of approximately 20mL. Sample density estimated by weighing two 1 mL aliquots was about 1.008 g/mL (See PNL-ALO-106 worksheet in supporting documents for additional sample preparation information).

Sodium was the specific analyte requested for analysis by ICPAES.

Please note: the expected Na concentration in the sample, according to the ASR for 0.25 M NaOH, should be about $5,750 \mu g$ -Na/mL. The concentration of Na found was only about $1,000 \mu g$ /mL.

The process blank appears to have a small amount of Al, B, Ba, Fe, Na, Ni, and Si present. Boron, Na, and Si may come from glassware used to digest the samples or from the digestion reagent (nitric acid). The Na concentration in the process blank is about 15% of that found in the samples.

See attached ICPAES Data Report for final results. ICPAES measurement results are reported in $\mu g/mL$ and have been corrected for dilution resulting from sample processing. Analyte concentrations reported other than specifically requested are for information only.

Quality control check-standard results met tolerance requirements for the specific analyte of interest (Na) with exceptions noted below. Following is a list of quality control measurement results relative to ICPAES analysis tolerance requirements of the controlling QA plan. LCS/BS, Matrix-spikes and duplicate were prepared with the samples and analyzed. Matrix-spike was prepared using 1mL respectively of a custom multi-element solution "INT-QC-MCVA-1B" (CMS# 186946) per 20 mL sample digestate volume. LCS/blank-spiked sample was prepared using 1mL respectively of a custom multi-element solution "INT-QC-MCVA-1B" (CMS# 186946) per 25 mL sample digestate volume.

Five fold serial dilution:

All analytes above EQL in samples tested were within tolerance limit of 10% after correcting for dilution.

Duplicate RPD (Relative Percent Difference):

The original and duplicate sample was within tolerance limit of $\leq 15\%$ RPD for analyte of interest.

Post-Spiked Samples (Group A):

All post-spiked analytes in samples tested were recovered within tolerance of 75% to 125%.

Post-Spiked Samples (Group B):

All post-spiked analytes in samples tested were recovered within tolerance of 75% to 125%.

<u>Blank Spike:</u>

Blank-Spike recovery for analyte of interest exceeded tolerance of 80% to 120%. Measured recovery for Na was about 128%.

Matrix Spiked Sample:

Matrix-Spike recovery was within tolerance of 80% to 120% except for B, which is not an analyte of interest.

Quality Control Check Standards:

Concentration of all analytes of interest are within tolerance limit of \pm 10% accuracy in the check standards: QC_MCVA, QC_MCVB, and QC_SSTMCV.

High Calibration Standard Check:

Verification of the high-end calibration concentration in QC_SST for all analytes contained in the standard is within tolerance of \pm 5% accuracy except K. One of two measurements of K in QC_SST was higher than expected (50 ug/mL) by 8%, The other measurement was higher than expected by 3% that is within tolerance limit of \pm 5%.

Process Blanks:

Concentration of Na measured in the process blank (about 15% of Na measured in the sample) exceeded tolerance limit \leq EQL or less than \leq 5% of the sample. Other analytes detected in the process blank include Al, B, Ni, and Si. The source of B, Na and Ni in the process blank may have come from the glassware or reagents used to process the sample.

Laboratory Control Standard (LCS):

See "LCS/blank spike" above.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- 2) Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically ± 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times

detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 μ g/mL (0.5 per cent by weight).

4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.

5) The maximum number of significant figures for all ICP measurements is 2.

Page 1 of 1

	Multiplier=	20.0		20.0		20.0			
	RPL/LAB #=	01-1203-PB		01-0810		01-0810-DUP			
	Client ID=			AP101L-RGN	<u>I-A</u>	AP101L-RGN	<u>I-A</u>		
Det. Limit	Run Date=	7/16/2001		7/16/2001		7/16/2001			
(ug/mL)	(Analyte)	(ug/mL)		(ug/mL)		(ug/mL)			
0.025	Ag								n an
0.060	AI	13.6		[10]		12.8			
0.250	As								
0.050	B	116		69.3	ndangan ditur tanan tarti dan kinen di ta	89.7			
0.010	Ва	[0.33]				[0.43]			
0.010	Be							< 	
0.100	Bi								
0.250	Са								
0.015	Cd		e din serie de serie L				an a		
0.200	Ce								
0.050	Co								
0.020	Cr								
0.025	Cu								
0.025			- -						
0.050	Dy Eu								
*******	Fe			[1.1]		[0.98]			
0.025		[0.8]			· · · · · · · · · · · · · · · · · · ·		1	· · · · · · · · · · · · · · · · · · ·	
2.000	K				· · · · · ·				
0.050	La	· · · · · · · · · · · · · · · · · · ·		1.1					
0.030	Li		and the second						
0.100	Mg				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
0.050	Mn								
0.050	Мо		an an an an Arrena.		and the second		n an		
0.150	Na	152		1,030		1,000			
0.100	Nd								
0.030	Ni	[1.5]							
0.100	Р								
0.100	Pb		1 - 2 - manage (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						
0.750	Pd								
0.300	Rh								
1.100	Ru								
0.500	Sb	e na seguite de la companya	en de la production de la construcción de la construcción de la construcción de la construcción de la construcc	an and The second			n ganga santa san	and the party of	n An Charles March
0.250	Se								
0.500	Si	113	· · ·	[91]		109			
1.500	Sn								
0.015	Sr								
1.500	Те	-							
1.000	Th								
0.025	Ті								
0.500	TI								
2.000	U		1						
0.050	V		1						
2.000	W								
0.050	Y		1		1]		
0.050	Zn				1				
0.000	Zn		1				1		1

2) Values in brackets [] are <u>within</u> 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is <u>below</u> detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Data (1) from ~A0698 I.BURGESON ASR-6121 S.FISKUM ASR-6097 ICP98 hi.XLS

01-0780 05/18/01 1810

S

Date :

5 18 01

Date :

Client: Fiskum

Radiochemical Processing Group-325 Building Chemical Measurement Center

Battelle Pacific Northwest Laboratory

22/10 2 Cognizant Scientist:

1 Kang-le Concur:

Procedure: PNL-ALO-450 Gamma Energy Analysis

Measured Activities (uCi/ml) with 1-sigma error

	Am-241 Error %	<2E-1	1.37E-4 21%	1.45E-4 14%	<9E-5	<6E-4	<7E-4	1.28E-4 34%	1.13E-4 44%	
	Eu-155 Error %	<2E-1	<4E-5	<3E-5	<6E-5	<3E-4	<7E-4	5.44E-5 21%	<6E-5	
	Eu-154 Error %	<1E-2	<2E-5	6.66E-5 6%	<2E-5	<1E-4	<2E-4	<2E-5	<3E-5	
	Cs-137 Error %	1.02E+2 2%	2.18E-4 4%	1.28E-4 4%	4.69E-3 3%	6.49E-2 3%	2.76E-1 2%	6.17E-5 7%	9.00E-5 8%	
D	Cs-134 Error %	<2E-2	<1E-5	<7E-6	<1E-5	<5E-5	<9E-5	<1E-5	<1E-5	
· · · · · · · · · · · · · · · · · · ·	SnSb-126 Error %	<1E-1	2.52E-4 2%	2.46E-4 2%	2.28E-4 3%	2.77E-4 9%	<5E-4	2.36E-4 2%	2.33E-4 3%	
	Sb-125 Error %	<3E-1	1.61E-3 3%	1.58E-3 3%	1.45E-3 3%	1.71E-3 8%	1.45E-3 30%	1.52E-3 3%	1.56E-3 3%	
	RuRh-106 Error %	<5E-1	8.52E-4 5%	8.94E-4 4%	8.27E-4 9%	1.48E-3 16%	<2E-3	8.34E-4 5%	8.28E-4 6%	
	Sr-85 Error %				1.82E-4 8%					
	Co-60 Error %	<7E-3	2.57E-3 2%	2.60E-3 2%	2.49E-3 2%	2.69E-3 3%	2.56E-3 3%	2.32E-3 2%	2.54E-3 2%	
	ALO ID Client ID	01-0780 AP101-F0-A	01-0781 AP101L-F3	01-0782 AP101L-F6	01-0783 AP101L-F9	01-0784 AP101L-F11	01-0785 AP101L-F13	01-0786 AP101P-F4	01-0787 AP101P-F8	

Page 1

					•					
ALO ID Client ID	Co-60 Error %	Sr-85 Error %	RuRh-106 Error %	Sb-125 Error %	SnSb-126 Error %	Cs-134 Error %	Cs-137 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
01-0788 AP101P-F13	2.51E-3 2%		7.65E-4 	1.53E-3 3%	2.33E-4 3%	<2E-5	7.40E-5 10%	<4E-5	<7E-5	<2E-4
01-0789 AP101-FComp2-A	2.03E-3 2%		8.51E-4 5%	1.52E-3 3%	2.42E-4 2%	-9E-6 <	9.79E-5 5%	<2E-5	<3E-5	1.46E-4 18%
01-0790 AP101-FComp3-A	2.39E-3 2%		7.77E-4 6%	1.47E-3 3%	2.37E-4 3%	<2E-5	1.09E-4 8%	<4E-5	<5E-5	1.27E-4 20%
01-0791 AP101-FComp4-A	2.36E-3 2%		7.88E-4 5%	1.42E-3 2%	2.27E-4 2%	445555675757575757577777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777<l< td=""><td>2.31E-4 3%</td><td><3E-5</td><td>6.16E-5 22%</td><td>1.20E-4 12%</td></l<>	2.31E-4 3%	<3E-5	6.16E-5 22%	1.20E-4 12%
01-0792 AP101-FD2-A	1.15E-3 2%		<3E-4	4.57E-4 9%	<4E-5	<3E-5	5.93E-3 2%	<7E-5	<9E-5	<9E-5
01-0793 AP101-FD3-A	1.20E-4 3%		<3E-5	2.81E-5 16%	<3E-6	1.43E-5 9%	2.08E-3 3%	<8E-6	<2E-5	<4E-5
01-0794 AP101-FD6-A	4.11E-5 5%		<5E-5	<2E-5	<4E-6	<4E-6	1.61E-3 3%	<1E-5	<2E-5	<6E-5
01-0795 AP101-DI2-A	7.01E-5 5%		<9E-5	<3E-5	<1E-5	<7E-6	2.05E-3 2%	<2E-5	<3E-5	<2E-5
01-0796 AP101-DI5-A	3.16E-5 5%		<3E-5	<1E-5	<2E-6	<3E-6	1.82E-3 3%	<7E-6	<1E-5	<4E-5
01-0797 AP101L-E1-DA	<2E-4		<1E-3	<5E-4	<1E-4	<2E-4	1.21E-2 3%	<4E-4	<5E-4	<1E-3
01-0798 AP101L-E2-DA	<2E-4		<1E-3	<5E-4	<1E-4	<2E-4	1.08E-2 3%	<4E-4	<8E-4	<1E-3
01-0799 AP101L-E3-DA	<3E-2		<3E+0	<2E+0	<1E-1	6.55E-1 6%	2.66E+3 2%	<7E-2	<2E+0	<4E+0
01-0800 AP101L-E4-DA	<1E-1		<2E+1	<2E+1	<1E+0	<7E-1	8.11E+3 2%	<3E-1	<1E+1	<3E+1
					Page 2					

Measured Activities (uCi/ml) with 1-sigma error

4

F.34

Measured Activities (uCi/ml) with 1-sigma error

Am-241 Error %	<2E+1	<2E+0	<2E-2	<2E-2	<2E-2	<2E-2	<2E-3	<7E-3	<3E-3	<7E-4	<2E-1	
Eu-155 Error %	<9E+0	<9E-1	<2E-2	<1E-2	<9E-3	<1E-2	<1E-3	<4E-3	<2E-3	<3E-4	<2E-1	
Eu-154 Error %	<2E-1	<7E-2	<2E-3	<2E-3	<1E-3	<2E-3	<4E-4	<2E-3	<5E-4	<5E-5	<1E-2	
Cs-137 Error %	4.75E+3 2%	3.61E+2 2%	7.83E+0 2%	3.66E+0 3%	2.01E+0 3%	1.32E+0 3%	5.50E-1 3%	3.76E-1 3%	3.59E-1 3%	5.85E-2 3%	4.94E+1 2%	
Cs-134 Error %	<5E-1	<5E-2	<2E-3	<1E-3	<1E-3	<1E-3	<2E-4	<6E-4	<2E-4	<4E-5	<1E-2	
SnSb-126 Error %	х 8 1-	<4E-2	<2E-2	<4E-3	<2E-3	<2E-2	<2E-4	<5E-4	3E-3	<1E-4	А Н -	
Sb-125 Error %	<1E+1	<1E+0	<5E-2	<1E-2	<1E-2	<2E-2	<1E-3	<4E-3	<2E-3	<5E-4	<3E-1	
RuRh-106 Error %	<2E+1	<2E+0	<8E-2	<3E-2	<2E-2	<3E-2	<3E-3	<9E-3	<4E-3	<9E-4	<5E-1	
Sr-85 Error %												
Co-60 Error %	<2E-1	<4E-2	<1E-3	<6E-4	<6E-4	<8E-4	<2E-4	<5E-4	<2E-4	<1E-5	<8E-3	• • •
ALO ID Client ID	01-0801 AP101L-E5-DA	01-0802 AP101L-E6-DA	01-0803 AP101L-E8-DA	01-0804 AP101L-E9-DA	01-0805 AP101L-E10-DA	01-0806 AP101L-E11-DA	01-0807 AP101L-E15-DA	01-0808 AP101L-E18-DA	01-0809 AP101L-E21-DA	01-0810 AP101L-RGN-A	01-0879 AP101L-E7-DA	

Page 3

Date: 6/20/01

Subject: ASR: Hydroxide Analyses for: 6097 S. Fiskum

To: S. Fiskum

From: L. Greenwood JRA

A sample from tank AP-101L-RGN-A was analyzed for the hydroxide content following procedure PNL-ALO-228. Direct sample aliquots were analyzed in duplicate using a Brinkman 636 Auto-Titrator. A 0.1186 N NaOH solution was prepared for use as a standard and sample spike and the titrant was a 0.2040 M HCI prepared solution. Three inflection points were observed for each sample generally corresponding to hydroxide, carbonate, and bicarbonate. The standard hydroxide recovery averaged 95% and a sample spike recovered at 96%. No hydroxide was detected in a reagent blank. The titration curves are included with the report. Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building

Chemical Measurements Center

Hydroxide and Alkalinity Determination

WB76843 Equip # Procedure: PNL-ALO-228 Analyst: Lou Painel 6-21-0/ Reviewer: Lou Leenwood 6-20-01

Summary Report

				Concentration, moles		
RPG #	Client ID	• · · · · · · · · ·	First Point	Second Point	Third Point	
01-0810	AP101L-RGN-A		0.032	0.016		
01-0810	AP101L-RGN-A	Rep	0.027	0.016		
		RPD	18%	3%		
Standard 1			95%			
Standard 2		1	95%			
MS-1015	Matrix spike		96%			
Blank			nd			

Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

A1 ----

ASR # 6097

Project / WP#:	42365 / W58168
ASR#:	6121
Client:	I. Burgeson
Total Samples:	1

	From	То	1
RPL#:01-01203Client ID:"AP1-Tc-O-C"Sample Preparation:PNL-ALO-106/SRPL/ms (
Client ID:	"AP1-Tc-O-C"		
Sample Prepar	ation: PNL-ALO-106/SR	PL/ms (1 mL/25mL)	
	ste with ¹³⁷ Cs removed]		

Procedure:PNNL-ALO-211,"Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).	
Analyst: D.R. Sanders	
Analysis Date (File): 07-16-01 (A0698)	
See Chemical Measurement Center 98620 file: ICP-325-405-1 (Calibration and Maintenance Records)	
M&TE Number:WB73520 360-06-01-029(ICPAES instrument) (Mettler AT400 Balance)	

<u>erry Wagner</u> 8-22-01 Reviewed by <u>MW Mr \$/30/01</u>

Concur

8/22/2001

Page 1 of 4

One sample of AP101 tank waste with ¹³⁷Cs removed, **AP1-Tc-O-C** (RPL# 01-01203), was processed by SRPL using PNL- ALO-106 acid digestion procedure. Sample and duplicate was prepared using 1 mL (weighed) aliquots of liquid material. After digestion the sample was diluted to a final volume of 25mL (weighed). Sample density of liquid before processing was estimated to be about 1.03 g/mL by weighing 1 mL aliquots. See PNL-ALO-106 worksheet in supporting documents for sample preparation information.

Analytes of interest requested for analysis by ICPAES include Al, K and Na. The process blank appears to have a small amount of Al, B, Ba, Fe, Na, Ni, and Si present. Boron, Na, and Si may come from glassware used to digest the samples or from the digestion reagent (nitric acid). The Na and Al concentration in the process blank are less than 0.3% of that found in the samples.

See attached ICPAES Data Report for final results. ICPAES measurement results are reported in $\mu g/mL$ and have been corrected for dilution resulting from sample processing. Analyte concentrations reported other than specifically requested are for information only.

Quality control check-standard results met tolerance requirements for the specific analytes of interest except as noted below. Following is a list of quality control measurement results relative to ICPAES analysis tolerance requirements of the controlling QA plan. LCS/BS, Matrix-spikes and duplicate were prepared with the samples and analyzed. LCS/blank-spike and matrix-spike was prepared using 1mL each of a custom multi-element solution "INT-QC-MCVA-1B" (CMS# 186946) per 25 mL sample digestate volume.

Five fold serial dilution:

All analytes above EQL in samples tested were within tolerance limit of 10% after correcting for dilution except K (14%) and Na (16%). The more dilute aliquot measured may have been measure be for the instrument was sufficiently clean from previous samples high in Na and K. A 10-fold vs 5-fold dilution of the duplicate sample after correction for dilution was well within tolerance limit for both K and Na.

Duplicate RPD (Relative Percent Difference):

The original and duplicate sample was within tolerance limit of $\leq 15\%$ RPD for analytes of interest.

Post-Spiked Samples (Group A):

All post-spiked analytes of interest in samples tested were recovered within tolerance of 75% to 125%.

Post-Spiked Samples (Group B):

 \overline{All} post-spiked analytes in samples tested were recovered within tolerance of 75% to 125%.

8/22/2001

Page 2 of 4

Blank Spike:

Blank-Spike recovery for analytes of interest was within tolerance of 80% to 120% except Na. Measured recovery for Na was about 128%.

Matrix Spiked Sample:

Matrix-Spike recovery for analytes of interest could not be verified because Al, K and Na concentration in the sample was greater than 10 times the concentration of the spike.

Quality Control Check Standards:

Concentration of all analytes of interests are within tolerance limit of \pm 10% accuracy in the check standards: QC_MCVA, QC_MCVB, and QC_SSTMCV.

High Calibration Standard Check:

Verification of the high-end calibration concentration in QC_SST for all analytes contained in the standard is within tolerance of \pm 5% accuracy except K. One of two measurements of K in QC_SST was higher than expected (50 ug/mL) by 8%, The other measurement was higher than expected by 3% that is within tolerance limit of \pm 5%.

Process Blanks:

Concentration of analytes of interest (Al, Na, K) measured in the process blank were all within tolerance limit of \leq EQL or less than \leq 5% of that in the sample. Other analytes detected in the process blank include B, Ni, and Si. The source of analytes detected in the process blank may have come from the glassware or reagents used to process the sample.

Laboratory Control Standard (LCS):

See "LCS/blank spike" above.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- 2) Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically \pm 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times

8/22/2001

Page 3 of 4

detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 μ g/mL (0.5 per cent by weight).

- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

	Multiplier= RPL/LAB #=	25.0 01-1203-PB		125.0 01-1203 @5		125.0 01-1203-DUP	05		
		01-1203-FB				API-TC-0-C			
	Client ID=			API-TC-0-C	$\frac{1}{N_{1}} = \frac{1}{N_{1}} + \frac{1}{N_{1}} = \frac{1}{N_{1}} = \frac{1}{N_{1}} + \frac{1}{N_{1}} = $	7/16/2001			
Det. Limit	Run Date=	7/16/2001		7/16/2001	· · · · · · · · · · · · · · · · · · ·				
(ug/mL)	(Analyte)	(ug/mL)		(ug/mL)		(ug/mL)			
0.025	Ag				Sector Sectors (1995)		a construction of the second second		
0.060	AI	17.0		6,480	a subscription	6,760	a sa a sa waxa yi		
0.250	As								
0.050	В	145		211	а — а — а — а — а — а — а — а — а — а —	208			
0.010	Ba	[0.41]			n de la companya de La companya de la comp				
0.010	Be								
0.100	Bi								
0.250	Са				an an shak		and the second second		and the second sec
0.015	Cd								
0.200	Ce	<u>,</u>							
0.050	Co					*			
0.020	Cr			138		143			
0.025	Cu								
0.050	Dy								
0.100	Eu						1		
0.025	Fe	[1.0]	*****						
2.000	ĸ			28,400		29,800			· · · · · · · · · · · · · · · · · · ·
0.050	La				1.1 1.2 1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		1		· · · · · · · · · · · · · · · · · · ·
0.030	Li			**					
0.100	Mg		a a gun a fha an ta						· · · · · · · · · · · · · · · · · · ·
	Mg		and the second		and the second second				
0.050				[12]		[13]			
0.050	Mo	191	an a	108,000	a ser a de fere	113,000	 Alternative statements 		
0.150	Na			100,000			1		
0.100	Nd		*						
0.030	Ni	[1.9]		[5.8]		332	1		
0.100	P								
0.100	Pb								
0.750	Pd						- · · ·		-
0.300	Rh								
1.100	Ru								
0.500	Sb						-		
0.250	Se			en anti-a ser de la s •••	an a		an she basi she bi she an	nuk bilan <mark>i -</mark> Prusi a	
0.500	Si	142		[320]		[310]	-		
1.500	Sn						-		-
0.015	Sr						-		
1.500	Те				1		-		-
1.000	Th								4
0.025	Ti								
0.500	TI								· · · · · · · · · · · · · · · · · · ·
2.000	U		1						
0.050	v		1]				
2.000	W								
0.050	Y				1				
	Zn				1		1		
0.050	Zn Zr		1		1		1		

Note: 1) Overall error <u>greater than</u> 10-times detection limit is estimated to be within +/- 15%.
2) Values in brackets [] are <u>within</u> 10-times detection limit with errors likely to exceed 15%.
3) "---" indicate measurement is <u>below</u> detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Client:	I. Burgeson	Charge Code/Project:	W58168/42365
ASR Number:	6121	Sample Receipt Date:	06/05/2001
Sample Prep Date:	N/A	Sample Analysis Date:	06/12-13/2001
Analyst:	MJ Steele	A 4	

Preparation Procedure: N/A

. 1 . .

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography"
 M&TE: IC system (WD25214); Balance (360-06-01-031) --- See Chemical Measurement Center
 98620 RIDS IC File for Calibration, Standards Preparations, and Maintenance Records.

Sample (01-01203) Final Results:

1 \	/								
		F ⁽¹⁾	CI	NO ₂	Br	NO ₃	PO ₄	SO4	C ₂ O ₄
RPL Number	Sample ID	μg/ml	µg/ml	μg/ml	μg/ml	μg/ml	µg/ml	µg/ml	μg/ml
:	EQL	53	53	525	53	1,250	105	105	105
01-01203	AP1-Tc-0-C	1,830	1,410	36,200	< 50	117,000	690	3,090	940
01-01203 Dup	AP1-Tc-0-C Dup	1,870	1,490	35,400	< 50	116,000	690	3,150	950
	RPD	2%	6%	2%	n/a	1%	1%	2%	1%
01-01203 MS	AP1-Tc-0-C MS	101%	93%	96%	103%	84%	92%	94%	102%
LLS % recovery		106%	109%	102%	100%	98%	98%	98%	108%
LCS % recovery		107%	108%	103%	105%	101%	101%	100%	110%
⁽¹⁾ The fluoride res	ults should be conside	red the upp	er bound con	ncentration	for the fluor	ide. Signific	ant peak dis	tortion of th	e fluoride
peak suggests the	he presence of co-elut	ing anion(s)	possibly fo	rmate or acc	etate.				

The sample was prepared for ion chromatography anion analysis by dilution at 400-fold (F, Cl, Br, PO₄, SO₄, and C₂O₄), 2000-fold (NO₂) and 5000-fold (NO₃) in order to ensure that the anions were measured within the calibration range. Column overloading prohibited analysis of the sample as dilutions less than 400-fold. The estimated quantitation limits which are based on the lowest calibration standard and the dilutions used for reporting the results are provided in the table.

Q.C. Comments:

<u>Duplicates</u>: No duplicate was provided. However, the sample was split and analyzed in duplicate. The duplicate relative percent difference (RPD) meets the acceptance criteria of <20%.

Matrix Spike (HCV 010328): A matrix spike was prepared and all anion recoveries were within the 75% to 125% recovery acceptance criteria.

<u>Laboratory Control Sample -LSC (Blank Spike)</u>: A Blank Spike (i.e., the spike solution used to prepare the matrix spike samples) was prepared and measured at the same time as the Matrix Spike sample and demonstrated recoveries within the 90% to 110% acceptance criteria.

Low Level Standard -LLS (LCV 010328): A LLS was prepared and analyzed with recoveries meeting the recommended 75% to 125% recovery acceptance criteria.

System Blank/Processing Blanks: Twelve system blanks were processed during the analysis of the liquid sample. No anions were detected in the system blanks above the estimate quantitation level.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Quality Control Calibration Verification Check Standards: Seven mid-range verification standards were analyzed throughout the analysis runs. Except for two oxalate measurements, all anions recoveries were within the acceptance criteria from 90% to 110% for the verification standard. The two oxalate measurement that failed produced recoveries of 111%.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- Routine precision and bias are typically ±15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

Analyst:

N. M. 1. M.

Approval:

Date <u>7-11-01</u> Date 7-17-0/

Archive Information:

Files: ASR 6121 Burgeson.doc

ASR 6105, 6121 Burgeson.xls

Battelle Pacific Northwest Laboratory

Radiochemical Processing Group-325 Building Chemical Measurement Center

Client : I. Burgeson

Cognizant Scientist:

Concur:

JAGueenwood I Trang-le

Date: 7/23/61

01-1203

07/23/01

Date :

Measured Activities (uCi/ml) with 1-sigma error

ALO ID Client ID	Tc-99* Error %	
01-1203 AP1-Tc-O-C	3.71E-2 4%	
01-1203 Lab Dup AP1-Tc-O-C	4.19E-2 4%	
RPD	12%	
Matrix Spike	83%	
Blank Spike	95%	
Blank	<6.E-7	

*Note: Tc-99 was chemically separated without adding sodium dichromate such that the above result only represents the Tc-99 in the sample as a pertechnetate.

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building **Chemical Measurement Center**

Client : I. Burgeson

L.R. Cognizant Scientist: 1000 Concur all

PNL-ALO-450 (GEA) Reference Date: 6/28/01

6/30/01 Date :

Date :

Measured Activities (uCi/ml) with 1-sigma error

ALO ID Client ID	Co-60 Error %			Sn/Sb-126 Error %		Eu-154 Error %	Eu-155 Error %	Am-241 Error %
01-1203	2.23E-3	7.64E-4	1.45E-3	2.33E-4	1.08E-4	<3.E-5	7.35E-5	1.49E-4
AP1-Tc-O-C	2%	5%	2%	2%	6%		18%	12%

01-1203

06/30/01

Battelle PNWD PO Box 999, Richland WA 99352

Analytical Chemistry Group (ACG)

ICP/MS Data Analysis Report

Revision 1

Project / WP#:42365 / W58168ASR#:6121Client:Ingrid BurgesonTotal Samples:1

RPL #	Client ID
01-1203	AP1-Tc-O-C

Procedure: PNL-ALO-280 Rev. 1, Inductively-Coupled Plasma Mass Spectrometric (ICP-MS) Analysis

M&TE Number:WB36913
512-06-01-014ICP/MS, VG Elemental
Mettler AJ100 BalanceAnalyst:James P Bramson

Analysis Date: 9/18/01

Analysis Files: Experiment – 12SEP01 Procedure - 010912a Element Menu - CsTcRb

Revised Report Date: 15 January 2004

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

1*P Alomas* Revised By <u>15 Jano4</u> Date 15 Jundy Date Reviewed By

Page 1 of 3

F.47

Revision

Effective Date January 2004

Description of Change

Text has been added in the appropriate narrative section(s) to address issues surrounding the use of biased standards prepared and provided by the RPL Standards Laboratory to the ICP-MS analytical laboratory (reference: project #98620, memo KN Pool to GH Beeman, 9/15/03).

Page 2 of 3

ASR6121 Narrative Rev1.doc

One sample, AP1-Tc-O-C, submitted for analysis was analyzed on a radioactive-materialcontained ICP/MS for the requested analyte, Tc⁹⁹.

1. Analysis

See attached ICP/MS data reports for final results and run order for the analytical batch. The final results have been corrected for all client and laboratory dilutions performed on the sample during analysis.

2. Quality Control

<u>Duplicate (DUP)</u>. In addition to the duplicate sample submitted, a replicate analysis was also performed. The RPD for both duplicate and replicate analyses met the duplicate RSD criteria of < 15%.

<u>Matrix Spike (MS)</u>. In addition to the matrix spike sample submitted, a post spike was also performed. The spike recovery for both the matrix spike and post spike met the QC criteria of 70% - 130%.

<u>Process Blank (PB), Blank Spike (BS).</u> The PB concentration was below detection limit and MRQ. The BS and a post spike of the PB met the spike recovery QC criteria of 70% - 130%.

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB). The ICB/CCB standards are 1% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than the estimated quantitation limit (< EQL), was met.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV). The ICV/CCV standards met the QC criteria of 90-110%.

Internal Standard (IS). The ISs met the QC criteria of 30% to 120%.

Analytical results generated were influenced by an identified bias in the calibration and calibration verification standards. The bias in the standards caused results for Tc-99 to be biased low for this report. The effect on the results, based on the observed bias, will widen the error band for these results. The error band that should be applied to these results is -10% to +30%.

Page 3 of 3

F.49

Battelle, PNNL, AIAL **ICP/MS Analysis Data Report**

Clíent: Ingrid Burgeson WP/Project: W58168 / 42365 ASR/Log-In: 6121, 01-01203 Report Date: 11/25/01

Reviewed by: <u>Analyst: Ames Gramon 11/27/11</u>

Unless otherwise specified; the results are reported in μ Ci analyte/ml of original sample.

RPL Log-in #	Sample ID	ICP/MS ID	MDL µCi/ml	<u>Tc 99 ± 1SD</u> <i>µ</i> Ci/ml	Rec/RPD %
	1 %HNO₃ 1 %HNO₃ 1 %HNO₃ 1 %HNO₃	ICB CCB1 CCB2 CCB3		< 2.05E-09 < 2.80E-09 < 2.35E-09 < 3.48E-09	
	True Value ICV CCV CCV CCV	ICV CCV1 CCV2 CCV3		1.70E-06 1.62E-06 ± 3.43E-08 1.62E-06 ± 4.61E-08 1.66E-06 ± 4.23E-08 1.82E-06 ± 1.56E-07	95.4%
01-01203-PB 01-01203-PB Post Spike Cond	PROCESS BLANK PROCESS BLANK Post Spike centration Expected	Sample1 Sample2	7.22E-06 7.26E-06	< 7.22E-06 4.70E-03 ± 1.07E-04 4.24E-03	111%
01-01203-BS Matrix Spike Co	BLANK SPIKE	Sample3	7.27E-06	1.28E-03 ± 9.28E-05 1.70E-03	76%
01-01203 01-01203	AP1-Tc-O-C AP1-Tc-O-C replicate	Sample4 Sample5	1.52E-05 1.59E-05	5.01E-02 ± 1.65E-04 4.96E-02 ± 2.20E-04	
01-01203-DUP	AP1-Tc-O-C DUP	Sample6	1.55E-05	5.15E-02 ± 5.16E-04	2.91%
01-01203 Post Spike Cond	AP1-Tc-O-C Post Spike centration Expected	Sample11	1.26E-05	5.90E-02 ± 1.79E-03 8.48E-03	106%
01-01203-MS Matrix Spike Co	AP1-Tc-O-C MS	Sample12	1.29E-05	5.13E-02 ± 1.29E-04 1.70E-03	

MTE: ICP/MS VG (WB36913), Mettler 512-06-01-014 Procedure: PNL-ALO-280 Rev. 1 Analysis Date: 9/18/01 Instrument Filenames: Experiment (12SEP01), Procedure(010912a), Element Menu (CsTcRb)

Date: 6/27/01

Subject: ASR: Hydroxide Analyses for: 6121

or: 01-1203

To: Ingrid Burgeson

From: Larry Greenwood JRO

Sample 01-1203 was analyzed in triplicate for the hydroxide content following procedure PNL-ALO-228. Direct sample aliquots were analyzed using a Brinkman 636 Auto-Titrator. For this analysis, 0.0103 M NaOH solution was prepared for use as a standard and sample spike and the titrant chosen was 0.0203 M HCl. See attached Chemrec_72 for standardization of these reagents.

The results indicated good agreement between the sample and the replicates. The laboratory control standards showed excellent recovery at 102-103% and a matrix spike recovered at 105%. The measured hydroxide concentrations in the samples were well below the MRQ value of 7.5E+4 ug/ml or about 4.4 moles/liter.

Battelle Pacific Northwest Laboratory	,	ASR #		
Radiochemical Processing Group-325 Building				
Chemical Measurements Center		WP#	K88426	
Hydrovide and Alkalinity Determination			··· · · · ·····	

Hydroxide and Alkalinity Determination Procedure: PNL-ALO-228 Equ

Equip # WB76843 Analyst: Lou P. Daraell 7-18-0/ Reviewer: JR Freemard 7-18-01

Summary Report

			Concentration, moles				
RPG #	Client ID	na na Santa Santa Santa Santa Santa Santa Sa	First Point	Second Point	Third Point		
01-1203	AP1-Tc-O-C		2.44	0.53	0.49		
01-1203	AP1-Tc-O-C		2.36	0.48	0.48		
01-1203	AP1-Tc-O-C		2.40	0.46	0.55		
		RSD	2%	7%	7%		
Standard 3 Standard 4 Standard 5			102% 103% 102%				
MS-1203	AP1-Tc-O-C	MS	105%				

Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

Battelle, Pacific Northwest Division Richland, WA **Radiochemical Processing Group**

Client : Burgeson ASR 6121

Cognizant Scientist: L.R. Greenwood

Concur: C. Socked its

Date : 1/23/02 Date: +22-02

filename

Procedure: PNL-ALO-4014, Rev 1 Chem-Chek model KPA 11R uranium analyzer Analysis date 1/8/02

Measured Concentration (ug/ml) with 1-sigma error

ALO ID Client ID	Uranium µg/ml	⊦/- %	Detection Limit µg/mL			
01-1203 AP1-Tc-O-C		2%	4E-2			
01-1203 DUP AP1-Tc-O-C	8.71E-1	2%	4E-2			
RPD	12%					
Matrix Spike (01-1613)	95%					
LCS	100%					
Blank	4.06E-3	2%				

The detection limit is corrected for the sample dilutions. The blank did not undergo as many dilutions and consequently has a lower detection limit than the samples.

1/22/2002

01-1203

F.53

Project No. <u>42365</u>

Internal Distribution G. Smith S. Fiskum File/LB

- 11 -	Battelle	
Date	May 3, 2002	
То	I. Burgeson	
From	L. R. Greenwood JRM	

Subject <u>Radiochemical Analyses for AP-101 Composite and</u> <u>Tc-Ap1-Eluate – ASR 6192</u>

A sample of the composite from tank AP-101 and the Tc-Ap1-Eluate were analyzed for gamma emitters, ³H, ⁹⁰Sr, total alpha, Pu/AEA, ²⁴¹Pu, ¹⁵¹Sm, Am/Cm, and ⁹⁹Tc according to ASR 6192. Analyses were performed on the as received samples. The attached reports list measured analyte activities in units of μ Ci/ml. The reported errors (1- σ) represent the total propagated error including counting, dilution, yield, and calibration errors, as appropriate. Laboratory and process blank values given with each analysis are the best indicators of the method detection limits, taking into account the actual sample sizes and counting times used for each analysis.

Gamma Spectrometry

Sample aliquots were directly counted for gamma emitters according to procedure PNL-ALO-450. Since no sample preparation was involved, no laboratory blanks or spikes were prepared for these analyses other than the standard laboratory control samples and background counts. In order to meet the requested detection limits, the samples were counted for up to 14 hours. The Tc-Ap1-Eluate showed significant activity for ^{95m}Tc presumably used in the Tc removal process. ⁵⁴Mn and ⁹⁵Nb could not be detected in this sample due to strong interference from ^{95m}Tc. The requested MRQ values were met except for ¹⁵⁴Eu and ¹⁵⁵Eu for the composite due to the very high ¹³⁷Cs activity.

See.

Total Alpha

The total alpha activity was determined by evaporating small aliquots of the samples onto planchets according to RPG-CMC-4001. The samples were then counted on Ludlum detectors according to RPG-CMC-408. The composite results have a high counting uncertainty and alpha activity could not be detected in the eluate. Summing the individual alpha emitters, as discussed below, provides a better estimate of the total alpha activity. No alpha activity was seen in the laboratory blank and blank spike and matrix spike recoveries were acceptable. The sum of the alpha emitter activities is well below the requested MRQ value.

M. W. Urie May 3, 2002 Page 2

Plutonium, Americium, and Curium

The Pu and Am/Cm separations were performed according to PNL-ALO-417. The separated fractions were precipitation plated according to PNL-ALO-496 and the samples were counted by alpha spectrometry according to PNL-ALO-422. Plutonium recovery was traced with ²⁴²Pu. The curium is known to follow the americium and both these isotopes were traced with ²⁴³Am. Both the plutonium and americium radiochemical yields were excellent, averaging about 95%. Duplicate results are in good agreement. Neither Am or Cm were detected in the laboratory preparation blank and ²³⁹Pu was negligible relative to the sample activity. The LCS and matrix spike recoveries were 85 to 98% for both Pu and Am. Measured values for the Am, Cm, and Pu isotopes are well below the requested MRQ values. The sum of the alpha emitters given in the last column of the report is the best indicator of the total alpha content for these samples.

Plutonium-241

The ²⁴¹Pu was measured by placing the precipitation mounts from the Pu/AEA method described above into liquid scintillation cocktail and counting according to procedure PNL-ALO-474. Blank and matrix spikes were prepared and handled along with the Pu/AEA samples and a ²⁴¹Pu standard was used to determine the liquid scintillation counting efficiency. The Pu/AEA radiochemical yields determined with a ²⁴²Pu tracer were used for the ²⁴¹Pu recovery for each sample. The LCS and matrix spike recoveries were 100% and 102%, respectively. No contamination was seen in the laboratory blank. No MRQ was specified for this isotope.

Samarium-151

Rare earth elements, including samarium, follow the Am/Cm fraction in the procedure PNL-ALO-417 described above. The Am/Cm-AEA mounts were placed into scintillation cocktail and counted according to procedure PNL-ALO-474. A ¹⁵¹Sm spike was added prior to the chemical separations and the ²⁴³Am tracer was used to determine the radiochemical yields. The LCS recovery was 86%; however, the matrix spike recovery was only 63% possibly indicating a low bias in the measurement. Since Eu will also be separated along with the Sm, the ¹⁵⁴Eu and ¹⁵⁵Eu activities (about 7% of the total activity) determined by gamma energy analysis were subtracted from the measured ¹⁵¹Sm activity. All of the samples had counts above background in the energy region expected for ¹⁵¹Sm. However, the beta energy spectra did not show any peak corresponding to the energy region expected for ¹⁵¹Sm. Hence, the presence of ¹⁵¹Sm in these samples is doubtful. No MRQ was specified for this isotope.

Strontium-90

The Sr separation was performed according to PNL-ALO-476 and radiochemical yields were traced with ⁸⁵Sr. The separated fractions were then beta-counted according to RPG-CMC-408 and gamma counted according to PNL-ALO-450 (for ⁸⁵Sr determination and ¹³⁷Cs impurity assessment). No ⁹⁰Sr was found in the laboratory preparation blank. The samples were analyzed in two batches since the first attempt with the composite failed to detect 90Sr and did not meet the requested MRQ value. The LCS and matrix spike recoveries were 99% and 95%, respectively, for the batch with the eluate and 127% and 110%, respectively, for the batch with the composite. No 137Cs

M. W. Urie May 3, 2002 Page 3

contamination was seen in the beta spectra for the eluate; however, some contamination was detected with the composite and the data were corrected accordingly. The high LCS recovery has a very high uncertainty since the spike activity was too low relative to the sample activity. The measured activities were well below the requested MRQ value.

Tritium

Tritium was distilled from the samples according to procedure PNL-ALO-418 and measured by liquid scintillation counting according to procedure PNL-ALO-474. The samples were analyzed in two batches since the first batch showed beta contamination (probably ⁹⁰Sr) in some of the beta energy spectra. The LCS recovery was 93% for the first batch; however, the matrix spike was highly contaminated with a higher energy beta emitter such that the tritium yield could not be determined. The second batch had an LCS recovery of 96% and a matrix spike recovery of 79%. The laboratory blanks showed weak tritium contamination for one batch and no tritium for the second batch. No MRQ value was specified for this isotope.

Uranium

Uranium was measured by kinetic phosphorescence analysis (KPA) according to procedure PNL-ALO-4014. The samples were acid digested, taken to dryness, and dissolved in 0.5 M HNO₃ prior to analysis to eliminate potential interferences. Both samples were analyzed in duplicate with good reproducibility. The eluate contained very little uranium, only slightly above the level seen in the laboratory blank. However, the level of uranium in the eluate is a factor of about 1.E+5 below the requested MRQ value of 600 mg/L (or ug/ml). The laboratory control standard recovery was 100%. The matrix spike (made from sample 01-1613, ASR 6162) had a 95% recovery.

Nickel-63

Direct sample aliquots were analyzed for ⁶³Ni according to procedure PNL-ALO-495. The separated nickel fractions were counted by liquid scintillation counting according to procedure PNL-ALO-474. The beta energy spectra did not indicate any significant contamination with other beta emitters. The AP101L-E-composite sample showed a low level of ⁶³Ni; however, no activity could be detected in the Tc-Ap1-Eluate. Sample duplicates for the composite showed good agreement with an RPD value of 2%. The laboratory control standard recovery for a ⁶³Ni standard was 86% and the matrix spike recovery was 89%. A laboratory blank did not show any activity above background. No MRQ value was specified for ⁶³Ni.

10/01/01 Sb-125 01-1842 0/1/0 Error % Tc-95m Error % <9.E-4 <4.E-4 2.95E-2 6.25E-1</p> <7.E-4 <2.E-1 <4.E-1 2% Sn-113 <3.E-4 Error % Error % <2.E-1 Tc-95 <2.E-2 Date : Date : 2% Ru-106 <3.E-3 Th-232 <2.E-1 Error % Error % Measured Activities (uCi/ml) with 1-sigma error <7.E-1 Measured Activities (uCi/ml) with 1-sigma error Ru-103 <3.E-4 Eu-155 Error % Error % <2.E-1 <3.E-1 Error % Error % Eu-154 <3.E-2 <7.E-5 Nb-95 <2.E-2 * *Not detectable due to strong interference from Tc-95 and Tc-95m Eu-152 Error % Error % <6.E-5 <2.E-2 <1.E-2 <2.E-4 Υ-88 Page 1 Error % <3.E-5 Ce-144 Error % <2.E-3 <5.E-3 Co-60 <0.6 reemer 7.65E+2 <3.E-2 Cs-137 Error % Error % <5.E-5 <2.E-4 Fe-59 2% 249-6 Radiochemical Processing Group-325 Building Mn-54 Error % <2.E-2 Cs-134 Error % 1.56E-1 <3.E-4 %9 **Battelle Pacific Northwest Laboratory** Z.R. M Radioanalytical Applications Team SnSb-126 4.15E-3 10% Error % 2.69E-1 Error % <2.E-3 Cr-51 <0.9 19% Concur: Cognizant Scientist: Client : Burgeson AP101L-E-Comp AP101L-E-Comp Tc-Ap1-Eluate Tc-Ap1-Eluate Client ID Client ID 01-1843 01-1842 01-1842 01-1843 ALO ID ALO ID

F.57

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team 01-1842

4/26/2002

Client : Burgeson

Cognizant Scientist:	LR freemord	Date :	5-2-02
Concur :	C-Sedergue	Date :	4-26-22

Reference Date: Sept. 26,2001 @11:24 a.m. for Beta Reference Date: Sept. 20 and 26, 2001 for H-3 Reference Dates: Oct. 30,2001 for 01-1843; Sept. 27 for 01-1842 for Sr-90 Reference Date: Feb 12, 2002 for Ni-63

Mea	sured Activities (uCi/ml) wit	th 1-sigma	error Rerun	
ALO ID Client ID	Beta Error +/-	H-3 Error +/-	Sr-90 Error +/-	Sr-90 Error +/-	Ni-63 Error +/-
01-1842 AP101L-E-Comp	8.07E+2 4%	1.73E-4 10%	2.91E-2 3%	2.84E-2 5%	8.92E-4 1%
01-1842 DUP AP101L-E-Comp	7.87E+2 4%	1.70E-4 22%	2.98E-2 3%	2.79E-2 5%	8.73E-4 1%
RPD	3%	2%	2%	2%	2%
01-1843 Tc-Ap1-Eluate	6.48E-1 3%	<5.E-5	1.26E-4 4%		<3E-5
01-1843 Dup Tc-Ap1-Eluate					<3E-5
Matrix Spike*	74%	79%	95% 127%	**	89%
Blank Spike	103%	96% 93%	99% 110%	108%	86%
Blank	<5.E-2	1.47E-5 48%	<4.E-1 <2.E-4	<2.E-4	<3E-5
					an in the test

*The H-3 and Sr-90 measurements were performed in two different batches.

F.58

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

Client: Burgeson

Cognizant Scientist: Date : kan ۵ Concur: Date : 101

Reference Date: Sept. 18,2001 @12:00 p.m. for Alpha Reference Date: Sept. 26,2001 @8:00 a.m. for Pu/Am

Measured Activities (uCi/ml) with 1-sigma error

ALO ID Client ID	Alpha Error +/-	Pu-239+ Pu-240 Error +/-	Pu-238 Error +/-	Am-241 Error +/-	Cm-243+ Cm-244 Error +/-	Cm-242 Error +/-	Sum of Alpha Error +/-	
01-1842 AP101L-E-Comp	9.13E-4 11%	4.70E-4 2%	5.89E-5 4%	3.18E-5 3%	6.59E-6 6%	<2.E-7	5.67E-4 2%	
01-1842 DUP1 AP101L-E-Comp		4.56E-4 2%	6.11E-5 4%	2.91E-5 3%	8.00E-6 6%	<2.E-7	5.54E-4 2%	
RPD	•	3%	4%	9%	19%		2%	
01-1842 DUP2 AP101L-E-Comp		4.78E-4 2%	6.20E-5 2%					· · · · · · · · · · · · · · · · · · ·
RPD		5%	1%	• 				
01-1843 Tc-Ap1-Eluate	<2.E-6	1.62E-7 18%	<6.E-8	7.22E-7 9%	<4.E-8	<4.E-8	8.84E-7 8%	
Matrix Spike	84%	85%		87%				
Blank Spike	105%	98%	ente industria in ante de la composición de la composición de la composición de la composición de la composición La composición de la c	93%				
Blank	<2.E-6	3.19E-7 32%	<3.E-7	<5.E-7	<3.E-7			

Page 1 F.59 01-1842

10/04/01

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team 01-1842 Rev. 1 01/31/03

Client : Burgeson ASR: 6192

Cognizant Scientist:

Concur:

JAJuenno C. Sidery uns

Date: 1/31/03 Date: 1-31-

Reference Date: Oct. 5, 2001 @ 9:08 a.m. for Pu-241 Reference Date: Nov. 2, 2001 @12:00 p.m. for Sm-151

Measured Activities (uCi/ml) with 1-sigma error

ALO ID Client ID	Pu-241 Error +/-	Sm-151* Error +/-
01-1842 AP101L-E-Comp	3.28E-3 8%	1.16E-4 7%
01-1842 DUP AP101L-E-Comp	2.83E-3 8%	1.17E-4 7%
01-1842 Rep AP101L-E-Comp	3.20E-3 8%	8.38E-5 9%
RSD	8%	18%
01-1843 Tc-Ap1-Eluate	<1.E-5 3%	7.81E-6 18%
Matrix Spike (01-1842)	102%	62%
al print, and		
Blank Spike	100%	83%
Blank	<5.E-2	<4.E-6

*Part of the activity reported as Sm-151 may be from other beta emitters. The Sm-151 counting mounts had only a little beta activity and no Sm-151 beta peak.

Note: The Sm-151 results were revised due to the discovery of an error on the preparation of the Sm-151 standard that was used to determine the liquid scintillation counting efficiency.

Page 1

F.60

5. Fiskum

Date March 19, 2002

To I. Burgeson

From L. R. Greenwood fff

Subject ¹⁴C Analyses for AP-101 IX Eluents – ASR 6192

Direct samples of the ion exchange eluents from tank AP-101 with Cs and Tc removed were analyzed for ¹⁴C according to procedure PNL-ALO-482. Following sample combustion, the collected ¹⁴CO₂ was counted by liquid scintillation counting according to procedure PNL-ALO-474. The attached report lists the measured ¹⁴C activities in units of μ Ci/ml. The reported errors (1- σ) represent the total propagated error including counting, dilution, yield, and calibration errors, as appropriate. The ¹⁴C spike recovery through the combustion and collection procedure averaged 95% for three standards. A matrix spike showed poor recovery at 70%. Subsequent analyses indicated that the acidity of the sample caused some decomposition of the ¹⁴C spike prior to combustion. Duplicate analyses for sample AP101L-E-Comp showed reasonable agreement taking into account the very high uncertainties in the counting statistics. No activity was detected in the laboratory blank. Periodic rinses analyzed with the batch of samples did not show any significant ¹⁴C retention by the furnace and gas collection system. No MRQ value was provided on the ASR.

Internal Distribution G. Smith S. Fiskum File/LB

Project No. 42365

Battelle Pacific Northwest National Laboratory

Radiochemical Science & Engineering -325 Building

C-14 Procedure PNL-ALO-482; Keference Date: 3/8/02

Client : Burgeson ASR 6192

Cognizant Scientist:

03/15/02

Date :

Date :

Concur :

Measured Activities (uCi/ml) with 1-sigma error

10

ALO ID Client ID	C-14	Error%	MDA
01-1842 AP101L-E-Comp	2.88E-5	26%	2.E-5
01-1842 DUP AP101L-E-Comp	1.86E-5	39%	2.E-5
RPD	43%		
01-1843 Tc-Ap1-Eluate	2.10E-5	34%	2.E-5
Lab Blank			2.E-5
Lab reagent spike	95%	Average of th	nree LCS spikes
Matrix Spike 01-1842*	70%		

*Sample matrix possibly decomposed spike prior to combustion

Page 1 of 1 F.62 File: 01-1842.xls

Battelle – PNNL / AIAL Inorganic Analysis / 320-ICP/MS Data Report

Project / WP#:	42365 / W57922
ASR#:	6192
Client:	Mike Urie
Total Samples:	2

RPL #	Client ID
Blk-1613	Reagents only
01-1842	AP101L-E-COMP

Procedure: PNL-SC-01 Rev. 1, *Inductively Coupled Plasma Mass Spectrometric (ICP-MS)* Analysis

M&TE Number:	WB36913 ICP/MS, VG Elemental 512-06-01-014 Mettler AJ100 Balance
Analyst:	Orville Thomas Farmer III
Report Written by:	Orville Thomas Farmer III
Analysis Date(s):	9/23/01
Analysis Files:	Experiments – 17NOV01 Procedures – blk-1613, blk-1613 dup, blk-1613 trp, 01-1842, 01-1842 dup, 01-1842 trp. Element Menus – CS-ISO

Laboratory Record Book (LRB):LRB BNW 56465: Sample login:p.60LRB BNW 56465: Cs Isotopics assay:p.60

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

and ell 11/28/01

Cull 28200001 Concur

1. Analysis

Two liquid samples for Cs isotopic analysis were received from the client and were analyzed by HPIC-ICP/MS. All samples were diluted by a factor of 200 as received and screened to determine an estimate of the Cs concentration. The screening results were used to determine optimum Cs response during the on-line separation into the ICP/MS.

A Dionex HPIC system was configured on-line with the ICP/MS for the separation of Ba and Cs isotopes. A CS3 cation column was used as the stationary phase and a gradient eluent of nitric acid was used as the mobile phase for this separation. Data was collected using peak-hopping data acquisition parameters.

ICP/MS results for all solutions are reported in **atomic abundance** and are instrument blank corrected. In Table 1, reported results are in atomic abundance, the precision of the analysis was determined by analyzing three separate aliquots of a single sample. These three solutions were analyzed to measure the separation and analysis procedures accuracy and precision.

File Name	Cs-133 +/- 1 sigma	Cs-135 +/- 1 sigma	Cs-137 +/- 1 sigma
01-1613 BLK	1.0	N.D.	N.D.
01-1842	0.6060 +/-0.00012	0.1543 +/-0.00039	0.2397 +/-0.00094
01-1842 DUP	0.6058 +/-0.00073	0.1543 +/-0.00026	0.2400 +/-0.00056
01-1842 TRP	0.6056 +/-0.00064	0.1543 +/-0.00020	0.2401 +/-0.00049
Average Ratio Standard Dev. %RSD	0.60581 0.00020 0.033	0.15429 0.00001 0.006	0.23989 0.00021 0.086

Table 1: Cs Atomic Abundance

N.D. Blanks were analyzed in the same manner as the samples. The response of the blanks was below instrument detection for Cs-135 and Cs-137 and no Cs ratios were calculated. The 01-1613 blank solution was used only to subtract Cs-133 due to the preparation process. Currently there does not exist a known total Cs check sample and therefore a triplicate is used to measure precision of the procedure.

QC Summary:

Duplicate (DUP): A duplicate was not submitted.

Matrix Spike (MS): No post matrix spike was analyzed for this work.

Post Spike (PS): Not a QC requirement.

<u>Preparation Blank (PB) and Laboratory Control Standard (LCS/BS)</u>: A preparation blank was submitted and analyzed three times and meet the criteria of being < 5% of the measured concentration in the samples.

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB): Not a QC requirement.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV): Not a QC requirement.

Internal Standard (ISTD): Not a QC requirement.

ASR-6192: Building 329/ Room 115/File

Battelle Pacific North Radiochemical Proce Radioanalytical Appl	essing Group-325 Building		01-1842		
Client : Burgeson					
Cognizant Scientist: Concur :	C. Soderguns (L.R. Scenwood 1	-6-01 -13-0			
	7 and 1113162654 (both located				
ALO ID Client ID	Measured Density ± 1s				•
01-1842 AP101L-E-Comp	1.017 g/mL ± 0.5%			* **	
01-1843 Tc-Ap1-Eluate	0.996 g/mL ± 0.5%				
Density was measu aliquots were weigh	red by weighing several aliquots ed on a balance with a resolutio	s dispensed from a on of ± 0.0001g.	1 mL pipet. The		
	ked by weighing five aliquots of		ind it delivered 1.0)0	

mL to within 0.2% (1s)

•

Page 1

Battelle, Pacific Northwest Division Richland, WA 1 **Radiochemical Processing Group**

Client : Burgeson ASR 6192

cientist: Z.R. Greenwood Date: 1/23/02 Concur: C. Soclerg. Date: 1-22-02 Cognizant Scientist:

Procedure: PNL-ALO-4014, Rev 1 Chem-Chek model KPA 11R uranium analyzer Analysis date 1/8/02

Measured Concentration (ug/ml) with 1-sigma error

ALO ID	Urani	um	Detection
Client ID	µg/ml	+/-%	Limit (µg/mL)
01-1842 AP101L-E-Comp	1.99E+2	4%	4E-2
01-1842 DUP AP101L-E-Comp	2.12E+2	4%	4E-2
RPD	6%		
01-1843 Tc-Ap1-Eluate	6.50E-3	2%	4E-4
01-1843 DUP Tc-Ap1-Eluate	7.08E-3	2%	4E-4
RPD	9%		
Matrix Spike (01-1613)	95%		
LCS	100%		
Blank	4.06E-3	2%	

Page 1 of 1

F.66

filename 01-1842

1/22/2002

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Client:	I. Burgeson	Charge Code/Project:	W58950 / 42365
RPL Numbers:	01-01613, 01842, 01843	ASR Number:	6162 and 6192
Analyst:	MJ Steele	Analysis Date:	October 17, 2001

Procedure: PNL-ALO-381, "Direct Determination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method"
 M&TE: Carbon System (WA92040); Balance (360-06-01-023)

	Second Second		TIC			тос		тс	;
RPL Number	Sample ID	MDL µgC/mL	Results µgC/mL	RPD/ RSD	MDL µgC/mL	Results µgC/mL	RPD/ RSD	Results µgC/mL	RPD
01-01613	TC-AP1-EFF-Comp	16	5,250		44	1,630		6,880	
01-01613 Dup	TC-AP1-EFF-Comp	16	5,280	0.6% / 0.4%	44	1,560	4.4% / 3.1%	6,840	1%
01-01613 MS	Recovery		100%			98%		100%	1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1
01-01842	AP101L-E-Comp	11	<11		30	<30		< 41	
01-01843	TC-AP1-Eluate	8	31		22	150		180	
Blank Spike/LCS	Recovery		102%			103%			

Analysis Results

RPD = Relative Percent Difference RSD = Relative Standard Deviation

The TOC/TIC analyses of the samples submitted under ASRs 6162 and 6192 are to be performed by both the hot persulfate and furnace methods. This report presents the results from the hot persulfate wet oxidation method. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92-95°C for TOC, all on the same sample, with TC being the sum of the TIC and TOC.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-381.

Q.C. Comments:

The TIC analysis uses calcium carbonate and the TOC uses α -D-Glucose as the calibration, laboratory control, and matrix spike standards. (The JT Baker, Aldrich, Sigma, and Mallinckrodt chemical lot numbers and Chemical Measurement System numbers are provided on the raw data benchsheets).

The QC for the methods involves calibration blanks, sample duplicates, laboratory control sample, and matrix spikes per analysis batch (i.e., liquids and solids). The ASR indicates that the analyses are to be performed per the QA Plan "Conducting Analytical Work in Support of Regulatory Programs", Sections 4 and 5. The performance of the QC samples is compared to this Plan as well as the additional QC requirement defined in Table 1-5 (ASR 6192). ASR 6192 provided more stringent duplicate precision acceptance criteria than the QA Plan (i.e., <15% RSD versus <20% RPD); the LCS and matrix spike acceptance criteria are the same.

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Laboratory Control Sample (LCS)/Blank Spike(BS): A LCS/BS was analyzed with the samples. The LCS/BS recovered at 102% for the TIC and 103% for the TOC, well within the acceptance criteria of 80% to 120%.

<u>Matrix Spike</u>: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. A matrix spike sample was prepared using sample TC-AP-EFF-Comp. The matrix spike recovery for TIC was 100% and for TOC 98%, both well within the acceptance criteria of 75% to 125% recovery.

<u>Duplicates</u>: The precision between the duplicates (replicates), as demonstrated by the Relative Percent Difference (RPD) between sample and duplicate. The TIC and TOC RPD results are within the QP Plan acceptance criteria of <20% RPD. Besides the RPD, the relative standard deviation (RSD) was calculated (based on two measurements). The RSD for the TIC (0.4%) and the TOC (3.1%) are within the TOC and the TIC/CO₃ acceptance criteria defined in Table 1-5 for samples submitted under ASR 6192.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- Routine precision and bias are typically ±15% or better for non-complex samples that are free of interferences.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and RPDs are not calculated for any results less than 5 times the MDL. The analysis MDLs (total ug C) are based on 3 times the standard deviation of a set of historical data. The sample MDLs (in ug C/ml or ug C/g) are calculated by using the analysis MDL adjusted for the sample volume or weight.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis. The system MDL is based on the attached pooled historical blank data. The evaluation and calculation of the system MDL is included in the data package.

Report Prepared by:

Review/Approval by:

Date 10-19-01

Date 10-22-01

Excel Archive File: ASR 6162 6192 HP.xls

F.68

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

Client	IBurgeson	Charge Code/Project	W58950 / 42365
RPL Numbers:	01-1613, 01-1842, 01	1-1843 ASR Number:	6162/6192
Analyst:	MJ Steele	Analysis Date:	9/26 & 10/04, 2001

Procedure: PNL-ALO-380, "Determination of Carbon in Solids Using the Coulometrics Carbon Dioxide Coulometer"

M&TE: Carbon System (WD13071); Balance (360-06-01-023)

	10		- C ALCOW				
		TIC (a)	TIC (b)	TOC	TOC	TC	TC
1		MDL	Results	MDL	Results	MDL	Results
RPL Number	Sample ID	ugC/mL	ugC/mL	ugC/mL	ugC/mL	ugC/mL	ugC/mL
01-01613	Tc-AP1-EFF-Comp	90	3,450	350	3,450	90	6,900
01-01842	AP101L-E-Comp	90	40	180	180	90	220
01-01843	Tc-AP1-Eluate	90	80	180	300	90	380
01-01843 Dup	Tc-AP1-Eluate	90	150	180	250	90	400
	RPD				n/a	5	n/a
	RSD				n/a		n/a
01-01843 MS	Tc-AP1-Eluate				46%		101%
01-00973 MS ^(c)	AW101 Feed		A Station of		98%		100 Carl

TOC/TIC/TC Results

n/a = not applicable (RPD not calculated, since results not >5x MDL)

(a) TIC MDL set to TC MDL

(b) TIC is determined by difference (TC - TOC)

(c) Additional MS analyzed in TOC analysis batch

The TOC/TIC analyses of the samples submitted under ASRs 6162 and 6192 were to be performed by both the hot persulfate and furnace methods. This report presents the results from the furnace oxidation method and the results are compared to the results obtained from the hot persulfate method. Determination of total organic carbon (TOC) is performed by combusting an aliquot of the sample (solids or liquid) in oxygen at 750 °C for 30 minutes. The total carbon is determined on another aliquot of the sample by combusting at 1000 °C for 30 minutes. The total inorganic carbon is obtained by difference.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-380.

Q.C. Comments:

The calibration and QC standards for TC and TOC analysis are liquid or solid carbon standards or pure chemicals from JT Baker, Aldrich, Sigma, and Mallinckrodt. The identification of the standards and their Chemical Management System (CMS) numbers are included on the raw data benchsheets.

ASR 6162 6192 Burgeson F.doc

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

The coulometer analysis system calibration is checked by analyzing calibration standards at the beginning, middle, and end of each day's run. The average recovery from these calibration check standards is applied as a correction factor to the 'raw data' results obtained for the samples. The average recovery for the two analysis days was 99% for TOC and 96% for TC.

System blanks were analyzed similarly to the calibration check, averaged, and subtracted from the sample 'raw data' results prior to calculating the final reported result. The TOC determination produced an average blank of 25 μ gC and the TC determination produced an average blank of 25 μ gC for 5 blank determinations.

For each days analysis run, the QC for the analyses include sample duplicates, blank spikes (as a laboratory control sample), and matrix spikes. The ASRs indicate that the analyses are to be performed per the QA Plan "Conducting Analytical Work in Support of Regulatory Programs", Sections 4 and 5. The performance of the QC samples is compared to this Plan as well as the additional QC requirement defined in Table 1-5 (ASR 6192). ASR 6192 provided more stringent duplicate precision acceptance criteria than the QA Plan (i.e., <15% RSD versus <20% RPD); the LCS and matrix spike acceptance criteria are the same.

<u>Blank Spike/Laboratory Control Sample</u>: The BS/LCS was within acceptance criteria of 80% to 120% required by governing QA Plan for both the TC and TOC analysis.

<u>Duplicates</u>: The precision between the duplicates for the TC, as demonstrated by the RPD and RSD could not be determined, since the sample selected for duplicate analysis had insufficient carbon concentration.

<u>Matrix Spike</u>: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The TC MS prepared from "Tc-AP1-Eluate" demonstrated a recovery of 101%; however, the TOC MS prepared from the same sample had a recovery of 46% (significantly below the acceptance criteria of 75% to 125%.) The reason for the low TOC recovery is unknown. Another TOC MS sample (01-00973) demonstrated a recovery of 98%.

	Line - Aller	TIC HP	TIC Furn	TOC HP	TOC Furn	TC HP	TC Furn
		Results	Results ^(a)	Results	Results	Results ^(b)	Results
RPL Number	Sample ID	ugC/mL	ugC/mL	ugC/mL	ugC/mL	ugC/mL	ugC/mL
01-01613	Tc-AP1-EFF-Comp	5,250	3,450	1,630	3,450	6,880	6,900
01-01842	AP101L-E-Comp	<11	40	<30	180	< 41	220
01-01843	Tc-AP1-Eluate	31	80	150	300	180	380

Furnace Results Compared to Hot Persulfate Results

a) TIC Furn is determined by difference (TC - TOC)

b) TC HP is determined by sum (TIC + TOC)

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

The two method appear to produce comparable results for TC for sample "Tc-AP1-EFF-Comp." However, there are significant differences between the TIC and TOC results reported by each method. The reason for the discrepancy between the hot persulfate method and furnace method is unknown, but it appears that the inorganic carbon, perhaps in the form of easily oxidized metal carbonates, is being combusted at 750 °C (as TOC) with the furnace method. Typically, the furnace method provides the best TC results and the hot persulfate the best TIC results, thus the TOC would be the difference between these measurements. The carbon concentrations in the other samples are to near the MDLs to compare; however, the furnace method measures higher concentrations than the hot persulfate method for all TIC, TOC, and TC.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- 3.3. Routine precision and bias are typically ±15% or better for non-complex samples that are free of interferences.
- For both the TC and TOC, the analysis Method Detection Limit (MDL) is based on the standard deviation calculated from the number (n) of system blanks analyzed with the batch of samples. The standard deviation is multiplied by the Student's *t* values for n-1 degrees of freedom to establish the daily MDL. The sample MDL (in ug C/ml or ug C/g) are calculated by using the analysis MDL adjusted for the sample volume or weight.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and RPDs are not calculated for any results less than 5 times the MDL.

Date 12-19-01

Review/Approval by:

Report Prepared by:

Raw Data Calculation/Archive Information: ASR 6014 6104 5105 6106 6107 6155 6162 6192.xls

Wt% Oxides

Test Plan: ASR 6162 & 6192

Date: 10/15/2001

) AP101L-E-Comp (01-01842) Tc-AP1-Eluate (01-01843)	Trip Comp Comp-Dup Comp-Trip Eluate Eluate-Dup Eluate-Trip	92 17.5248 16.3380 16.1260 15.6910 17.1335 16.8034	51 18.5238 17.2706 17.1273 16.6516 18.1011 17.3295	59 0.9990 0.9326 1.0013 0.9606 0.9676 0.5261	57 17.5282 16.3413 16.1292 15.6916 17.1339 16.8038	55 0.0034 0.0033 0.0032 0.0006 0.0004 0.0004	33 17.5287 16.3400 16.1321 15.6921 17.1360 16.8065	11 0.0039 0.0020 0.0061 0.0011 0.0025 0.0031
c-AP1-Eluate	te Eluate-I	10 17.133				_		
ĭ	Elua	15.69	16.65	0.96(0.00		
-01842)	Comp-Trip	16.1260		1.0013	16.1292	0.0032		0.0061
E-Comp (01	Comp-Dup	16.3380	17.2706	0.9326	16.3413	0.0033	16.3400	0.0020
AP101L-	Comp	17.5248	18.5238	0.9990	17.5282	0.0034	17.5287	0.0039
1-01613)	Comp-Trip	15.8092	16.4751	0.6659	16.0157	0.2065	15.9233	0.1141
Tc-AP1-Eff-Comp (01-01613)	Comp-Dup Comp-Trip	15.8066	17.0363	1.2297	16.1838	0.3772	16.0148	0.2082
Tc-AP1	Comp	16.6506	17.8570	1.2064	17.0243	0.3737	16.8558	0.2052
	units	ő	D	0	0	5	0	g
Crucible Data	Description	Pre-fired Crucible Tare	Crucible + wet material	net wt. wet material	Stable drv wt. @ 105 deg C.	net drv wt. @ 105 deg C.	Total Wt. after 1000-1050 deg C.	Net Wt. after 1000-1050 deg C.
	Sten #	12	12	1 2	. «	N/A		N/A

			TC.AD1	Tc.AP1_Eff_Comn (01-01613)	11-01613)	AP1011 -	AP1011-F-Comp (01-01842)	01842)	Tc-AP	Tc-AP1-Eluate (01-01843)	01843)
					101010-11						
E Sten	Description	units	Comp	Comp-Dup	Comp Comp-Dup Comp-Trip	Comp	Comp-Dup	Comp-Trip	Eluate	Comp Comp-Dup Comp-Trip Eluate Eluate-Dup Eluate-Trip	Eluate-Trip
	Wt% Sample after 105 deg C	%	31.0%	30.7%	31.0%	0.340%	0.354%	0.320%	0.062%	0.354% 0.320% 0.062% 0.041%	0.076%
		U.V	20 00/2			0338%			0 060%		
		AVE	0/ 2.00			~~~~~			2000		
		Std. Dev.	0.2%			0.017%			0.017%		

			Tc-AP1	Tc-AP1-Eff-Comp (01-01613)	11-01613)	AP101L-	AP101L-E-Comp (01-01842)	-01842)	Tc-AP	Tc-AP1-Eluate (01-01843)	01843)
Ctan	Description	Units	Comp	Comp-Dup Comp-Trip	Comp-Trip	Comp	Comp-Dup	rip	Eluate	Eluate Eluate-Dup Eluate-Trip	Eluate-Trip
NIA	Wt% Oxides after 1050 deg C	%	17.0%	16.9%	17.1%	0.39%	0.21%	0.61%	0.11%	0.26%	0.59%
		Ave	17.0%			0.40%			0.32%		
		Std. Dev.	0.1%			0.20%			0.24%		

Q

10/31/01

10-30-01

9

2103

Analyst:

Review:

REVISION 1 (Correct 01-01613D sample ID on Results Page 1 of 2)

Project / WP#:	42365 / W55950
ASR#:	6162 and 6192
Client:	I. Burgeson
Total Samples:	3 (liquids)

	ASR 6162	ASR 6192
RPL#:	01-01613	01-01842, 01-01843
Client ID:	"TC-AP1-EFF-Comp"	"AP101L-E-Comp"
		"TC-AP1-Eluate"
Sample Prepar	ration: PNL-ALO-128 (1 mL /	25mL)

Inductively Coupl	<u>211</u> , "Determination of Elements by pled Argon Plasma Atomic Emission trometry" (ICPAES).	
Analyst: D.R. Sanders		
Analysis Date (File): 10-05-200	<u>001</u> (A0725)	
See Chemical Measurement Center (Calibration and I	r 98620 file: <u>ICP-325-405-1</u> Maintenance Records)	
M&TE Number: <u>WB73520</u> <u>360-06-01</u>	20 (ICPAES instrument) 01-029 (Mettler AT400 Balance)	

<u>_ 11/13</u>/01 Reviewed by

11-13-01 Concur

2

One liquid sample submitted under Analytical Service Request (ASR) 6162 and two liquid samples submitted under ASR 6192 were prepared by acid digestion per PNL-ALO-128 (in the sample preparation laboratory). The samples were prepared by aliquotting 1.0 mL of sample, digesting per the procedure, and diluting to a final volume of 25 mL. These samples were processed in the same digestion processing batch. The preparation batch duplicate and matrix spike were prepared from the sample submitted under ASR 6162 (i.e., TC-AP1-EFF-Comp). Since the samples submitted under ASR 6162 and 6192 were processed in the same digestion batch and are similar matrices, no matrix spike or duplicate was prepared from the samples submitted under ASR 6192.

In Table 1-4 included with the ASR 6162 and Table 1-3 included with ASR 6192, all analytes measured by the ICPAES were identified as analytes of interest for this work, except Pd, Rh, Ru, Tl and W. The quality control (QC) results for each of the analytes of interest have been evaluated and are presented below. Analytes other than those identified as analytes of interest are reported, but have not been fully evaluated for QC performance and are reported for information only.

The attached ICPAES Results (2 pages) presents the final results. Results are from the direct measurement of the digestates at the ICPAES, except for Na which required an additional 5x dilution for sample TC-AP1-EFF-Comp to bring the Na concentration within the ICPAES linear range.

The following describes the QC measurement results relative to ICPAES analysis requirements of the controlling QA plan and the sample-specific QC Acceptance Criteria defined by Table 1-5 for ASR 6192. [Note: No additional sample-specific QC Acceptance Criteria were defined in ASR 6162.] A digestion processing blank, laboratory control sample (blank spike), matrix spike, and duplicate were prepared. The blank spike was prepared by using 3 mL of a custom multi-element solution "AZ-101 Spike" per a nominal 25-mL digestate volume, and the matrix spikes were prepared by using 1 mL of the same multi-element solution.

Process Blank:

Concentration of analytes of interest measured in the process blank were all within acceptance criteria of \leq EQL (estimated quantitation level) or less than \leq 5% of the concentration in the sample, except for Na, B, and Si. The B and Si demonstrated similar concentrations in both the process blank and the sample digestates, suggesting leaching of the glassware used for digesting the samples. The Na concentration of the samples submitted under ASR 6192 was low (i.e., 300 to 900 µg/mL) and the slight blank contribution (i.e., 180 µg/mL, most likely from leaching of the glassware) exceeded the \leq 5% of the sample concentration acceptance criteria.

Blank Spike (laboratory control sample):

The blank spike recovery for analytes of interest was within the acceptance criteria of 80% to 120%, except for B, Na, and Si. The failure of the B, Na, and Si is attributed to the differences in the B, Na, and Si leached from the preparative glassware in the process blank and that leached in the BS sample. It should be noted that the BS sample did not contain As, Co, Dy, Eu, Sb, Se, Sn, Te, and Y.

11/13/2001 ASR 6162 6192 Liquids Burgeson Rev 1.doc F

Duplicate:

For those analytes of interest measured above the EQL, the relative percent differences (RPD) were within the acceptance criteria of less than 20%. ASR 6192 defined additional acceptance criteria (i.e.., <15% for all analytes other than Na and <3.5% for Na. The acceptance criteria of <15% was met for all analytes of interest defined in ASR 6192; however, the Na RPD of 5.4% failed the <3.5% criteria.

It should be noted that even for analytes with concentration between the method detection limit (MDL) and the EQL (identified in the Results as italic/bold results), the RPDs meet the acceptance criteria.

Matrix Spiked Sample:

A matrix spike was prepared for TC-AP1-EFF-Comp. The matrix spike recoveries for the analytes of interest fall into four categories. 1) those analytes for which a matrix spike element was not included in the matrix spiking solution (i.e., As, Co, Dy, Eu, Sb, Se, Sn, Te, and Y, 2) those analytes that have spike concentrations less than 20% of the sample concentration (i.e., Al, , Cr, K, and Na) making the spike recovery calculation meaningless, 3) those analytes that failed to meet the acceptance criteria of 75% to 125% (i.e., Cu and P), and 4) those analytes that demonstrated matrix spike recoveries within the acceptance criteria (i.e., all other analytes of interest). For those analytes falling into categories 1), 2), and 3), post spiking of the digestate (or in some cases serial dilution) is used to evaluate matrix interference issues.

Post-Spiked Samples (Spike A Elements; all analytes except Ce, Dy, Eu, La, Nd, Te, Th, U, and Sn):

A post spike was prepared for TC-AP1-EFF-Comp. All post-spiked analytes of interest (i.e., Spike A analytes of interest) were recovered within tolerance of 75% to 125%, except Na. The post spike analysis uses a general spiking solution intended to be usable on the majority of sample analyzed by ICPAES. However, for the sample selected for post spiking, the spike concentration for Na was less than 20% of the sample concentration and the recovery results are considered meaningless. For Na, the use of serial dilution results is required to evaluate potential matrix interferences.

Post-Spiked Samples (Spike B Elements; Ce, Dy, Eu, La, Nd, Te, Th, and U):

Post spiking was performed on TC-AP1-EFF-Comp. The post spike recovery for all analytes of interest (i.e., Spike B analyte of interest) were within tolerance of 75% to 125%. It should be noted that Sn was not contained in either the Spike A or Spike B post spike solutions.

Serial dilution:

Serial dilution was required for Na, since the Na in the matrix spike and post spike were less than 20% of the sample concentration (i.e., recoveries could not be evaluated). Sodium for both TC-AP1-EFF-Comp and TC-AP1-Eluate demonstrated a percent difference (%D) within the acceptance criteria of $\pm 10\%$ after correcting for dilution for all the serial dilutions measured.

F.75

Ĵ.

۰.

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- 2) Detection limits (Det. Limit) shown are for acidified water. Detection limits for other matrices may be determined if requested. Method detection limits (MDL) can be estimated by multiplying the 'Multiplier' times the Detection Limit.
- 3) Routine precision and bias is typically ± 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight). Note that bracketed values listed in the data report are within ten times instrument detection limit (adjusted for processing factors and laboratory dilutions) and have a potential uncertainty much greater than 15%.
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

2

Battelle PNNL/RSE/Inorganic Analysis... ICPAES Results

	Multiplier=	25	25.0 (Na125.0)	25.0 (Na125.0)	25	25
	;					
	RPL#=	01-1613 PB	01-1613	01-1613 D	01-1842	01-184
Det. Limit	Client ID=	Proc.Blank	TC-AP1- EFF-COMP	TC-AP1-EFF COMP Dup	AP101L-E- Comp	Tc-AP1 Eluate
ug/mL		ug/mL	ug/mL	ug/mL	ug/mL	ug/mL
9	Analytes (Pre			nd Vitrification	-	
0.025	Ag					
0.060	AI	[11]	4,860	5,200	18.6	[14]
0.250	As					
0.050	В	164	169	170	194	177
0.010	Ba		[0.27]	[0.28]	[0.29]	
0.010	Be		[0.72]	[0 76]		
0.100	Bi					
0.250	Ca			[6.3]	[25]	
0.015	Cd		[1 2]	[1.3]	[1.2]	
0.200	Ce					
0.050	Co					
0.020	Cr		102	109	12.0	
0.025	Cu					
					[1 2]	
0.050	Dy					
0.100	Eu		**			
0.025	Fe		[1.7]	[1,7]	[6.1]	[0.74]
2.000	K		21,900	22,700	[57]	**
0.050	La					
0.030	Li					
0.100	Mg					
0.050	Mn					
0.050	Mo		[9.8]	[10]		
0.150	Na	180	89,400	94,400	912	353
0.100	Nd					
0.030	Ni	[2.8]	[2.7]	[2.5]	[1.6]	[1.0]
0.100	Р		272	285		
0.100	Pb		[5.7]	[5.8]	[4.7]	
0.500	Sb					
0.250	Se					
0.500	Si	140	288	331	145	133
1.500	Sn		[54]	[56]		
0.015	Sr					
1.500	Te					
1.000	Th					
0.025	Ti					
2.000	U				[160]	
0.050	V					
0.050	Y					
0.050	Zn		[3.6]	[3.7]		
0.050	Zr					
	Other Analyt	es Measured				
0.750	Pd					
0.300	Rh					

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%. 3) "--" indicate measurement is below detection. Sample detection limit may be found by

--

0.500

2.000

TI

W

--

--

--

--

--

multiplying "det. limit" (far left column) by "multiplier" (top of each column). F.77 Final ASR 6162&6192 - ASR-6162 6192 Burgeson - A0725.XLS

--

--

;

Battelle PNNL/RSE/Inorganic Analysis... ICPAES Results

	ASR 6162 <20%	,'			1		
	ASR 6192 <15%						
Criteria>	(Na <3.5)	80% - 120%	75%-125%	75%-125%	75%-125%	< +/-10%	< +/-10%
0015	04 4040 8 04 4040	01-1613 BS		01-1613 +	01-1613 +	01-1613	01-1843
QC ID=	01-1613 & 01-1613 D	(AZ-101 Spike)	(AZ-101 Spike)	Post Spike A	Post Spike B	@1/@5 Serial Dil	@1/@5 Serial Di
	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Diff	%Diff
nalutan (Dra	etreatment Specifica				70Rec 1	700111	760111
	etreatment Specifica	106.7	107.1	100.0			
Ag	6.7			100.0		3.3	
	0.7	97.3	n.r.	104.0		3.3	
As B	0.6	40.3	79.1	103.1		4.5	0.0
		97.9	89.9	99.6		4.5	0.0
Ba	5.3 5.7	97.9	103.3	106.3			
Be	5.7						
Bi		99.8	110.5	99.7			
Ca	0.4	98.9	103.7	102.6			
Cd	8.1	99.4	98.3	104.4	100.0		
Ce		95.6	93.4	102.2	100.8		
Co				103.3			
Cr	6.1	99.6	n.r.	100.9		4.4	
Cu		105.5	65.7	102.9			
Dy					98.1		
Eu					105.8		
Fe	5.2	101.3	93.7	102.7			
K	3.4	95.5	n.r.	100.1		3.9	
La		95.8	93.7		95.7		
Li		101.3	96.2	100.8			
Mg		102 8	99.9	107.1			
Mn		100.4	95.6	104.3			
Mo	4.4	98.5	102.3	101.0			
Na	5.4	67.1	n.r.	n.r		2.5	4.4
Nd		95.8	93.4		96.9		
Ni	6.1	98.7	94.4	102.5			
Р	4.7	96.8	162.5	97.2		2.3	
Pb	1.7	102.1	99.2	102.4			
Sb				102.3			
Se		Contraction of the local sector		102.6			
Si	14.0	123.3	99.7	109.5		4.3	-1.6
Sn	3.4						
Sr		113.6	120.9	100.3			
Te					101.0		
Th		97.6	94.2		98.6		
Ti		95.3	89.9	97.8			
U		97.0	91.2		96.6		
V		95.3	91.5	97.9			
Y				98.6			
Zn	3.3	100.5	107.2	113.3			
Zr		103.3	108.6	101.5			

Pd	100.2	
Rh	95.5	
Ru		
TI	99.9	
W		

F.78

Shaded/bold results exceed acceptance criteria.

Bold/Italic RPD results calculated from values <EQL; for information only.

n.r. = not recovered; spike concentration less than 20% of sample concentration

Narrative

Date: 9/21/01

Page 1

Subject:	Hydroxide Analyse	es for:	AP-101 El	Jants	
ASR:	6192	RPL#	01-1842	01-1843	

To: Ingrid Burgeson

From: Bob Swoboda

Surtran 9/21/01

AP-101 tank waste eluants were analyzed in duplicate for the hydroxide content following procedure PNL-ALO-228. Direct sample aliquots were analyzed using a Brinkman 636 Auto-Titrator. Sample 01-1842 tested acidic and therefore could not be analyzed. A 0.0103 N NaOH (ChemRec_72), solution was used as a standard and for the sample spike and the titrant was a 0.0051 M HCl prepared solution for 01-1843 sample and its replicate. The attached Report Summary shows average OH molarity (1st inflection point) of 0.0046M on the sample and replicate results with an RPD of 4%, which is excellent considering the very weak base concentration of the sample being titrated. The hydroxide ug/ml results averaged 79+/- 2.2 ug/ml and was above the required MRQ value of 17 ug/mL which is equivalent to 0.01M NaOH. The hydroxide recoveries averaged 100% for the standards and the matrix spike recovery on 01-1843 was 100%. No hydroxide was detected in the reagent blank. The second inflection point frequently associated with carbonate, also showed an excellent RPD of 2%. There wasn't a third inflection point recorded for this sample. All of the results meet the QC acceptance criteria for spike recovery and RSD of duplicate measurements. The titration curves are included with the report.

Review : L.R. Greenwood 9-21-01

Battelle Pacific Northwest Laborate		ASR	6192
Radiochemical Processing Group-3	25 Building		
Chemical Measurements Center		WP#	W58950

Hydroxide and Alkalinity Determination Procedure: PNL-ALO-228 Equip #

WB76843

Report Summary for ASR # ---

6192

					Cor	centration, n	noles		
RPG #	Client ID			First Point		Second Point		Third Point	
01-1843 01-1843	AP-101-TC-AP1-Eluate AP-101-TC-AP1-Eluate	Rep	OH conc ug/mL 8.1E+01 7.7E+01	0.0047 0.0046	RPD 4%	0.0027 0.0027	RPD 2%	none	RPD
		Ave std de	7.9E+01 2.2E+00	4.6E-03 1.3E-04		2.7E-03 2.9E-05			
Reag. Blk.1	· · · · · · · · · · · · · · · · · · ·			0					
Standard 3 Standard 4 MS 01-1732	Matrix spike			99% 100% 100%					

Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

Analyst:

9 3 arnon 9/21/01 Deenvord 9/21/01

Reviewer:

Battelle PNWD PO Box 999, Richland WA 99352

Analytical Chemistry Group (ACG)

ICP/MS Data Analysis Report

Revision 1

Project / WP#:	42365 / W58950
ASR#:	6192
Client:	Ingrid Burgeson
Total Samples:	2

Analysis: Tc-99

Procedure: 329-OP-SCO1 Rev. 0, Inductively-Coupled Plasma Mass Spectrometry (ICP/MS) Analysis

M&TE Number:	WB36913	ICP/MS, VG Elemental
	512-06-01-014	Mettler AJ100 Balance

Point of Contact:

Revised Report Date: 19 January 2004

Analysis Files:

Experiment – 01FEB02, 05FEB02 Procedure – 020201a, 020205a Element Menu – 1FEB02, rbtc

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Orville Thomas Farmer III

Analyst(s): Original Author: James Bramson / Teresa Wilson Orville Thomas Farmer III

> Empentemas Revised By

19 Janoy Date

196004 Date

Reviewed By

Revision 1

Effective Date

Description of Change

January 2004

Text has been added in the appropriate narrative section(s) to address issues surrounding the use of biased standards prepared and provided by the RPL Standards Laboratory to the ICP-MS analytical laboratory (reference: project #98620, memo KN Pool to GH Beeman, 9/15/03). Samples Submitted for Analysis:

RPL #	Client I.D.
01-1843	TC-AP1-Eluate
01-1842	AP101L-E-Comp

The samples (AP-101) submitted for analysis were analyzed on a radioactive-material-contained ICP/MS for the requested analyte(s) Tc-99.

1. Analysis

The final results have been corrected for all laboratory preparation and dilutions performed on the sample during analysis.

Instrument Detection Limits (IDL) and Method Detection Limit (MDL) were determined using 7 instrument standard blank solutions. The IDL was calculated by multiplying the observed standard deviation of the 7 standard blanks solutions by 3.14. An MDL is determined for each solution analyzed by multiplying the IDL by the internal standard drift ratio and that sample total dilution factor.

2. Results

Samples	Sample Conc. (uCi/g)	(+/-) 1 sigma	MDL (uCi/g)
Blk-1613	6.94E-06	9.93E-07	1.03E-06
01-1843	4.13E-01	1.51E-02	2.33E-04
01-1842	1.37E-04	1.43E-05	2.00E-05
BS-1613	4.66E-04	7.10E-06	9.13E-07
MS-1613	9.81E-03	6.69E-05	1.55E-05

Tc-99 Final Results

3. Quality Control

3.1. Instrument QC Results

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB). The ICB/CCB standards are 2% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than < 10 X MDL, was met for all analytes.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV). The ICV/CCV standards met the QC criteria of \pm 10% for all analytes.

Dilution Test (DT). The success criteria of $\pm 20\%$ recovery were met for this QC for all analytes.

Instrument Control Solution (ICS). Sample solution (01-1613) is a replicate analysis of the original sample that was submitted for analysis and is compared with the ICSD solution (01-1613) to determine the instrument solution preparation process.

Instrument Control Solution Duplicate (ICSD). Sample solution ICSD (01-1613) is a duplicate preparation of the above sample and is used to determine the RPD between the two solutions as an ICP/MS instrument and preparation QC. The duplicate analysis of the ICS and ICSD (01-1613) met the instrument QC success criteria of \pm 20% RPD for all analytes.

Instrument Control Solution Duplicate Spike (ICSDS). The ICSDS is a post matrix spike of sample (01-1613) and is used to provide information on instrument solution preparation and instrument performance. The ICSDS met the QC success criteria of $\pm 25\%$ recovery for all analytes.

Post Blank Spike (PBS). An instrument post spike was performed on sample (Blk-1613) and met the QC success criteria of \pm 20% recovery for all analytes.

Internal Standard (IS). The Internal Standards met the QC criteria of 30% to 120%.

Analytical results generated were influenced by an identified bias in the calibration and calibration verification standards. The bias in the standards caused results for Tc-99 to be biased low for this report. The effect on the results, based on the observed bias, will widen the error band for these results. The error band that should be applied to these results is -10% to +30%.

3.2. Sample Preparation QC Results

Preparation Blank (PB). The PB met the success criteria being < 10 X MDL for all analytes.

Laboratory Control Standard / Blank Spike (LCS/BS). No LCS/BS was submitted for analysis. However a PBS was analyzed and all analytes of interest met the success criteria of +20%.

Duplicate (DUP). No Dup was submitted for analysis, however the ICS and ICSD met the success criteria of $\pm 20\%$ RPD.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD). No MS or MSD was submitted for analysis, however an ICSDS (matrix post spike) was analyzed and all analytes met the success criteria of $\pm 25\%$.

Laboratory Control Standard (LCS/SRM). No LCS/SRM was submitted for analysis.

Battelle PNWD PO Box 999, Richland WA 99352

Analytical Chemistry Group (ACG)

ICP/MS Data Analysis Report

Revision 2

Project / WP#:	42365 / W58950
ASR#:	6192
Client:	Ingrid Burgeson
Total Samples:	5

Analysis: amu-241, Np-237, Pu-239 and Pu-240

329-OP-SCO1 Rev. 0, Inductively-Coupled Plasma Mass Spectrometry (ICP/MS) **Procedure:** Analysis

M&TE Number:	WB36913	ICP/MS, VG Elementa	1
	512-06-01-014	Mettler AJ100 Balance	
Point of Contact:	Orville Thomas Fa	armer III	

3 February 2004 **Revised Report Date:**

Analysis Files:

1 251 .

Analyst(s): **Original Author:** Experiment – 14FEB02 Procedure – 14FEB02 Element Menu – 14FEB02 James Bramson / Teresa Wilson Orville Thomas Farmer III

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

<u>Allomas</u> Revised By <u>Cull Lomas current</u> Reviewed By <u>Bate</u> <u>Bate</u>

ASR6192 Final Report 128(Np Pu Am) Rev2

Revision	Effective Date	Description of Change
1	January 2004	Text has been added in the appropriate narrative section(s) to
		address issues surrounding the use of biased standards
		prepared and provided by the RPL Standards Laboratory to the
		ICP-MS analytical laboratory (reference: project #98620,
-		memo KN Pool to GH Beeman, 9/15/03).
2	February 2004	Text has been added in the appropriate narrative section to
		include Pu-240 when addressing issues surrounding the use of
		biased standards (reference: project #98620, memo KN Pool to
		GH Beeman, 9/15/03).
	월일일 (1995) - 199 ⁸ - 1996) - 1997	

F.86

Samples Submitted for Analysis:

RPL #	Client I.D.	
01-1842	AP101L-E-COMP	
01-1843	Tc-AP1-Eluate	

The samples (AP-101) submitted for analysis were analyzed on a radioactive-material-contained ICP/MS for the requested analyte(s) amu-241, Np-237, Pu-239, and Pu-240. The MS and BS was not spike with the analytes of interest prior to sample dissolution however, an instrument post blank spike (PBS) and post matrix spike (PMS) was analyzed for each isotopes percent recovery.

1. Analysis

in .

The final results have been corrected for all laboratory preparation and dilutions performed on the sample during analysis.

Instrument Detection Limits (IDL) and Method Detection Limit (MDL) were determined using 7 instrument standard blank solutions. The IDL was calculated by multiplying the observed standard deviation of the 7 standard blanks solutions by 3.14. An MDL is determined for each solution analyzed by multiplying the IDL by the internal standard drift ratio and that sample total dilution factor.

2. Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)	Dilution Factor	% Rec.
BLK-1613	<7.14E-06		7.14E-06	100	
01-1842	<1.60E-04		1.60E-04	2492	
01-1843	<1.49E-04		1.49E-04	2539	
BS-1613	<5.77E-06		5.77E-06	100	
PBS-1613	2.79E-02	2.66E-04	5.61E-06	100	112
MS-1613	<1.08E-04		1.08E-04	2000	
PMS-1613	2.64E-04	8.50E-05	6.20E-08	1	106

AMU-241 Final Results

Np-237 Final Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)	Dilution Factor	% Rec.
BLK-1613	5.38E-09	8.52E-10	5.28E-09	100	
01-1842	6.32E-07	7.89E-08	1.19E-07	2492	
01-1843	1.52E-07	1.49E-07	1.10E-07	2539	
BS-1613	1.97E-08	9.87E-09	4.26E-09	100	
PBS-1613	2.00E-04	1.53E-06	4.14E-09	100	114
MS-1613	4.10E-07	2.17E-08	7.97E-08	2000	
PMS-1613	1.86E-06	4.48E-08	4.58E-11	1	106

ASR6192 Final Report 128(Np Pu Am) Rev2

Page 3 of 5

F.87

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)	Dilution Factor	% Rec.
BLK-1613	7.16E-06	6.97E-07	4.46E-07	100	
01-1842	7.72E-04	2.25E-05	1.00E-05	2492	8.0
01-1843	9.90E-05	1.16E-05	9.33E-06	2539	
BS-1613	1.66E-05	3.04E-06	3.61E-07	100	
PBS-1613	1.70E-02	8.71E-05	3.51E-07	100	112
MS-1613	1.47E-04	3.40E-05	6.74E-06	2000	
PMS-1613	1.60E-04	3.50E-06	3.88E-09	1	105

Pu-239 Final Results

in .

Pu-240 Final Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)	Dilution Factor	% Rec.
BLK-1613	<1.08E-06		1.08E-06	100	
01-1842	1.35E-04	1.79E-05	2.43E-05	2492	
01-1843	<2.26E-05		2.26E-05	2539	
BS-1613	<8.74E-07		8.74E-07	100	
PBS-1613	1.31E-03	2.57E-05	8.49E-07	-100	112
MS-1613	<1.63E-05		1.63E-05	2000	
PMS-1613	1.23E-05	3.58E-07	9.39E-09	1	105

3. Quality Control

3.1 Sample Preparation Batch QC Results

Preparation Blank (PB). The PB met the success criteria of < 10 X MDL for all isotopes except Pu-239.

Laboratory Control Standard / Blank Spike (LCS/BS). All isotopes of interest were not spiked into the LCS/BS sample at the time of sample preparation. However a Post Blank Spike (PBS) was analyzed and met the success criteria of +20%.

Matrix Spike (MS). All isotopes of interest were not spiked into the MS sample at the time of sample preparation. However, a post matrix spike (PMS) was analyzed met the success criteria of $\pm 25\%$.

Laboratory Control Standard (LCS/SRM). No LCS/SRM was submitted for analysis.

3.2. Instrument QC Results

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB). The ICB/CCB standards are 1% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than < 10 X MDL, was met for all isotopes of interest.

ASR6192 Final Report 128(Np Pu Am) Rev2

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV). The ICV/CCV standards met the QC criteria of \pm 10% for all isotopes of interest.

Internal Standard (IS). The Internal Standards met the QC criteria of 30% to 120%.

Analytical results generated were influenced by an identified bias in the calibration and calibration verification standards. The effect on the results, based on the observed bias, will widen the error band for these results.

- The bias in the standards caused results for AMU-241 to be biased low for this report. The error band that should be applied to these results is -10% to +20%.
- The bias in the standards caused results for Np-237 to be biased high for this report. The error band that should be applied to these results is -20% to +10%.
- The bias in the standards caused results for Pu-239 to be biased low for this report. The error band that should be applied to these results is -10% to +20%.
- The bias in the Pu-239 standards, which were used to quantify Pu-240, caused results for Pu-240 to be similarly biased (low) for this report. The error band that should be applied to these results is approximately -10% to +20%.

Battelle, **PNNL** Advance Inorganic Analysis Group (AIAG)

ICP/MS Data Analysis Report

Project / WP#:	42365 / W58950
ASR#:	6192 / 128
Client:	Ingrid Burgeson
Total Samples:	2

Analysis: Pd, Ru, Rh, and Pr

Procedure: PNL-SCO1 Rev. 1, Inductively-Coupled Plasma Mass Spectrometric (ICP-MS) Analysis

M&TE Number:

WB36913 512-06-01-014 ICP/MS, VG Elemental Mettler AJ100 Balance

Date

Point of Contact:

16 April 2002

Analysis Files:

Report Date:

Experiment – 04FEB02, 21MAR02 Procedure - 020204a Element Menu – multi

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Orville Thomas Farmer III

Analyst(s):

Orville Thomas Farmer III

James Bramson / Teresa Wilson

Tarment 16 Apro2 Date Reviewed By 4.16.02

Concur

ICP-MS Data Report, ASR 6192 /128 Page 1

4/16/02

F.90

Page 1 of 6

Samples Submitted for Analysis:

RPL #	Client I.D.
01-01842	AP101L-E-COMP
01-01843	Tc-AP1-Eluate

The samples (AP-101) submitted for analysis were analyzed on a radioactive-materialcontained ICP/MS for the requested analyte(s) Pd, Ru, Rh, Pr.

1. Analysis

The final results have been corrected for all laboratory preparation and dilutions performed on the sample during analysis.

Instrument Detection Limits (IDL) and Method Detection Limit (MDL) were determined using 7 instrument standard blank solutions. The IDL was calculated by multiplying the observed standard deviation of the 7 standard blanks solutions by 3.14. An MDL is determined for each solution analyzed by multiplying the IDL drift ratio and that sample total dilution factor.

Both Ru and Pd were determined to be fission yield production; selected isotopes for each analyte were used after correcting for both atomic interferences and altered isotopic abundances.

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 2 Page 2 of 6 4/16/02

2. Results

Pd Final Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)
BLK-01613	<1.21E-04		1.21E-04
01-01842	5.95E-03	1.15E-02	3.22E-03
01-01843	1.30E+01	1.38E-01	4.00E-02
BS-01613	1.60E-01	1.71E-03	1.56E-03
MS-01613	3.17E+00	5.67E-02	3.08E-02

Ru Final Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)
BLK-01613	<7.39E-05		7.39E-05
01-01842	3.23E-03	5.68E-04	1.96E-03
01-01843	<1.60E-03	· · · ·	1.60E-03
BS-01613	1.54E-01	1.35E-03	7.81E-05
MS-01613	5.27E+00	7.82E-02	1.31E-03

Rh Final Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)
BLK-01613	<3.30E-05		3.30E-05
01-01842	5.73E-02	3.10E-03	8.77E-04
01-01843	2.31E-03	9.25E-04	7.14E-04
BS-01613	1.90E-01	1.56E-03	3.48E-05
MS-01613	4.65E+00	2.03E-02	5.84E-04

Pr Final Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)
BLK-01613	<1.41E-05		1.41E-05
01-01842	5.29E-04	2.98E-04	3.74E-04
01-01843	4.23E-04	6.31E-04	3.04E-04
BS-01613	1.61E-01	2.29E-03	1.49E-05
MS-01613	3.46E+00	6.27E-02	2.49E-04

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 3 Page 3 of 6 4/16/02

3. Quality Control

3.1. Instrument QC Results

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB)

Narrative:

The ICB/CCB standards are 2% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than < 10 X MDL, was met for all analytes.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV)

Narrative:

The ICV/CCV standards met the QC criteria of $\pm 10\%$ for all analytes.

Dilution Test (DT)

Narrative:

The success criteria of $\pm 20\%$ recovery were met for this QC for all analytes.

Instrument Control Solution (ICS)

Narrative:

Sample solution (01-01613) is a replicate analysis of the original sample that was submitted for analysis and is compared with the ICSD solution (01-01613) to determine the instrument solution preparation process.

Instrument Control Solution Duplicate (ICSD)

Narrative:

Sample solution ICSD (01-01613) is a duplicate preparation of the above sample and is used to determine the RPD between the two solutions as an ICP/MS instrument and preparation QC. The duplicate analysis of the ICS and ICSD (01-01613) met the instrument QC success criteria of $\pm 20\%$ RPD for all analytes.

Instrument Control Solution Duplicate Spike (ICSDS)

Narrative:

The ICSDS is a post matrix spike of sample (01-01613) and is used to provide information on instrument solution preparation and instrument performance. The ICSDS met the QC success criteria of $\pm 25\%$ recovery for all analytes.

Post Blank Spike (PBS)

Narrative:

An instrument post spike was performed on sample (Blk-01613) and met the QC success criteria of $\pm 20\%$ recovery for all analytes.

Internal Standard (IS)

The Internal Standards met the QC criteria of 30% to 120%.

3.2. Sample Preparation QC Results

Preparation Blank (PB)

Narrative:

The PB met the success criteria being < 10 X MDL for all analytes.

Laboratory Control Standard / Blank Spike (LCS/BS)

Narrative:

All analytes in the LCS/BS met the success criteria of $\pm 20\%$. A PBS was analyzed and all analytes of interest met the success criteria of $\pm 20\%$.

Duplicate (DUP)

Narrative:

No sample duplicate was submitted for analysis, however, the ICS and ICSD also met the success criteria of $\pm 20\%$ RPD.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

Narrative:

No MSD was submitted for analysis. All elements met the success of $\pm 25\%$. The ICSDS (matrix post spike) was analyzed and all analytes met the success criteria of $\pm 25\%$.

Laboratory Control Standard (LCS/SRM)

Narrative:

No LCS/SRM was submitted for analysis.

Battelle, PNNL Advance Inorganic Analysis Group (AIAG)

ICP/MS Data Analysis Report

Project / WP#:	42365 / W58950	
ASR#:	6192 / 128	
Client:	Ingrid Burgeson	
Total Samples:	2	

Analysis: U and U-iso

Procedure: PNL-SCO1 Rev. 1, Inductively-Coupled Plasma Mass Spectrometric (ICP-MS) Analysis

M&TE Number:	WB36913	ICP/MS, VG Elemental
	512-06-01-014	Mettler AJ100 Balance

Point of Contact: Orville Thomas Farmer III

Report Date: 30 March 2002

Analysis Files:

Experiment – 29NOV01 Procedure – 011129a Element Menu – U

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Analyst(s):

James Bramson

omastimit Reviewed By

Concur

4.18.02 Date

<u>/8/10-02</u> Date

ICP-MS Data Report, ASR 6192 /128

Page 1 Page 1 of 6 4/18/02

Samples Submitted for Analysis:

RPL #	Client I.D.
01-01843	Tc-AP1-Eluate
01-01842	AP101L-E-COMP

The samples (AP-101) submitted for analysis were analyzed on a radioactive-material-contained ICP/MS for the requested analyte(s) total U and U-isotopic.

1. Analysis

The final results have been corrected for all laboratory preparation and dilutions performed on the sample during analysis.

Instrument Detection Limits (IDL) and Method Detection Limit (MDL) were determined using the 3 instrument standard blank solutions. The IDL was calculated by multiplying the observed standard deviation of the 3 standard blanks solutions by 6.96. An MDL is determined for each solution analyzed by multiplying the IDL by the internal standard drift ratio and that sample total dilution factor.

Page 2 Page 2 of 6

2. Results

Total U Final Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)
01-01843	1.77E-03	7.96E-05	7.99E-04
01-01842	1.92E+02	1.72E+00	7.82E-02

U-233 Final Results

Samples	Sample Conc. (uCi/g)	(+/-) 1 sigma	MDL (uCi/g)
01-01843	<1.98E-07		1.98E-07
01-01842	1.80E-04	1.74E-05	1.94E-05

U-234 Final Results

Samples	Sample Conc. (uCi/g)	(+/-) 1 sigma	MDL (uCi/g)
01-01843	<5.73E-08		5.73E-08
	1.00E-04		
01-01842		4.39E-06	5.61E-06

U-235 Final Results

Samples	Sample Conc. (uCi/g)	(+/-) 1 sigma	MDL (uCi/g)
01-01843	<3.78E-10		3.78E-10
01-01842	3.57E-06	3.45E-08	3.69E-08

U-236 Final Results

Samples	Sample Conc. (uCi/g)	(+/-) 1 sigma	MDL (uCi/g)
01-01843	<8.62E-10		8.62E-10
01-01842	7.25E-06	8.97E-08	8.43E-08

U-238 Final Results

Samples	Sample Conc. (uCi/g)	(+/-) 1 sigma	MDL (uCi/g)
01-01843	<2.23E-10		2.23E-10
01-01842	6.38E-05	4.76E-09	2.18E-08

ICP-MS Data Report, ASR 6192 /128

3. Quality Control

3.1. Instrument QC Results

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB)

Narrative:

The ICB/CCB standards are 1% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than < 10 X MDL, was met for all analytes.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV)

Narrative:

The ICV/CCV standards for total U met the QC criteria of \pm 10% for all analytes.

Dilution Test (DT)

Narrative:

Not analyzed.

Instrument Control Solution (ICS)

Narrative:

Not analyzed.

Instrument Control Solution Duplicate (ICSD)

Narrative:

Not analyzed.

Instrument Control Solution Duplicate Spike (ICSDS)

Narrative:

Not analyzed.

Post Blank Spike (PBS)

Narrative:

An instrument post spike was performed on sample (Blk-01613) and met the QC success criteria of \pm 20% recovery for all analytes.

Internal Standard (IS)

The Internal Standards met the QC criteria of 30% to 120%.

ICP-MS Data Report, ASR 6192 /128

Page 5 Page 5 of 6 4/18/02

3.2. Sample Preparation QC Results

Preparation Blank (PB)

Narrative:

The PB met the success criteria being < 10 X MDL for all analytes.

Laboratory Control Standard / Blank Spike (LCS/BS)

Narrative:

No LCS/BS was submitted for analysis, however a PBS was analyzed and all analytes of interest met the success criteria of $\pm 20\%$.

Duplicate (DUP)

Narrative:

All elements met the success of $\pm 20\%$ RPD.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

Narrative:

No MS or MSD was submitted for analysis.

Laboratory Control Standard (LCS/SRM)

Narrative:

No LCS/SRM was submitted for analysis.

Page 6 Page 6 of 6 4/17/2002

Battelle PNWD PO Box 999, Richland WA 99352

Analytical Chemistry Group (ACG)

ICP/MS Data Analysis Report

Revision 1

Project / WP#:	42365 / W58950	
ASR#:	6192	
Client:	Ingrid Burgeson	
Total Samples:	2	

Analysis: I-129

Procedure: 329-OP-SCO1 Rev. 0, Inductively-Coupled Plasma Mass Spectrometry (ICP/MS) Analysis

M&TE Number:	WB36913	ICP/MS, VG Elemental
	512-06-01-014	Mettler AJ100 Balance

Point of Contact:

Revised Report Date:

1-3

15 January 2004

Analysis Files:

Experiment 26NOV01 Procedure – 011126a Element Menu – Iodine

Orville Thomas Farmer III

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Analyst(s): Original Author: James Bramson / Teresa Wilson Orville Thomas Farmer III

-tmp alomas Revised By

Date

Date

Reviewed By

Revision

Effective Date January 2004

Description of Change

Text has been added in the appropriate narrative section(s) to address issues surrounding the use of biased standards prepared and provided by the RPL Standards Laboratory to the ICP-MS analytical laboratory (reference: project #98620, memo KN Pool to GH Beeman, 9/15/03). Samples Submitted for Analysis:

RPL #	Client I.D.
01-1842	AP101L-E-COMP
01-1843	Tc-AP1-Eluate

The samples (AP-101) submitted for analysis were analyzed on a radioactive-material-contained ICP/MS for the requested analyte(s) I-129.

1. Analysis

The final results have been corrected for all laboratory preparation and dilutions performed on the sample during analysis. Batch QC samples were submitted under ASR-6162.

Instrument Detection Limits (IDL) and Method Detection Limit (MDL) were determined using 4 instrument standard blank solutions. The IDL was calculated by multiplying the observed standard deviation of the 4 standard blanks solutions by 4.54. An MDL is determined for each solution analyzed by multiplying the IDL by the internal standard drift ratio and that sample total dilution factor.

All samples solutions were modified with (1% HCl / 5 mM P-Cyanophenol) to reduce memory effects and stabilize the Iodine signal. The major interference for the determination of I-129 by ICP/MS is the atomic ion of Xe-129, which was subtracted using the Xe-131 atomic ion. This correction was applied to all sample solutions in the analytical run.

2. Results

I-129 Final Results

Samples	Sample Conc.	+/-1 σ	MDL
	μ Ci/g		μ Ci/g
01-1842	<5.48E-06	a anay a sa ta baata gibata ay g	5.48E-06
01-1843	<5.39E-06		5.39E-06

3. Quality Control

3.1 Sample Preparation QC Results

Preparation Blank (PB). The PB met the success criteria being < 10 X MDL for all analytes.

Laboratory Control Standard / Blank Spike (LCS/BS). No LCS/BS was submitted for analysis, however a PBS was analyzed and all analytes of interest met the success criteria of +20%.

Duplicate (DUP). All elements met the success of \pm 20% RPD. The ICS and ICSD also met the success criteria of \pm 20% RPD.

ASR6192 Final Report 128(I-129) Rev1.doc

Matrix Spike (MS) and Matrix Spike Duplicate (MSD). No MS was submitted for analysis. However an ICSDS (matrix post spike) was analyzed and all analytes met the success criteria of $\pm 25\%$.

Laboratory Control Standard (LCS/SRM). No LCS/SRM was submitted for analysis.

3.2 Instrument QC Results

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB). The ICB/CCB standards are 1% HCl / 5 mM P-Cyanophenol solution used as the diluent for the samples. The QC criteria of less than < 10 X MDL, was met for all analytes.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV). The ICV/CCV standards met the QC criteria of + 10% for all analytes.

Internal Standard (IS). The Internal Standards met the QC criteria of 30% to 120%.

Analytical results generated were influenced by an identified bias in the calibration and calibration verification standards. Additionally, traceability of the standard source material to certified reference material is questionable. The effect on the reported results needs to include this additional uncertainty. The bias in the standards caused results for I-129 to be biased high for this report. The effect on the results, based on the observed bias and additional uncertainty due to questionable standard source material, will widen the error band for these results. The error band that should be applied to these results is -100% to +100%.

Battelle, PNNL Advance Inorganic Analysis Group (AIAG)

ICP/MS Data Analysis Report

Project / WP#:	42365 / W58950
ASR#:	6192 / 128
Client:	Ingrid Burgeson
Total Samples:	2

Analysis: Ta and Pt

Procedure: PNL-SCO1 Rev. 1, Inductively-Coupled Plasma Mass Spectrometric (ICP-MS) Analysis

M&TE Number:	WB36913	ICP/MS, VG Elemental
	512-06-01-014	Mettler AJ100 Balance

Point of Contact: Orville Thomas Farmer III

Report Date: 30 March 2002

Analysis Files:

Experiment – 13Feb02 Procedure – 13Feb02 Element Menu – 13Feb02

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Analyst(s):

James Bramson / Teresa Wilson

mosterment Reviewed By

<u>15Aproz</u> Date 4.15.02

Concur

Date

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 1 Page 1 of 6 4/15/2002

Samples Submitted for Analysis:

RPL #	Client I.D.
01-01843	TC-AP1-Eluate
01-01842	AP101L-E-COMP

The samples (AP-101) submitted for analysis were analyzed on a radioactive-material-contained ICP/MS for the requested analyte(s) Ta and Pt.

1. Analysis

The final results have been corrected for all laboratory preparation and dilutions performed on the sample during analysis.

Instrument Detection Limits (IDL) and Method Detection Limit (MDL) were determined using 7 instrument standard blank solutions. The IDL was calculated by multiplying the observed standard deviation of the 7 standard blanks solutions by 3.14. An MDL is determined for each solution analyzed by multiplying the IDL by the internal standard drift ratio and that sample total dilution factor.

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 2 Page 2 of 6 4/15/02

2. Results

Ta Final Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)
BLK-1613	3.55E-04	1.56E-04	4.71E-05
01-1843	3.88E-03	6.26E-04	1.14E-03
01-1842	2.76E-03	1.04E-03	1.23E-03
BS-1613	7.59E-02	9.68E-04	4.66E-05
MS-1613	1.18E+00	7.21E-03	7.21E-04

Pt Final Results

Samples	Sample Conc. (ug/g)	(+/-) 1 sigma	MDL (ug/g)
BLK-1613	1.05E-04	3.90E-05	3.33E-05
01-1843	8.71E-02	1.63E-03	8.06E-04
01-1842	3.03E-02	1.35E-03	8.67E-04
BS-1613	1.95E-01	5.74E-04	3.30E-05
MS-1613	3.92E+00	5.89E-03	5.11E-04

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 3 Page 3 of 6 4/15/2002

3. Quality Control

3.1. Instrument QC Results

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB)

Narrative:

The ICB/CCB standards are 2% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than < 10 X MDL, was met for all analytes.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV)

Narrative:

The ICV/CCV standards met the QC criteria of \pm 10% for all analytes.

Dilution Test (DT)

Narrative:

The success criteria of $\pm 20\%$ recovery were met for this QC for all analytes.

Instrument Control Solution (ICS)

Narrative:

Sample solution (01-1613) is a replicate analysis of the original sample that was submitted for analysis and is compared with the ICSD solution (01-1613) to determine the instrument solution preparation process.

Instrument Control Solution Duplicate (ICSD)

Narrative:

Sample solution ICSD (01-1613) is a duplicate preparation of the above sample and is used to determine the RPD between the two solutions as an ICP/MS instrument and preparation QC. The duplicate analysis of the ICS and ICSD (01-1613) met the instrument QC success criteria of + 20% RPD for all analytes.

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

File: C:\center Report\6192\6192-128(Ta Pt)

Instrument Control Solution Duplicate Spike (ICSDS)

Narrative:

The ICSDS is a post matrix spike of sample (01-1613) and is used to provide information on instrument solution preparation and instrument performance. The ICSDS met the QC success criteria of $\pm 25\%$ recovery for all analytes.

Post Blank Spike (PBS)

Narrative:

An instrument post spike was performed on sample (Blk-1613) and met the QC success criteria of \pm 20% recovery for all analytes.

Internal Standard (IS)

The Internal Standards met the QC criteria of 30% to 120%.

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 5 of 6

4/15/2002

File: C:\center Report\6192\6192-128(Ta Pt)

Author: Orville Thomas Farmer III

3.2. Sample Preparation QC Results

Preparation Blank (PB)

Narrative:

The PB met the success criteria being < 10 X MDL for all analytes.

Laboratory Control Standard / Blank Spike (LCS/BS)

Narrative:

The LCS/BS was submitted for analysis and failed the success criteria of $\pm 20\%$ for Ta. However, the PBS was analyzed and all analytes of interest met the success criteria of $\pm 20\%$.

Duplicate (DUP)

Narrative:

No duplicate was submitted for analysis. However the ICS and ICSD met the success criteria of +20% RPD.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

Narrative:

No MSD was submitted for analysis. The MS failed the success of $\pm 25\%$ for Ta. However, an ICSDS (matrix post spike) was analyzed and all analytes met the success criteria of $\pm 25\%$.

Laboratory Control Standard (LCS/SRM)

Narrative:

No LCS/SRM was submitted for analysis.

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 6 Page 6 of 6 4/15/02

Battelle, PNNL Advance Inorganic Analysis Group (AIAG)

ICP/MS Data Analysis Report

Project / WP#:	42365 / W58950	
ASR#:	6192 / 128	
Client:	Ingrid Burgeson	
Total Samples:	5	

Analysis: Pu-242

Procedure: PNL-SCO1 Rev. 1, Inductively-Coupled Plasma Mass Spectrometric (ICP-MS) Analysis

M&TE Number:	WB36913	ICP/MS, VG Elemental
	512-06-01-014	Mettler AJ100 Balance

Point of Contact:

Orville Thomas Farmer III

Report Date:

25 April 2002

Analysis Files:

Experiment – 19 April 02 Procedure – 19 April 02 Element Menu – 19 April 02

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Analyst(s):

James Bramson / Teresa Wilson

termest? Reviewed By

25 Apro2 Date

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 1 Page 1 of 6 4/25/2002

RPL#	Client I.D.	
BLK-1613	BLK	
01-1842	AP101L-E-COMP	
01-1843	Tc-AP1-Eluate	
BS-1613	BS	
MS-1613	MS-1613 MS	

Samples Submitted for Analysis:

The samples (AP-101) submitted for analysis were analyzed on a radioactive-material-contained ICP/MS for the requested analyte(s) Pu-242. The analysis for Pu-242 was performed using the calibration count rate response from Pu-239. The MS and BS was not spike with any Pu material however, an instrument post blank spike and post matrix spike was analyzed for Pu-239 recovery.

1. Analysis

The final results have been corrected for all laboratory preparation and dilutions performed on the sample during analysis.

Instrument Detection Limits (IDL) and Method Detection Limit (MDL) were determined using 7 instrument standard blank solutions. The IDL was calculated by multiplying the observed standard deviation of the 7 standard blanks solutions by 3.14. An MDL is determined for each solution analyzed by multiplying the IDL by the internal standard drift ratio and that sample total dilution factor.

Page 2 Page 2 of 6 4/25/2002

2. Results

Pu-242 Final Results

Samples	Sample Conc. (uCi/g)	(+/-) 1 sigma	MDL (uCi/g)
BLK-1613	<8.31E-08		8.31E-08
01-1842	<1.56E-06		1.56E-06
01-1843	<1.66E-06		1.66E-06
BS-1613	<6.10E-08		6.10E-08
MS-1613	<1.02E-06		1.02E-06

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 3 Page 3 of 6 4/25/2002

File: C:\center Report\6192\6192-128(Pu-242)

3. Quality Control

3.1. Instrument QC Results

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB)

Narrative:

The ICB/CCB standards are 1% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than < 10 X MDL, was met for all analytes.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV)

Narrative:

The ICV/CCV standards met the QC criteria of \pm 10% for all analytes.

Dilution Test (DT)

Narrative:

The success criteria of $\pm 20\%$ recovery were met for this QC for all analytes. The isotope of Pu-239 was used for the instrument QC success criteria.

Instrument Control Solution (ICS)

Narrative:

Sample solution (01-01845 mod-2) is a replicate analysis of the original sample that was submitted for analysis and is compared with the ICSD solution (01-01845 mod-2) to determine the instrument solution preparation process. The isotope of Pu-239 was used for the instrument QC success criteria. The isotope of Pu-239 was used for the instrument QC success criteria.

Instrument Control Solution Duplicate (ICSD)

Narrative:

Sample solution ICSD (01-01845 mod-2) is a duplicate preparation of the above sample and is used to determine the RPD between the two solutions as an ICP/MS instrument and preparation QC. The duplicate analysis of the ICS and ICSD (01-01845 mod-2) met the instrument QC success criteria of \pm 20% RPD for all analytes. The isotope of Pu-239 was used for the instrument QC success criteria.

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 4 Page 4 of 6 4/25/2002

Instrument Control Solution Duplicate Spike (ICSDS)

Narrative:

The ICSDS is a post matrix spike of sample (01-01845 mod-2) and is used to provide information on instrument solution preparation and instrument performance. The ICSDS met the QC success criteria of \pm 25% recovery for all analytes. The isotope of Pu-239 was used for the instrument QC success criteria.

Post Blank Spike (PBS)

Narrative:

An instrument post spike was performed on sample (Blk-1613) and met the QC success criteria of \pm 20% recovery for all analytes. The isotope of Pu-239 was used for the instrument QC success criteria.

Internal Standard (IS)

The Internal Standards met the QC criteria of 30% to 120%.

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 5 of 6

4/25/2002

3.2. Sample Preparation QC Results

Preparation Blank (PB)

Narrative:

The PB met the success criteria being < 10 X MDL for all analytes.

Laboratory Control Standard / Blank Spike (LCS/BS)

Narrative:

Pu isotopes were not spiked into the LCS/BS sample at the time of sample preparation. However a Post Blank Spike (PBS) was analyzed for Pu-239 and met the success criteria of $\pm 20\%$.

Duplicate (DUP)

Narrative:

All elements were <10X MDL, however the ICS and ICSD met the success criteria of \pm 20% RPD.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

Narrative:

Pu isotopes were not spiked into the MS sample at the time of sample preparation However an ICSDS (matrix post spike) was analyzed and all analytes met the success criteria of +25%.

Laboratory Control Standard (LCS/SRM)

Narrative:

No LCS/SRM was submitted for analysis.

ICP-MS Data Report, ASR 6192 /128 Orville Thomas Farmer III

Page 6 Page 6 of 6 4/25/2002

Appendix G

Cesium Ion Exchange and Batch Contacts Testing Personnel

Cognizant Scientists

S. K. Fiskum D. L. Blanchard S. T. Arm B. M. Rapko

Hot Cell Technicians

F. V. Hoopes M. A. Mann

Analytical Support

J. P. Bramson L. P. Darnell O. T. Farmer S. K. Fiskum L. R. Greenwood D. R. Sanders C. Z. Soderquist M. J. Steele R. G. Swoboda K. K. Thomas T. L. Trang-Le J. J. Wagner

Distribution

No. of Copies

OFFSITE

No. of Copies

ONSITE

7 <u>Savannah River Technology</u> Bond Calloway Building 999-W Aiken, SC 29808

> Larry Hamm Building 773-42A Aiken, South Carolina 29808

> Neguib Hassan Building 773-A Aiken, South Carolina 29808

> Mike Hay Building 773-42A Aiken, South Carolina 29808

> Jim Marra Building 773-43A Aiken, South Carolina 29808

> Charles Nash Building 773-42A Aiken, South Carolina 29808

> Harold Sturm Building 773-A Aiken, South Carolina 29808

10	Battelle Pacific Northwest Division		
	S. T. Arm	P7-28	
	D. L. Blanchard	P7-25	
	S. K. Fiskum (3)	P7-25	
	D. E. Kurath	P7-28	
	Project File (2)	P7-28	
	Information Release (2)	K1-06	
4	Bechtel National, Inc.		
	J. F. Doyle	H4-02	
	R. A. Peterson	H4-02	
	P. S. Sundar	H4-02	
	M. R. Thorson	H4-02	