Rheological Studies on Pretreated Feed and Melter Feed from AW-101 and AN-107

Paul R. Bredt Robert G. Swoboda

February 2001

Prepared for CH2M Hill Hanford Group, Inc. under Project Number 41503

Rheological Studies on Pretreated Feed and Melter Feed from AW-101 and AN-107

Paul R. Bredt Robert G. Swoboda

February 2001

Prepared for CH2M Hill Hanford Group, Inc. under Project Number 41503

Pacific Northwest National Laboratory Richland, Washington, 99352

Summary

Rheological and physical properties tests were conducted on actual AN-107 and AW-101 pretreated feed samples prior to the addition of glass formers. Analyses were repeated following the addition of glass formers. The AN-107 and AW-101 pretreated feeds were tested at the target sodium values of nominally 6, 8, and 10 M. The AW-101 melter feeds were tested at these same concentrations, while the AN-107 melter feeds were tested at 5, 6, and 8 M with respect to sodium. These data on actual waste are required to validate and qualify results obtained with simulants.

The AW-101 pretreated feed samples and the AN-107 pretreated feed samples at sodium concentrations of 6M and 8M contained no visible solids following evaporation. The 10 M sodium AN-107 sample contained roughly 1 vol% settled solids following evaporation. After approximately 2 weeks at 1 vol%, solids precipitated overnight from the 10 M Na sample resulting in a settled solids layer occupying roughly 70% of the sample volume. These solids dissolved quickly after dilution to 5 M.

With the exception of the 10 M Na AN-107 sample, the rheograms of both AN-107 and AW-101 samples prior to glass former addition show Newtonian behavior with a linear relation between shear stress and shear rate with no observed yield stress. No thixotropy was observed comparing the increasing and decreasing shear rate curves or between repeat analysis of the same samples. With the exception of some solids in the 10 M AN-107 sample that effected behavior at low shear rates (below $\sim 100 \, \text{s}^{-1}$), the rheology of the AN-107 and AW-101 feeds were indistinguishable. The viscosities of the 6, 8, and 10 M Na feeds at 500 s⁻¹ were 8, 12, and 21 cP respectively at 25°C, and 4, 7, and 12 respectively at 50°C. The 10M Na AN-107 sample displayed Bingham behavior with a thixotropic component.

Rheograms of the AW-101 samples after glass former addition show nearly Newtonian behavior with only a 20-40% drop in viscosity between 33s⁻¹ and 500s⁻¹. No thixotropy or yield stresses were observed. The viscosities at 500 s⁻¹ of the 6, 8, and 10 M Na feeds were 36, 88, and 230 cP respectively at 25°C, and 16, 46, and 130 cP respectively at 50°C.

After glass former addition, the 5M Na AN-107 melter feed sample showed nearly Newtonian behavior with no thixotropy or yield stresses. The 6 and 8M Na feeds displayed yield pseudoplastic behavior with a thixotropic component. The viscosities at 450-500 s⁻¹ of the 5, 6, and 8M feeds were 44, 360, and 1100 cP respectively at 25°C. At 50°C and approximately 275s⁻¹ the viscosities were 15, 175 and 1000 cP. The yield stress of the 6 and 8M feeds were 15 and 180 Pa at 25°C, dropping slightly to 12 and 160 at 50°C.

A mixing and aging study was conducted on the 8 M Na AW-101 and AN-107 melter feed following glass former addition. Glass formers were added and the slurries were stirred at a rate consistent with that expected in the River Protection Project Waste Treatment Plant flow sheet. The viscosity of the AW-101 slurry increased from 52 cP at

350 s⁻¹ after 1 hour to 67 cP after 1 day. The viscosity then remained essentially constant as indicated by the 64 cP measurement after 1 week. These measurements were all conducted at 25°C. Sample behavior was nearly Newtonian. No thixotropy or yield stresses were observed. The AN-107 sample viscosity increased at 350s⁻¹ from 280 cP after 1 hour to 540 cP after 1 day of mixing. The viscosity after 1 week was 440 cP indicating a possible minor drop during the week although the viscosity at lower shear rates (33s⁻¹) only dropped by ~8% during the week. Rheograms displayed yield pseudoplastic behavior as well as a thixotropic component.

The 8 M Na AW-101 and AN-107 melter feed samples were then allowed to settle for 1 week. No gas retention or gas releases were observed during the study. After one week the settled solids were analyzed for shear stress versus shear rate at 25°C. In the AW-101 sample, two settled solids layers formed. These layers were analyzed separately and both displayed near Bingham behavior with a linear increase in shear stress with shear rate above a yield stress. The yield stress for both layers was 4.6 Pa. Both samples also displayed a thixotropic component with a decreased viscosity and no yield point on the decreasing rate portion of the rheograms.

Only one settled solids layer formed in the AN-107 sample. The 8M Na AN-107 melter feed contained very little standing liquid. Therefore, the rheology of the settled solids was similar to that for the slurry. After 1 week of settling, the AN-107 settled solids displayed yield pseudoplastic behavior as well as a thixotropic component. The viscosity of the settled solids was only slightly higher than the mixed slurry, and the yield stress of the settled solids was similar to that of the mixed slurry.

Table of Contents

1.0 Introduction	1.1
2.0 Experimental Approach	2.1
2.1 Evaporation and Settling Study	
2.2 Mixing and Aging Study	
3.0 Experimental Results	
3.1 Density and Settling Study	
3.2 Rheology	
3.2.1 Rheology of Evaporated Feed Samples	
3.2.2 Rheology of Melter Feed with Glass Formers	
3.3 Mixing and Aging Study	
4.0 Conclusions	
Appendix A: Figures for AN-107 & AW-101	
Appendix B: Test Plan (BNFL-TP-29953-046)	

Figures

Figure 2.1.	AW-101 Samples and Glass Formers Prior to Mixing. Samples A, B	
	(B-1 and B-2), and C are 6M, 8M, and 10M Sodium Respectively	2.2
Figure 2.2.	AN-107 Samples Following 24 hours at 50°C. This Photograph Was	
	Taken Two Weeks After Completion of Evaporation. Note Solids in	
	Sample C That Were Not Observed 2 Days Prior to This Photograph.	
	Samples A, B (B-1 and B-2), and C are 6M, 8M, and 10M Sodium	
	Respectively	2.3
Figure 2.3.	Close Up of Solids Precipitated Out of 10M AN-107 Sample. While	
	Loosely Packed, Solids Account for Roughly 70% of the Sample	
	Volume	2.3
Figure 2.4.	AW-101 Samples During 25°C Settling Study Following Glass	
	Former Addition. Samples A, B-1, and C are 6M, 8M, and 10M	
	Sodium Respectively	2.6
Figure 3.1.	Volume Percent Settled Solids Versus Time for AW-101 Melter Feed	
	With Glass Formers Using a Semi-Log Scale	3.5
Figure 3.2.	Volume Percent Settled Solids Versus Time for AW-101 Melter Feed	
	With Glass Formers Using a Linear Scale	3.6
Figure 3.3.	Settling Rates for AW-101 Melter Feed With Glass Formers	3.7
Figure 3.4.	Volume Percent Settled Solids Versus Time for AN-107 Samples	
	Using a Semi-Log Scale	3.8
Figure 3.5.	Volume Percent Settled Solids Versus Time for AN-107 Samples	
	Using a Linear Scale	3.9
Figure 3.6.	Settling Rates for AN-107 Melter Feed	3.10

Tables

Table 1.1.	Reference Documents for Melter Feed Samples	1.1
Table 2.1.	Glass Formers Added to AW-101 Samples	2.8
Table 2.2.	Glass Formers Added to AN-107 Samples	2.9
Table 3.1.	Density of AN-107 and AW-101 Samples at 25°C and 50°C With and	
	Without Addition of Glass Formers in g/ml (Error is estimated at ±2% of	
	the Measured Value).	3.1
Table 3.2.	Volume Percent Settled Solids for the AW-101 and AN-107 Samples	
	with Glass Formers	3.2
Table 3.3.	Viscosity of Evaporated Feed Samples in cP. Values are the Average of	
	Two Duplicate Analyses	.3.11
Table 3.4.	Yield Power Law Fit for the 10M AN-107 Samples at 25°C	.3.12
Table 3.5.	Viscosity of Melter Feed Samples with Glass Formers in cP. With the	
	Exception of the AN-107 8M Sample, Values at 25°C are the Average	
	of Duplicate Analyses.	.3.13
Table 3.6.	Viscosity of 8M Na Melter Feed Samples with Glass Formers During	
	Mixing and Aging Study. Analyses Conducted at 25°C Using a Haake	
	M5 Viscometer with an SVI Concentric Cylinder Geometry. Values are	
	in cP	.3.14
Table 3.7.	Yield Power Law Fit for the 8M AW-101 Settled Solids following Glass	
	Former Addition. Analyses Were Conducted at 25°C	.3.15

1.0 Introduction

The scope of the present work was to obtain physical and rheological data on actual LAW melter feed samples. The physical and rheological properties of the LAW melter feed are important considerations in the selection of the melter feed preparation flowsheet and processing equipment such as mixers, pumps, piping, and sampling. Measurements on actual waste are required to validate and qualify results obtained with simulants.

Actual samples from tank AW-101 and AN-107 were used in this testing. Multiple samples from each tank were received from Hanford's 222-S laboratory. Using this material, a composite was prepared for each of the tanks. Entrained solids were removed from the AW-101 composite by ultrafiltration. The cesium was then removed by ion exchange. Entrained solids, Sr and transuranics (TRU) were removed from the AN-107 material during the Sr/TRU removal process. Cesium was then removed from the AN-107 material by ion exchange. Applicable reports are listed in Table 1.1.

Table 1.1. Reference Documents for Melter Feed Samples

Activity	Reference Report
AW-101 Entrained	K.P. Brooks, P.R. Bredt, G.R. Golcar, S.A. Hartley, M.W. Urie,
Solids Removal	J.M. Tingey, K.G. Rappe, L.K. Jagoda, "Ultrafiltration and
	Characterization of AW-101 Supernatant and Entrained Solids",
	PNWD-3000, Battelle Memorial Institute, Richland, Washington,
	October 1999.
AW-101 Cs	D.E. Kurath, D.L. Blanchard, J.R. Bontha, "Small Column Ion
Removal	Exchange Testing of Superlig 644 for Removal of ¹³⁷ Cs from
	Hanford Tank Waste Envelope A (Tank 241-AW-101)", PNWD-
	3001, Battelle Memorial Institute, Richland, Washington, June
	2000.
AN-107 Entrained	R.T. Hallen, P.R. Bredt, K.P. Brooks, L.K. Jagoda, "Combined
Solids and Sr/TRU	Entrained Solids and Sr/TRU Removal from AN-107 Diluted
Removal	Feed", PNWD-3035, Battelle Memorial Institute, Richland,
	Washington, August 2000.
AN-107 Cs	D.E. Kurath, D.L. Blanchard Jr., J.R. Bontha, "Small Column Ion
Removal	Exchange Testing of Superlig 644 for Removal of ¹³⁷ Cs from
	Hanford Tank Waste Envelope C (Tank 241-AN-107)", PNWD-
	3039, Battelle Memorial Institute, Richland, Washington, June
	2000.

Solids concentration, settling rate, density and shear stress versus shear rate were measured on the samples after evaporation to three sodium concentrations (nominally 6, 8, and 10 M) at ambient temperature and at 50°C. The same measurements were conducted on the three mixtures from tank 241-AW-101 after the addition of glass

formers. Measurements were repeated on the AN-107 sample at sodium concentrations of 5, 6, and 8M after addition of glass formers. The 8M Na AW-101 and AN-107 slurries were mixed for 1 week at a shear rate consistent with that expected in the facility. During this mixing, shear stress versus shear rate was measured after 1 hour, 1 day, and 1 week. A shear stress versus shear rate analysis of this slurry was conducted again after 1 week with no mixing.

This report describes the experimental approach and results of the testing. Specifications for this work were provided to Battelle by BNFL under Task Specification Number TS-W375LV-TE00001. This report also provides a means of transmitting to BNFL the completed test plan and analytical data.¹

¹ Results presented in this report are based on work conducted under Technical Procedure 29953-010, and Test Plan 29953-46.

2.0 Experimental Approach

2.1 Evaporation and Settling Study

The actual waste samples used in this testing were prepared under conditions similar to those anticipated in the River Protection Project Waste Treatment Plant flow sheet. Both the AW-101 and AN-107 wastes were received for this task following cesium ion exchange. The process flow sheet includes technetium ion exchange for both of these wastes prior to evaporation. However, the technetium ion exchange process does not significantly alter the waste composition. Therefore, the AN-107 samples were not subject to technetium ion exchange prior to performing this work.

The densities of the waste samples were measured at ambient temperature (~23°C). This measurement was conducted by placing a subsample in a graduated glass cylinder of known mass. The density was then calculated by dividing the net mass by the volume. The measured densities were 1.246 g/ml and 1.236 g/ml for the AW-101 and AN-107 samples respectively.

Following the density measurements, each waste was partitioned into three subsamples. Each of the subsamples was then evaporated to one of the target sodium concentrations (6M, 8M, or 10M). The evaporation was conducted in a vacuum oven at ~50°C under approximately 23 inches of Hg vacuum. Three subsamples of each waste were weighed into glass beakers. Using the density of the initial slurries, target weights required to yield the desired sodium concentrations were calculated. Water was then evaporated from the samples. For estimating purposes, it was assumed that for every gram of water evaporated the volume of the samples decreased by one milliliter. Figures 2.1 and 2.2 show the AW-101 and AN-107 samples, respectively, after evaporation.

Following the evaporation step, the samples were placed in glass-graduated cylinders, and the density of each was measured at ambient temperature (~23°C). This volume and mass was then used to calculate the actual sodium concentrations of the evaporated samples. The AW-101 samples were calculated to have Na concentrations of 5.9 M, 7.7 M, and 9.4 M. The AN-107 samples were calculated to have Na concentrations of 5.9 M, 7.9 M, and 9.7 M. The 9.7 M Na AN-107 sample contained approximately 1 vol% settled solids at 23°C. These settled solids were colorless to white in color and consisted of slushy material with some crystal like particles up to approximately 1 mm in size. These solids settled within a few seconds after agitation. None of the other evaporated samples contained visible solids. The densities of the samples were measured at 50°C by placing the sealed graduated cylinders containing the samples in an oven at 50° overnight. The samples were removed from the oven and the volumes were immediately recorded. The samples were allowed to cool before they were reweighed.

Following the density measurements at 50°C, additional solids were observed in the AN-107 10 M Na sample. This observation was made approximately 2 weeks after completion of the evaporation. A photograph of these settled solids is presented in Figure 2.3. It is estimated the sample contains roughly 70 vol% loosely settled solids. Later in the testing, the 10 M Na AN-107 sample was diluted to 5 M. Upon dilution, the solids returned to solution.

Figure 2.1. AW-101 Samples and Glass Formers Prior to Mixing. Samples A, B (B-1 and B-2), and C are 6M, 8M, and 10M Sodium Respectively

Figure 2.2. AN-107 Samples Following 24 hours at 50°C. This Photograph Was Taken Two Weeks After Completion of Evaporation. Note Solids in Sample C That Were Not Observed 2 Days Prior to This Photograph. Samples A, B (B-1 and B-2), and C are 6M, 8M, and 10M Sodium Respectively

Figure 2.3. Close Up of Solids Precipitated Out of 10M AN-107 Sample. While Loosely Packed, Solids Account for Roughly 70% of the Sample Volume

Following the 50°C density measurement on the AW-101 samples, but before the 50°C density measurement on the AN-107 samples, the evaporated samples were stirred using an overhead mixer. While stirring, subsamples were removed for shear stress versus shear rate analyses. Samples were analyzed for shear stress versus shear rate in duplicate at 25°C and 50°C using a Bohlin CS viscometer modified for glovebox operations. Concentric cylinders with a 25-mm-diameter inner cylinder and a "Small Sample Cell" outer cylinder were used as the measuring geometries. The gap for this geometry set is 0.75 mm.

As per our procedure (29953-010), the Test Plan (29953-046), and manufacturers recommendations, we performed a single point calibration check on the instrument every 30 days. This was done with either the 50 cP or 95 cP standard. This calibration check needs to be within 10% of the certified value for standards above 10cP. Rheograms for standards can be found in Appendix A, Figures 1, 15, and 48. The measured viscosity of both the 50 and 95 cP standards were not constant over the entire shear rate range, but remained within the required 10% criteria between approximately 10 and 550 s⁻¹. Since the measured viscosity was not constant over the range, reporting a particular error is not appropriate. The viscosity is the ratio of shear stress to shear rate and the viscosity of the standards were within this acceptance criteria over the $10 \, \text{s}^{-1}$ to $\sim 550 \, \text{s}^{-1}$ range. Therefore, this single standard is an effective check of the instruments torque calibration over 3 orders of magnitude. Manufacturer recommendations are only for this single check even if some samples display viscosities above the stress range of the calibration checked provided they are not beyond the maximum torque of the instrument. None of the samples exceeded the maximum torque of the instrument.

Shear stress versus shear rate rheograms were obtained by measuring the shear stress produced at a specific shear rate. The increasing shear rate curve was generated by gradually increasing the shear rate from approximately $0.1 \, \text{s}^{-1}$ to the maximum achievable shear rate for the given sample, nominally $700 \, \text{s}^{-1}$. The decreasing shear rate curve was generated by reducing the shear rate back down to $0.1 \, \text{s}^{-1}$. While the instrument is rated to $1100 \, \text{s}^{-1}$ with this geometry set, these high shear rates are not easily attained with these slurries. At high shear rates, the system tends to over spin producing poor quality data. The shear rate analysis was conducted again with the same sample still in the instrument. If a difference between the first and second run was observed, it would indicate potentially unusual behavior in the samples including (but not limited to) settling of the solids within the instrument, the sample being effected by shearing in the instrument, or water loss through evaporation. In all cases, the first and second runs were virtually identical.

The 8M Na AW-101 sample was divided into 2 equal aliquots. Glass formers were then added to the 6M Na sample, one of the 8M Na AW-101 samples, and the 10M Na AW-101 sample. The second 8M Na AW-101 sample was retained for mixing and aging studies that will be described in Section 2.2 of this report. Glass former quantities were based on the formulation provided by VSL. The VSL formulation was provided for a 4.59 M sodium feed on a mass per liter basis. The quantity of glass formers were first adjusted on a per liter basis to the targeted sodium concentrations (6, 8, and 10 M). The

masses to be added to the 6M Na sample were multiplied by 1.31 (6/4.59=1.31), the masses added to the 8M Na samples were multiplied by 1.74, and the masses added to the 10 M sample were multiplied by 2.18. These adjusted masses on a per liter basis were then multiplied by the volume of sample to calculate how much material to add to each sample. Table 2.1 lists the quantity and type of glass formers added to each of the AW-101 samples.

The 10M AN-107 sample was diluted to 5M with respect to sodium. Upon dilution, the solids formed during the evaporation step dissolved. The 8M Na AN-107 sample was divided into 2 equal aliquots. Glass formers were then added to the 5M Na sample, the 6M Na sample, one of the 8M Na AN-107 samples. The second 8M Na AN-107 sample was retained for mixing and aging studies that will be described in Section 2.2 of this report. Glass former quantities were based on the formulation provided by VSL. The VSL formulation was provided for a 4.8 M sodium feed on a mass per liter basis. The quantity of glass formers were first adjusted on a per liter basis to the targeted sodium concentrations (5, 6, and 8 M). The masses to be added to the 5M Na sample were multiplied by 1.0417 (5/4.8=1.0417), the masses added to the 6M Na samples were multiplied by 1.25, and the masses added to the 8 M sample were multiplied by 1.6667. These adjusted masses on a per liter basis were then multiplied by the volume of sample to calculate how much material to add to each sample. Table 2.2 lists the quantity and type of glass formers added to each of the AN-107 samples.

Prior to addition, the dry glass formers were weighed into a flask and hand mixed using a spatula. The glass former mixture was then slowly added to the samples while the samples were stirred using an overhead mixer. Following the glass former addition, the samples were stirred for an additional hour.

After stirring for one hour, the stir blade was removed and the volume of settled solids was monitored for three days at ambient temperature. After three days, the mass and volume of the bulk samples were recorded and used to calculate the densities of the bulk slurries. Figure 2.4 shows the AW-101 samples during this settling study. The samples were then placed in an oven at 50°C overnight before repeating the settling study at 50°C.

Following the 50°C settling study, shear stress versus shear rate analyses were performed on the samples at 25°C and 50°C as described previously for the evaporated samples. Shear stress versus shear rate analysis were performed on the AW-101 samples using the 25-mm-diameter inner cylinder and a "Small Sample Cell" outer cylinder. The AN-107 samples with glass formers were much more viscous and required use of a 4/40 cone-and-plate measuring geometry on the Bohlin CS10 viscometer.

Figure 2.4. AW-101 Samples During 25°C Settling Study Following Glass Former Addition. Samples A, B-1, and C are 6M, 8M, and 10M Sodium Respectively

2.2 Mixing and Aging Study

The second 8M Na AW-101 and AN-107 samples were subjected to a mixing and aging study as specified in the BNFL Task Specification. The 8M Na samples were placed in 250 ml round bottom flasks with a side tube. The samples were stirred using an overhead mixer while the glass formers were added. The flasks were then sealed using a Teflon stirrer bearing and continually stirred for 1 week using a 1-inch (2.54 cm) diameter blade at 480 rpm. The volume of the sample with glass formers was 6.1 in³ (100 ml). The 480 rpm mixing rate provides the same energy per volume as anticipated in the River Protection Project Waste Treatment Plant. The following equation (provided by BNFL) was used to calculate the proper rotational rate:

$$N^3 = 1.85 \times 10^7 \text{ V/D}_i^5$$
 [1]

For this equation, N is the impeller rotational rate in rpm, V is the sample volume in cubic inches and D_i is the impeller diameter in inches.

Samples of the 8M Na slurry were removed from the mixing vessel after 1 hour, 1 day, and 1 week. These samples were immediately analyzed for shear stress versus shear rate at 25°C. These analyses were conducted as described in Section 2.1 for both the evaporated samples and samples with glass formers.

The 8M Na samples were then transferred to 100 ml glass graduated cylinders. The samples were left to settle undisturbed for 1 week. During the settling time, the samples were monitored for any gas retention and releases. Visual observations were supplemented with time-lapse video. No gas bubbles were observed in these samples or any other AW-101 or AN-107 samples during this study.

After one week of settling, the standing liquid was removed, and the settled solids were immediately analyzed for shear stress versus shear rate at 25°C. Given the high solids content of the samples, the Bohlin CS rheometer with the "Small Sample Cell" concentric cylinder geometry could not used.

For the AW-101 sample, a Haake M5 measuring head modified for hot cell operations was used with an SV I measuring geometry. The SV I is a concentric cylinder geometry with a gap of 1.45 mm and a maximum shear rate range of 350 s⁻¹. A 95.5 cP Brookfield viscosity standard was used to check the calibration of the instrument before samples were analyzed. The calibration check was within 10% of the certified value. Upon close inspection, the settled layer in the 8M Na sample was found to consist of a loosely settled layer on top of a firmer higher solids content layer. Both layers were analyzed separately. The shear rate was ramped from approximately 0.1 to 350 s⁻¹ generating the increasing shear rate curve, and then back down to 0.1 s⁻¹ generating the decreasing curve.

The AN-107 mixing and aging study was conducted using a Bohlin CS viscometer equipped with a 4/40 cone and plate geometry. The 4/40 cone and plate geometry is capable of measuring samples with higher viscosities than the "Small Sample Cell".

Table 2.1. Glass Formers Added to AW-101 Samples

						Start Vol	Start $Vol = 142 \text{ mL}$	Stari	Start Vol = $146/2 = 73 \text{ mL}$.73 mL	Start Vol	Start Vol = 146 mL
			Formulation g/L	ion g/L		Target Wt	Actual Wt	Target Wt	Actual Wt	Actual Wt	Target Wt	Actual Wt
Additive	Grade	4.59M	M9	8M	10M	W 9	W 9	8 M	8 M (B-1)	8 M (B-2)	10 M	10 M
Kyanite (Al ₂ SiO ₅) Raw Kyanite, 325 Mesh	Raw Kyanite, 325 Mesh	41.74	54.56	72.75	90.94	7.748	7.74	5.311	5.33	5:35	13.277	13.33
Orthoboric Acid (H ₃ BO ₃)	Technical Grade	127.8	166.99	222.66	278.32	23.713	23.70	16.254	16.31	16.32	40.635	40.67
Wollanstonite (CaSiO ₃)	Powder untreated, NY AN 325	32.44	42.41	56.54	89.02	6.022	6.07	4.127	4.21	4.19	10.319	10.35
	Mesh											
Red Iron Oxide	Red Iron											
(Fe_2O_3)	Oxide, 325 Mesh (5001)	37.35	48.82	65.10	81.37	6.933	26.9	4.752	4.78	4.79	11.880	11.88
Olivine (Mg ₂ SiO ₄ 325 Mesh	325 Mesh											
with some Fe ₂ SiO ₄)	(#180)	22.1	28.89	38.52	48.15	4.102	4.11	2.812	2.81	2.83	7.030	7.04
Ground Silica Sand (SiO ₂)	Sil-co-Sil 75, 200 Mesh	262.8	343.58	458.11	572.64	48.789	48.71	33.442	33.45	33.49	83.605	83.63
Rutile (TiO ₂)	Premium Grade,	14.32	18.72	24.96	31.20	2.658	2.64	1.822	1.85	1.82	4.555	4.55
	Airfloated											
Zinc Oxide (ZnO) KADOX-920	KADOX-920	21.21	27.73	36.97	46.21	3.937	3.94	2.699	2.71	2.71	6.747	92.9
Zircon Sand (ZrSiO ₄)	Flour 325 Mesh	31.94	41.75	55.67	69.69	5.929	5.96	4.064	4.12	4.06	10.160	10.15
Sugar	Granular Sugar	51.34	67.11	89.48	111.85	9.530	9.55	6.532	6.61	6.57	16.330	16.43

Table 2.2. Glass Formers Added to AN-107 Samples

		Target (g) per lit	Farget (g) per liter of feed	þ	Start Vol	= 81.0 ml	Start Vol	Start Vol = 109.3 ml	Start Vol	Start Vol = 86.5 ml	Start Vol = 168.0	= 168.0
						Target Wt	Actual Wt	Target Wt	Actual Wt	Target Wt	Actual Wt	Target Wt	Actual Wt
Additive	Grade	4.8M	5M	6M	8M	6 M	6 M	6 M	6 M (B-1)	8 M	8 M (B-2)	5 M	5M
Kyanite (Al_2SiO_5)	Raw Kyanite, 325 Mesh	109.07	113.61	136.34	181.78	11.043	11.24	14.906	14.91	15.724	15.72	19.087	19.21
c Acid	Technical Grade	187.07	194.86	233.84	311.78	18.941	18.95	25.566	25.59	26.969	26.98	32.737	32.72
Wollanstonite (CaSiO ₃)	Powder untreated, NYAN 325 Mesh	111.47	111.47 116.11	139.34	185.78	11.286	11.29	15.234	15.24	16.070	16.06	19.507	19.51
Red Iron Oxide (Fe ₂ O ₃)	Red Iron Oxide, 325 Mesh (5001)	51.87	54.03	64.84	86.45	5.252	5.27	7.089	7.08	7.478	7.47	9.077	60.6
Lithium Carbonate (Li ₂ CO ₃)	Chemetal Foote Corp Technical Grade	64.75	67.45	80.94	107.92	6.556	6.56	8.849	8.85	9.335	9.34	11.331	11.35
Olivine (Mg_2SiO_4 with some Fe_2SiO_4)	325 Mesh (#180)	32.92	34.29	41.15	54.87	3.333	3.32	4.499	4.50	4.746	4.76	5.761	5.76
Ground Silica Sand (SiO_2)	Sil-co-Sil 75, 200 Mesh	349.7	364.27	437.13	582.83	35.407	35.48	47.792	47.78	50.415	50.40	61.198	61.19
Rutile (TiO ₂)	Premium Grade, Airfloated	12.39	12.91	15.49	20.65	1.254	1.25	1.693	1.69	1.786	1.78	2.168	2.18
Zinc Oxide (ZnO)	KADOX-920	31.81	33.14	39.76	53.02	3.221	3.23	4.347	4.33	4.586	4.59	5.567	5.58
Zircon Sand (ZrSiO ₄)	Flour 325 Mesh	48.54	50.56	89.09	80.90	4.915	4.91	6.634	6.63	866.9	7.01	8.495	8.49
Sugar	Granular Sugar 20.00	20.00	20.83	25.00	33.33	2.025	2.02	2.733	2.73	2.883	2.89	3.500	3.51

3.0 Experimental Results

This section details the results of tests conducted on actual AW-101 and AN-107 samples following evaporation to nominal sodium concentrations of 6M, 8M, and 10M. The AW-101 samples were evaporated to 5.9M, 7.7M, and 9.4M. The AN-107 samples were evaporated to 5.9M, 7.9M, and 9.7M. The 9.7M AN-107 sample was later diluted to a sodium concentration of 4.8M. In this section, samples will be referred to according to the nominal sodium concentrations (5M, 6M, 8M, and 10M).

3.1 Density and Settling Study

The densities of the evaporated samples with and without glass formers are provided in Table 3.1. As expected, the densities of the samples prior to glass former addition increase with increasing sample concentration and decreases slightly with temperature. No temperature trend is seen in the AW-101 samples with glass formers. The densities for the AW-101 samples with glass formers increase from 1.59 g/ml at 6M Na to 1.80 g/ml at 8M Na; however, the densities of the 8M and 10M Na samples are similar at roughly 1.80 g/ml.

Table 3.1. Density of AN-107 and AW-101 Samples at 25°C and 50°C With and Without Addition of Glass Formers in g/ml (Error is estimated at ±2% of the Measured Value).

		ut Glass mers	With Glas	ss Formers
Sample	25°C	50°C	25°C	50°C
5M AN-107	1.22	NA	1.61	1.59
6M AN-107	1.28	1.26	1.71	1.70
8M AN-107	1.37	1.33	1.79	1.79
10M AN-107	1.44	1.38	NA	NA
6M AW-101	1.31	NM	1.59	1.59
		(1.27)		
8M AW-101	1.37	NM	1.80	1.81
		(1.33)		
10M AW-101	1.44	NM	1.77	1.80
		(1.38)		

NM = not measured due to elimination of 50°C settling study on AW-101 evaporated samples. Values in parentheses are estimated based on sodium concentration.

NA = not available. The density of the 5M AN-107 slurry was not measured at 50°C without glass formers., and glass formers were not added to the 10M AN-107 slurry.

As described in Section 2.1, the AW-101 and AN-107 samples with glass formers were agitated and then allowed to settle at 25°C and 50°C over a 3-day period. The solids settled leaving a clear supernatant above with a distinct interface between the settling solids and the clarified supernatant. Figure 3.1 and 3.2 plots the vol% settled solids (interface height/sample height x 100%) versus time for the AW-101 samples and Figure 3.4 and 3.5 plot the same data for the AN-107 samples. Figures 3.1 and 3.4 uses a semi-log scale while Figure 3.2 and 3.5 are linear.

With the exception of the AW-101 10M Na sample at 25°C, all samples finished settling within the first 24 hours. The AW-101 10M Na sample at 25°C reached a constant value after approximately 45 hours.

Table 3.2 lists the vol% settled solids for the samples. As expected, the data shows the volume percent settled solids increased with sodium concentration and decreased with temperature. For the AW-101 samples at 25°C, the volume percent settled solids increased from 55 to 72 to 83 vol% for the 6, 8, and 10M Na sample respectively. At 50°C, volume percent settled solids increased from 49 to 66 to 72 vol% for the 6, 8, and 10M Na sample respectively. This trend is the result of adding larger mass ratios of insoluble glass formers to the higher concentration samples. The decrease in vol% settled solids with increasing temperature could be the result of one or more soluble species in the precipitate at the lower temperature. This trend could also be the result of a lower viscosity and yield stress leading for greater compaction of the solids at the higher temperature. The AN-107 8M samples did not settle, so the volume percent settled solids it 100 and the data was not plotted in Figures 3.4 and 3.5.

Table 3.2. Volume Percent Settled Solids for the AW-101 and AN-107 Samples with Glass Formers

Sample	25°C	50°C
AN-107 5M	85	74
AN-107 6M	98	93
AN-107 8M	100	100
AW-101 6M	55	49
AW-101 8M	72	66
AW-101 10M	83	72

Figures 3.3 and 3.6 plot the settling rate as a function of time. The settling rate was calculated by dividing the change in settled solids height by time. Minor parallax errors can be magnified by this calculation and result in significant scatter. To minimize scatter, the data plotted in Figures 3.3 and 3.6 have been smoothed using a four point moving average.

Three settling mechanisms are generally observed for this type of sample matrix: free settling, hindered settling, and compression settling. Free settling is settling of discrete particles or flocculated particles without interaction from other particles or the vessel wall. Free settling is denoted by a linear decrease in vol% settled solids over time as the particles fall with fixed velocities. A linear decrease in settling velocity would be seen as a constant or flat portion of a settling rate versus time plot. For flocculating systems, the velocity generally increases as the mass of the particles increase, although particle shape changes can also decrease the settling velocity. Hindered settling occurs when the when particle-particle and particle-wall interactions effect the settling velocities. In an ideal system, hindered settling is denoted by the break from a linear decrease in vol% settled solids with time (i.e. a decrease in the settling rate). Compression settling is the final portion of the vol% settling curve as the system approaches the stable value. Two or even all three of these mechanisms usually occur simultaneously.

All samples in Figure 3.3 show an initially constant settling rate. This region is probably a combination of free as well as some hindered settling. Free settling of the smaller particles is dominating the behavior of the observed solids interface. However, the majority of the solids are at a much higher concentration at the bottom of the column where hindered settling is the dominant mechanism. For the AW-101 6M Na and 8M Na samples, the initial settling rates increase with temperature and decrease with increasing sodium concentration (i.e. 6M Na samples settle faster than 8M Na, and 50°C settle faster than 25°C). The initial settling rate of the 6M Na sample at 50°C was the highest (~0.02 cm/min) followed by the same sample at 25°C (~0.005-0.015 cm/min). The initial settling rate of the 8 M sample at 50°C was between 0.004-0.007 cm/min and at 25°C between 0.001-0.002 cm/min.

This increase in settling rate with increasing temperature and decrease in sodium concentration is probably the result of several factors including a lower supernatant viscosity as well as a decrease in the solids content. Viscosity results to be presented later in this report show that the viscosity of the samples decrease with increasing temperature and increase with higher sodium concentration. The vol% settled solids data in Table 3.2 shows the solids content of the samples decreases with increasing temperature and increases with increasing sodium concentration.

The initial settling rate of the AW-101 10M Na sample at 25°C (~0.004 cm/min) is higher than the same sample at 50°C (~0.001-0.003 cm/min) and is higher than the 8M Na sample at 25°C. The reason for this reverse in the trend observed for the 6 and 8M Na samples is unclear from the available data. It is probably the result of several factors that could include more effective flocculation of fine particulates at higher solids content of the 10M Na sample, competing with a higher concentration of fine soluble particulates that can not be dissolved at the higher temperature with the higher solids loading. This is speculative and more information would be needed if this is to be resolved.

After approximately 4 hours of settling, the settling rate for all of the samples drop dramatically as seen in Figures 3.3 and 3.6. This drop indicates the end of any free settling, and a transition to hindered and compression settling.

The transition from the combination of both hindered and compressive settling to only compression settling as the dominant mechanism is seen at different times for the samples. From Figure 3.1, the AW-101 6 M Na sample at 50°C shows the very slow linear decrease in settled solids volume expected for the compression settling at 6 hours, and the 6M Na at 25°C show the linear decrease starting after 24 hours. With the exception of the 10M Na sample at 25°C, compression settling becomes the dominant mechanism at ~24 hours. Compression settling does not appear to be the dominant settling mechanism for the 10M Na sample at 25°C until after ~60 hour. This late onset for compression settling of the 10M Na sample at 25°C suggests that while the sample is very close to a stable value, the sample may not have reached its final settled height.

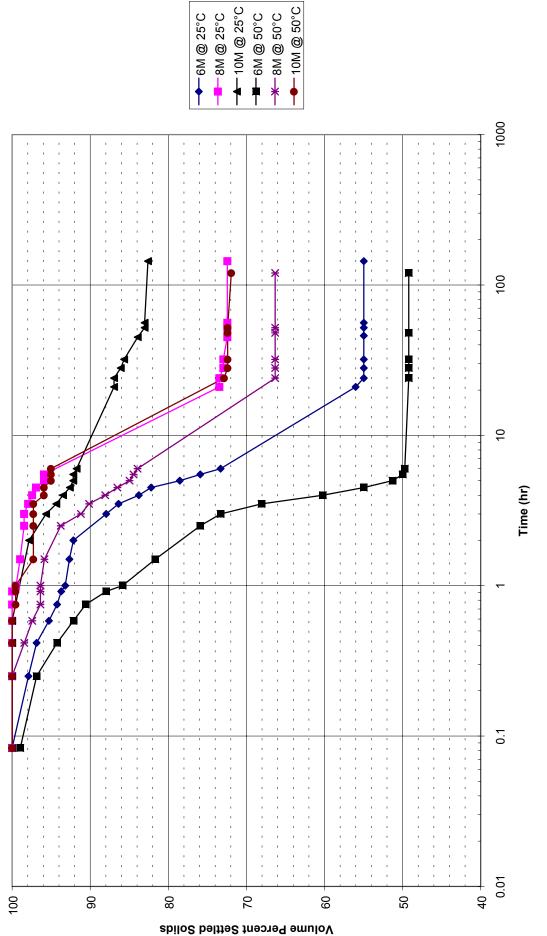


Figure 3.1. Volume Percent Settled Solids Versus Time for AW-101 Melter Feed With Glass Formers Using a Semi-Log Scale

Figure 3.2. Volume Percent Settled Solids Versus Time for AW-101 Melter Feed With Glass Formers Using a Linear Scale

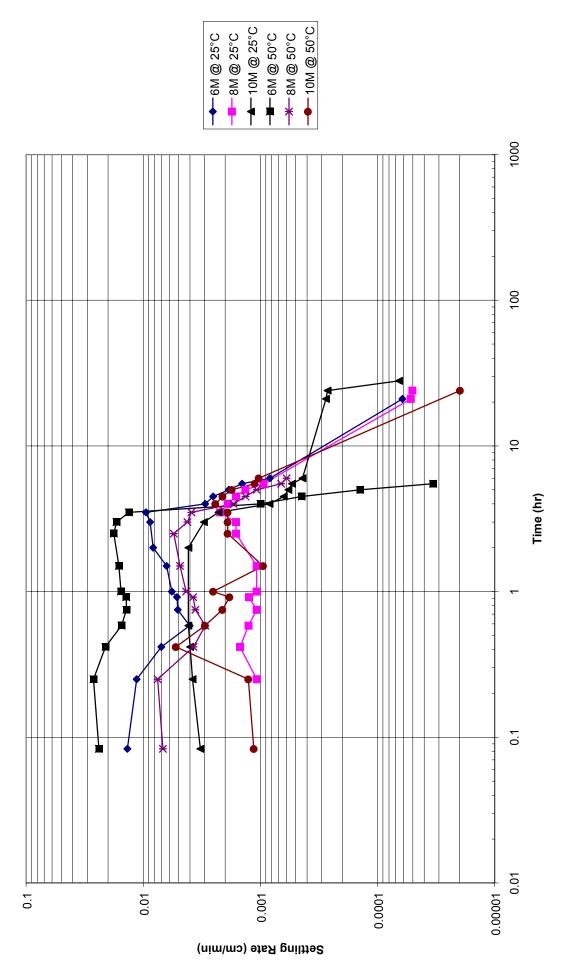


Figure 3.3. Settling Rates for AW-101 Melter Feed With Glass Formers

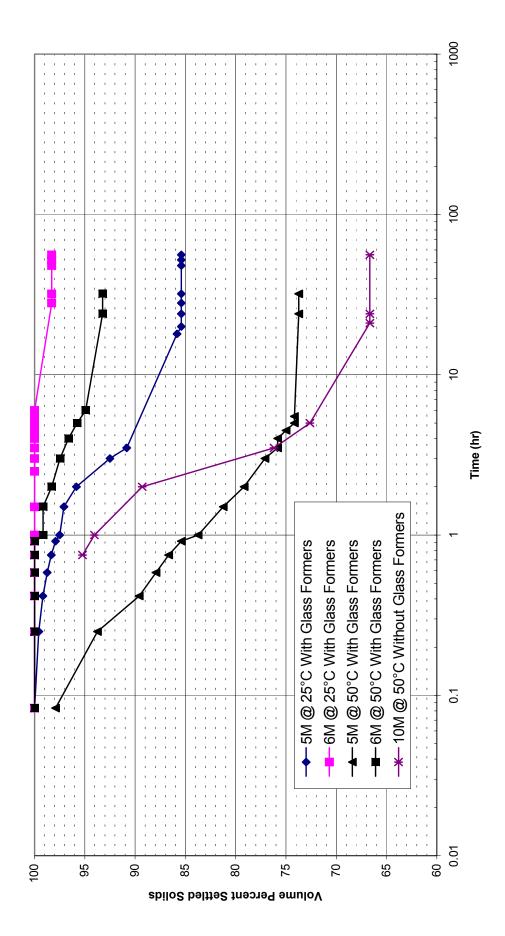


Figure 3.4. Volume Percent Settled Solids Versus Time for AN-107 Samples Using a Semi-Log Scale

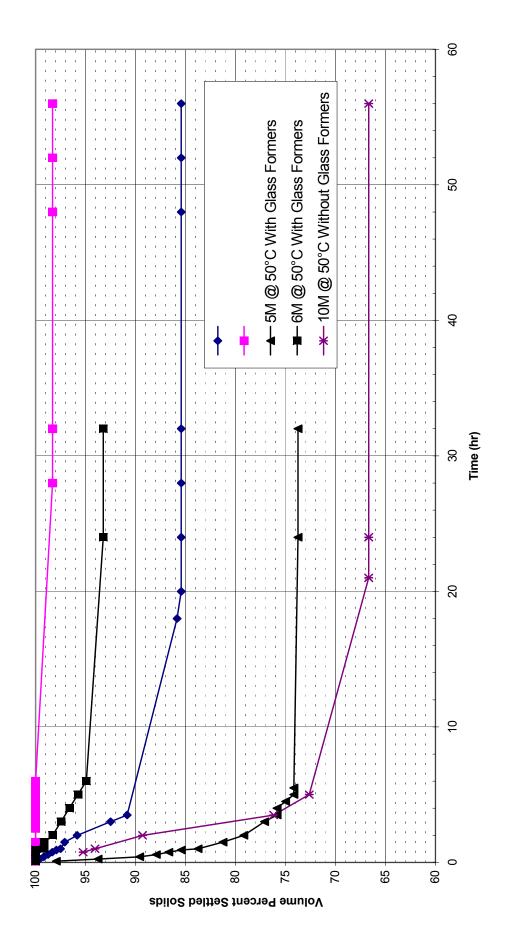


Figure 3.5. Volume Percent Settled Solids Versus Time for AN-107 Samples Using a Linear Scale

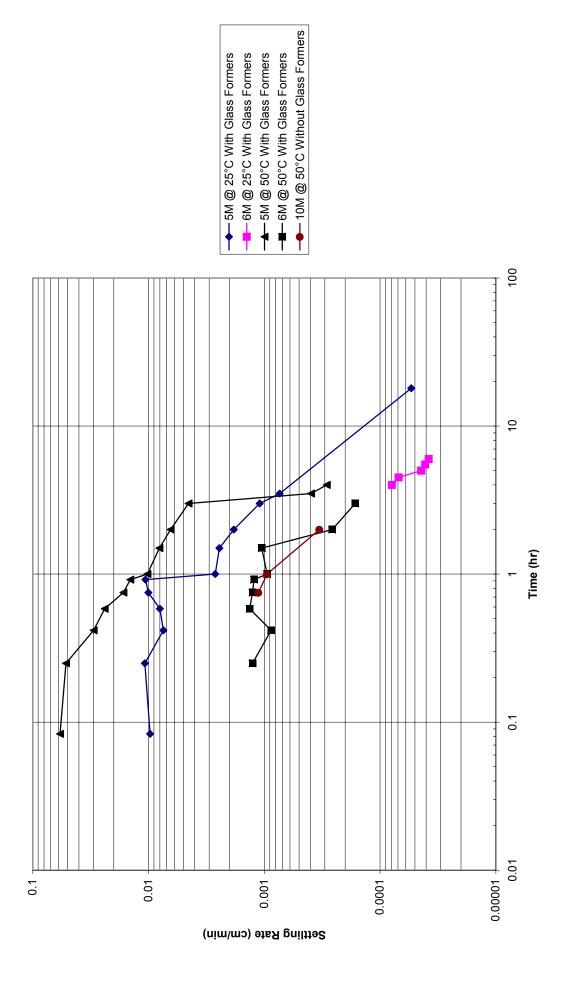


Figure 3.6. Settling Rates for AN-107 Melter Feed

3.2 Rheology

The results of the shear stress versus shear rate analyses are presented in this section. The full set of rheograms, both samples and calibration checks, are included in Appendix A.

3.2.1 Rheology of Evaporated Feed Samples

Shear stress versus shear rate analyses were conducted on the AW-101 evaporated feed samples approximately one month after the evaporation step. The AN-107 sample analyses were conducted approximately 1 week after evaporation. The tabular result for the viscosities at 33s⁻¹ and 500s⁻¹ are listed in Table 3.3. These results are the average of duplicate samples. With the exception of the 10M Na AN-107 sample at 25°C, the evaporated samples for both AN-107 and AW-101 displayed a nearly linear relationship between shear stress and shear rate over the shear rate range examined with no detectable yield stress. This is referred to as Newtonian behavior. Since the viscosity is the ratio of the shear stress to the shear rate, the viscosity was nearly constant over the shear rate range examined. As expected, the viscosity of all samples from both tanks increase with sodium concentration and decrease with temperature.

Table 3.3. Viscosity of Evaporated Feed Samples in cP. Values are the Average of Two Duplicate Analyses

	2.	25°C)°C
Sample	33s ⁻¹	500s ⁻¹	33s ⁻¹	500s ⁻¹
6M AN-107	9	8	6	4
8M AN-107	14	13	10	8
10M AN-107	56	21	14	11
6M AW-101	8	8	6	4
8M AW-101	13	12	7	6
10M AW-101	22	21	14	12

It should be noted that the results for the AN-107 samples are similar to the AW-101 samples. The only significant difference in the two data sets is the viscosity of the 10M Na samples at 33s⁻¹. Under these conditions, the AN-107 and AW-101 samples have viscosities of 57 and 22 cP respectively. The higher AN-107 viscosity is probably the result of visible solids in the AN-107 sample (the AW-101 sample was a clear liquid with no solids).

The increasing shear rate curve for the AN-107 10M Na samples were models using the following yield power law:

$$Tau = a + bD^{c}$$
 [2]

where Tau is the shear stress in Pa, and D is the shear rate in s⁻¹. The constants a, b, and c were calculated by a best-fit regression to the data. The results of this fit are presented in

Table 3.4. In the equation, the constant a is the yield stress which is an average of 1.2 Pa for the two duplicates. The divergence of c from unity is a measure of the samples shear thinning (c<1) or thickening (c>1). The duplicate suggests shear thickening, however, this sample also displays a thixotropic component, so c is greater than 1 for the duplicate as a result of the model trying to fit the initial thinning of the material. Therefore, this material is best described as a Bingham plastic with a thixotropic component.

Table 3.4. Yield Power Law Fit for the 10M AN-107 Samples at 25°C

Sample	a (Pa)	b (Pa·s)	c (unitless)	r ²
1	0.62	0.0187	1.00	0.997
2	1.7	0.00824	1.13	0.998

3.2.2 Rheology of Melter Feed with Glass Formers

Shear stress versus shear rate analyses were conducted on the AW-101 melter feed samples approximately two weeks after glass former addition. Analyses of the AN-107 samples were conducted approximately three weeks after glass former addition. These analyses were conducted after the ambient and 50°C settling studies. The tabular result for the viscosities at 33s⁻¹ and 500s⁻¹ are listed in Table 3.5.

For the AW-101 sample, the viscosity of the sample decreased slightly with shear rate, approximately 20-40% between 33s⁻¹ and 500s⁻¹, this is still a nearly linear relationship between shear stress and shear rate over the shear rate range. In addition, no yield stress was observed. Therefore, the samples with glass formers are still roughly Newtonian in behavior.

The 5M AN-107 sample with glass formers displayed nearly Newtonian behavior with no yield stress and only a slight decrease in viscosity. However, the 6 and 8M AN-107 samples with glass formers have a much higher solids loading compared to the comparable AW-101 samples. As a result, the AN-107 samples do not show the same Newtonian behavior. The AN-107 samples with glass formers displayed a significant decreasing viscosity with increasing shear rate. The 6 and 8M samples also displayed a yield stress. A decreasing viscosity with increasing shear rate above a yield stress is referred to a yield pseudoplastic behavior. The 6 and 8M samples also display a thixotropic component.

As seen in Table 3.5, the viscosities of the samples increase with sodium concentration and decrease with temperature. The sodium trend is expected since the amounts of glass formers added were proportional to the sodium concentration. The glass formers were primarily insoluble in these solutions. Therefore, the higher sodium samples have higher insoluble solids content as well as higher dissolved solids content. Both higher dissolved and insoluble solids result in an increased viscosity. The temperature trend is also expected as the viscosity of most liquids and slurries decrease with increasing temperature.

Table 3.5. Viscosity of Melter Feed Samples with Glass Formers in cP. With the Exception of the AN-107 8M Sample, Values at 25°C are the Average of Duplicate Analyses.

		25°C			50°C	
Sample	Yield Stress	33s ⁻¹	450-500s ⁻¹	Yield Stress	33s ⁻¹	450-500s ⁻¹
	(Pa)			(Pa)		
AN-107 5M	ND	46	44	ND	27 ^b	15 ^b
AN-107 6M	15	1100	360	12	510 ^b	175 ^b (276s ⁻¹)
AN-107 8M ^a	180	4800	1100	160	5700 ^b	$1000^{\rm b} (276 {\rm s}^{-1})$
AW-101 6M	ND	46	36	ND	26	16
AW-101 8M	ND	110	88	ND	60	46
AW-101 10M	ND	260	230	ND	160	130

ND Not detected

3.3 Mixing and Aging Study

As described in Section 2.2, an 8M Na AW-101 and an 8M Na AN-107 subsample were used for mixing and aging studies. Glass formers were added and the slurries were stirred for 1 week. Subsamples were removed after 1 hour, 1 day and 1 week and immediately analyzed for shear stress versus shear rate at 25°C. The samples were then left undisturbed for 1 week. The standing liquid was then decanted and the settled solids were analyzed for shear stress versus shear rate at 25°C. A "Small Sample Cell" concentric cylinder geometry on the Bohlin CS was used with the AW-101 mixing study subsamples. The AW-101 settled solids were too viscous for the "Small Sample Cell", so the settled solids were measured using a Haake M5 viscometer with an SVI concentric cylinder geometry.

The AN-107 mixing and aging study was conducted using a Bohlin CS viscometer equipped with a 4/40 cone and plate geometry. The 4/40 cone and plate geometry is capable of measuring samples with higher viscosities than the "Small Sample Cell".

The results are presented in tabular form in Table 3.6 at 33s⁻¹ and 350s⁻¹. The rheograms show an increase in viscosity for some duplicate runs. The increase in viscosity is probably the result of sample evaporation between analyses. Therefore, only results for the initial runs are presented.

The 8M Na mixing study samples displayed the same rheological behavior observed previously. The viscosity of the AW-101 sample decreased only slightly with shear rate, approximately 10-15% between 33s⁻¹ and 500s⁻¹. This is a linear relationship between shear stress and shear rate over the shear rate range. In addition, no yield stress was observed. The AN-107 samples displayed yield pseudoplastic behavior as well as a thixotropic component.

^a Due to thixotrotropic behavior only the increasing shear rate curve data was used.

^b Due to sample drying only data from the first sample was used.

Table 3.6. Viscosity of 8M Na Melter Feed Samples with Glass Formers During Mixing and Aging Study. Analyses Conducted at 25°C Using a Haake M5 Viscometer with an SVI Concentric Cylinder Geometry. Values are in cP

Sample ^a	Yield Stress (Pa)	Increasing Curve @ 33s ⁻¹	Decreasing Curve @ 33s ⁻¹	350 s ⁻¹
AN-107 After 1 Hour of	20	1100	610	280
Mixing	20	1100	010	200
After 1 Day of Mixing	10	1300	980	540
After 1 Week of	15	1200	900	440
Mixing				
Settled Solids	20	1900	1400	570
AW-101 After 1 Hour of	NO	59	NA	52
Mixing				
After 1 Day of Mixing	NO	77	NA	67
After 1 Week of	NO	76	NA	64
Mixing				
Loosely Settled Solids	4.8	270	180	130
Tightly Settled Solids	5.3	360	260	220

^a Due to sample drying between analyses, mixing results are for initial samples only. NO, Yield stresses were not observed

NA, Viscosity of increasing and decreasing rate curves are similar

The results in Table 3.6 show a 30% increase in viscosity over the first day of mixing for the AW-101, but no change after the first day. The viscosity at $350s^{-1}$ after 1 hour was 52 cP and increased to 67 cP after 1 day. However, after 1 week the viscosity did not increase again and was measured at 64 cP.

The changes in viscosity for the AN-107 samples were similar to the AW-101 samples. The AN-107 sample viscosity increased at $350s^{-1}$ from 280 cP after 1 hour to 540 cP after 1 day of mixing. The viscosity after 1 week was 440 cP indicating a possible minor drop during the week although the viscosity at lower shear rates $(33s^{-1})$ only dropped by $\sim 8\%$ during the week.

The samples were then transferred to a 100-ml graduated cylinder and allowed to settle for one week. No gas retention or releases were observed during this work. After one week, the standing liquid was removed and the settled solids were analyzed for shear stress versus shear rate at 25°C. During the AW-101 sample collection, it was noted that the settled solids had formed in two distinct layers. The upper layer appeared to be more soupy and containing finer solids. This upper layer was referred to as the loosely settled solids layer. The lower layer was pastier and appeared to contain more solids that had less interstitial liquid. Both layers were analyzed separately. The AN-107 sample contained only one layer.

As seen in Table 3.6, the viscosity of the loosely settled AW-101 solids decreased from 270 cP at 33 s⁻¹ to 130 cP at 350 s⁻¹. The tightly settled solids decreased from 360 to 220 cP over the same range. This is still a roughly linear relationship between shear stress and shear rate. To quantify the sample behavior, the increasing shear rate curves were modeled using a yield power law as described in Section 3.2.2. The result of this fit is presented in Table 3.7. Both samples displayed average yield stresses of 4.6 Pa. The average value of c was 0.976 for both samples indicating a nearly linear relationship between shear stress and shear rate. This is defined as Bingham behavior. These samples display a thixotropic component as seen in the lack of a yield point on the decreasing rate portion of the rheogram, and the slightly lower viscosity.

The 8M Na AN-107 sample with glass formers contained very little standing liquid as noted Figure 3.4. Therefore, the rheology of the settled solids is similar to that for the slurry. The AN-107 settled solids displayed yield pseudoplastic behavior as well as a thixotropic component. As seen in Table 3.6, the viscosity of the settled solids is only slightly higher than the mixed slurry, and the yield stress of the settled solids is similar to that of the mixed slurry.

Table 3.7. Yield Power Law Fit for the 8M AW-101 Settled Solids following Glass Former Addition. Analyses Were Conducted at 25°C

Sample	a (Pa)	b (Pa·s)	c (unitless)
Loosely Settled 1	5.2	0.183	0.929
Loosely Settled 2	4.0	0.110	1.019
Tightly Settled 1	5.7	0.223	0.983
Tightly Settled 2	3.5	0.240	0.969

4.0 Conclusions

The following conclusions were made based on the rheological and physical properties of the AN-107 and AW-101 evaporator and melter feeds. These conclusions have been divided into categories for clarity.

Evaporation

- Evaporation of the pretreated AW-101 feed to sodium concentrations of 6, 8, and 10 M resulted in clear yellow solutions with no visible solids.
- Evaporation of the pretreated AN-107 feed to 6 and 8 M Na resulted in darkened brown solution with no visible solids.
- The 10 M Na AN-107 sample contained only ~1vol% solids immediately following evaporation. After approximately 2 weeks with only 1 vol% solids, additional solids precipitated overnight from solution forming a settled solids layer representing roughly 70 percent of the sample volume.

Rheology of Evaporated Feeds

- With the exception of the 10 M Na AN-107 sample at shear rates below ~100 s⁻¹, the rheology of the AN-107 and AW-101 feeds were indistinguishable at similar sodium concentrations. The viscosities of the 6, 8, and 10 M Na feeds at 500 s⁻¹ were 8, 12, and 21 cP respectively at 25°C, and 4, 7, and 12 respectively at 50°C.
- The 6, 8, and 10 M Na AW-101 feeds as well 6, and 8 M Na AN-107 feeds exhibited Newtonian behavior with no thixotropy.
- The 10 M Na AN-107 feed at 25°C exhibited Bingham behavior with yield stress of approximately 1 Pa, and a thixotropic component.

AW-101 Melter Feed Settling and Rheology

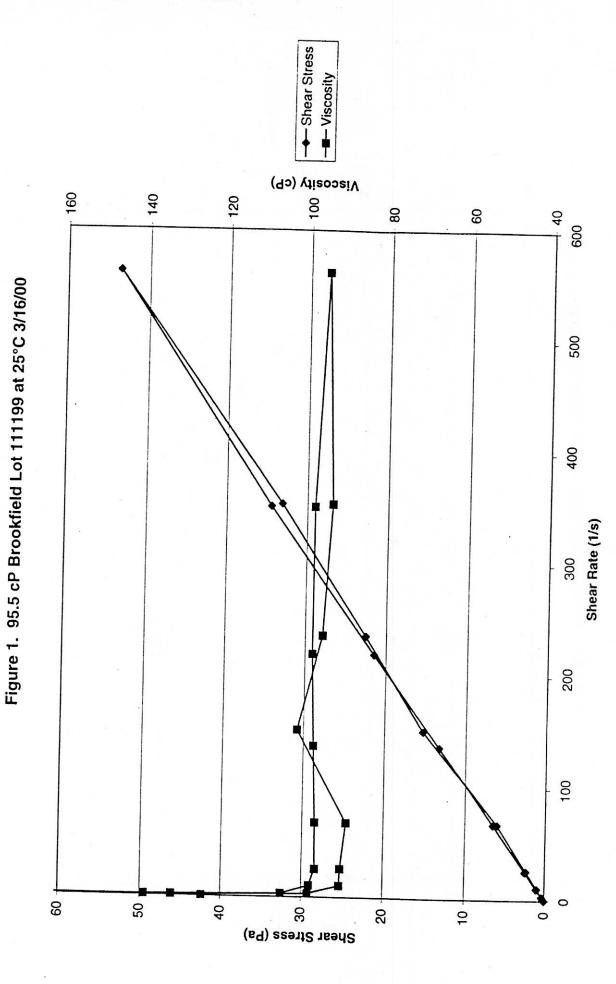
- For the 6 M Na and 8 M Na samples, the initial settling rates increase with temperature and decrease with increasing sodium concentration (i.e., 6 M Na samples settle faster than 8 M Na, and 50°C settle faster than same sample at 25°C).
- The initial settling rate of the 10 M Na sample at 25°C is higher than the same sample at 50°C and is higher than the 8 M Na sample at 25°C. The reason for this reverse in the trend observed for the 6 and 8 M Na samples is unclear from the available data. It is probably the result of several factors that could include more effective flocculation of fine particulates at higher solids content of the 10 M Na sample, competing with a higher concentration of fine soluble particulates that cannot be dissolved at the higher

temperature with the higher solids loading. This is speculative and more information would be needed if this is to be resolved.

• The AW-101 melter feed samples show nearly Newtonian behavior with no thixotropy or yield stresses observed. The viscosities at 500 s⁻¹ of the 6, 8, and 10 M feeds were 36, 88, and 230 cP respectively at 25°C, and 16, 46, and 130 cP respectively at 50°C.

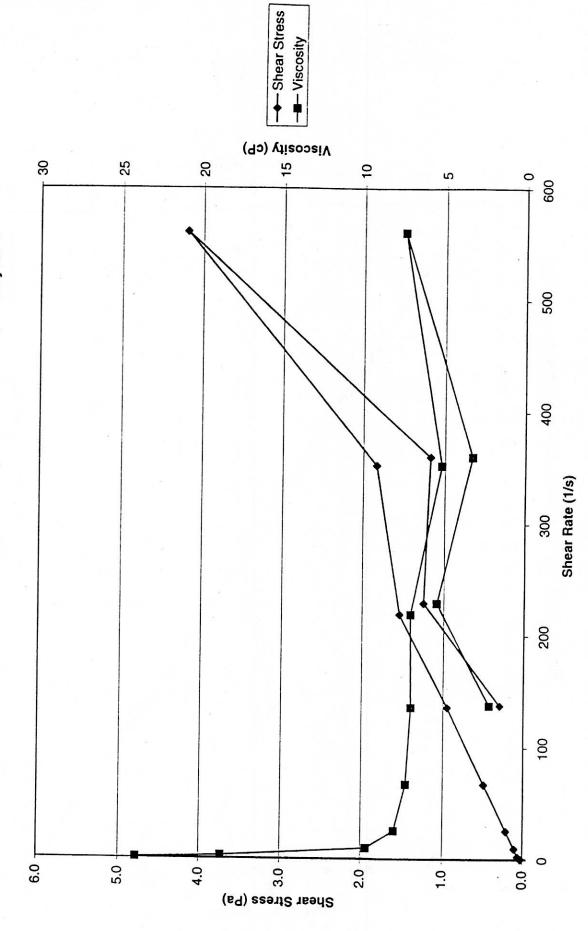
AN-107 Melter Feed Settling and Rheology

- The initial settling rates for all three sodium concentrations increase with temperature and decrease with increasing sodium concentration (i.e., 5 M Na samples settle faster than 6 M Na, and 50°C settle faster than same sample at 25°C).
- The 5M Na AN-107 melter feed sample showed nearly Newtonian behavior with no thixotropy or yield stresses. The 6 and 8M Na feeds displayed yield pseudoplastic behavior with a thixotropic component. The viscosities at 450-500 s⁻¹ of the 5, 6, and 8M feeds were 44, 360, and 1100 cP respectively at 25°C. At 50°C and approximately 275s⁻¹ the viscosities were 15, 175 and 1000 cP. The yield stress of the 6 and 8M feeds were 15 and 180 Pa at 25°C, dropping slightly to 12 and 160 at 50°C.


8M Na AW-101 Melter Feed Mixing and Aging

- The viscosity (at 500 s⁻¹ and 25°C) of the slurry increased from 52 cP after 1 hour of mixing to 67 cP after 1 day. The viscosity then remained essentially constant at 65 cP after 1 week of mixing. For comparison, the viscosity of the 8 M Na melter feed sample that was used in settling studies was 88 cP at 500 s⁻¹ and 25°C. This other sample was analyzed approximately 3 weeks after glass former addition with only occasional stirring. This suggests that a combination of additional aging and lack of mixing could result in an additional increase in viscosity.
- Rheograms of slurry samples analyzed after 1 hour, 1 day, and 1 week show nearly Newtonian behavior with no thixotropy or yield stresses.
- No gas retention or releases were observed during 1 week of settling.
- After 1 week of settling, 2 settled solids layers formed. The upper layer appeared to have a lower solids content while the lower layer had a thicker consistency.
- Rheograms of the two separate settled solid layers exhibit Bingham behavior with a similar yield point of 4.6 Pa. Both layers displayed a thixotropic component.

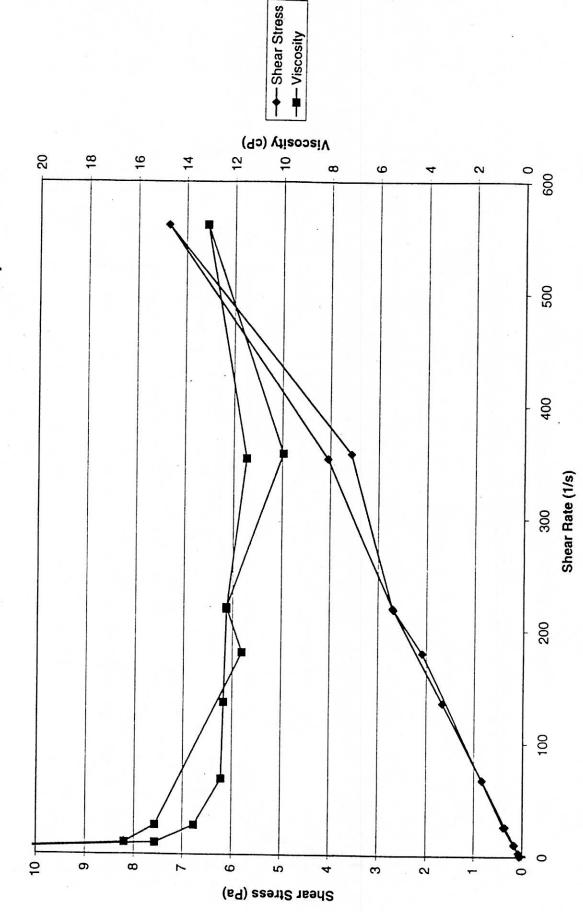
8M Na AN-107 Melter Feed Mixing and Aging


- The AN-107 sample viscosity increased at 350s⁻¹ from 280 cP after 1 hour to 540 cP after 1 day of mixing. The viscosity after 1 week was 440 cP indicating a possible minor drop during the week although the viscosity at lower shear rates (33s⁻¹) only dropped by ~8% during the week.
- Rheograms of slurry samples analyzed after 1 hour, 1 day, and 1 week displayed yield pseudoplastic behavior as well as a thixotropic component.
- No gas retention or releases were observed during 1 week of settling.
- The 8M Na AN-107 sample with glass formers contained very little standing liquid. Therefore, the rheology of the settled solids is similar to that for the slurry. After 1 week of settling, the AN-107 settled solids displayed yield pseudoplastic behavior as well as a thixotropic component. The viscosity of the settled solids is only slightly higher than the mixed slurry, and the yield stress of the settled solids is similar to that of the mixed slurry.

Appendix A: Figures for AN-107 & AW-101

Bohlin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 2. AN-107 6M Na Evaporated Feed: 25°C Analysis 1


Bohlin CS Rheometer with Small Sample Cell Measuring Geometry

► Shear Stress ---- Viscosity Viscosity (cP) Shear Rate (1/s) ß Shear Stress (Pa) ď

Figure 3. AN-107 6M Na Evaporated Feed: 25°C Analysis 2

Bohlin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 4. AN-107 8M Na Evaporated Feed: 25°C Analysis 1

Bohlin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 5. AN-107 8M Na Evaporated Feed: 25°C Analysis 2

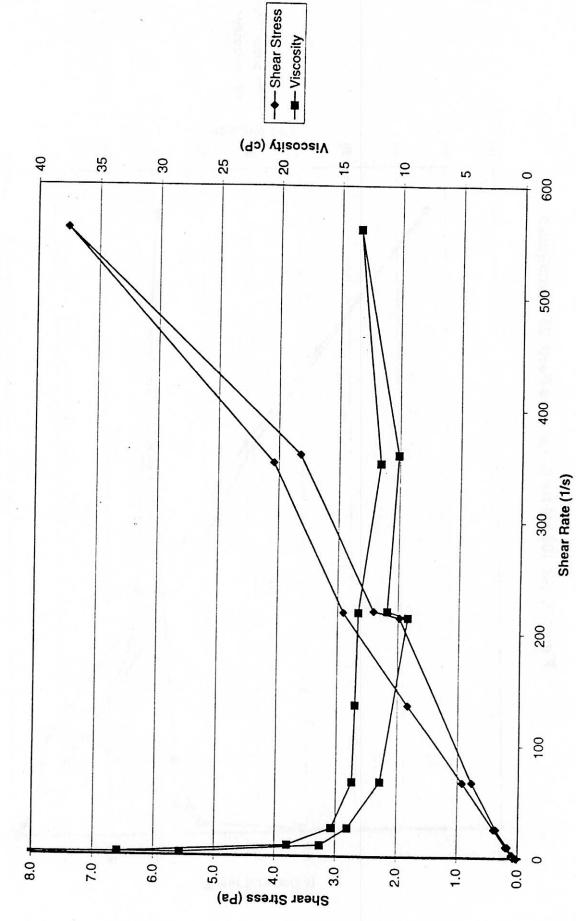
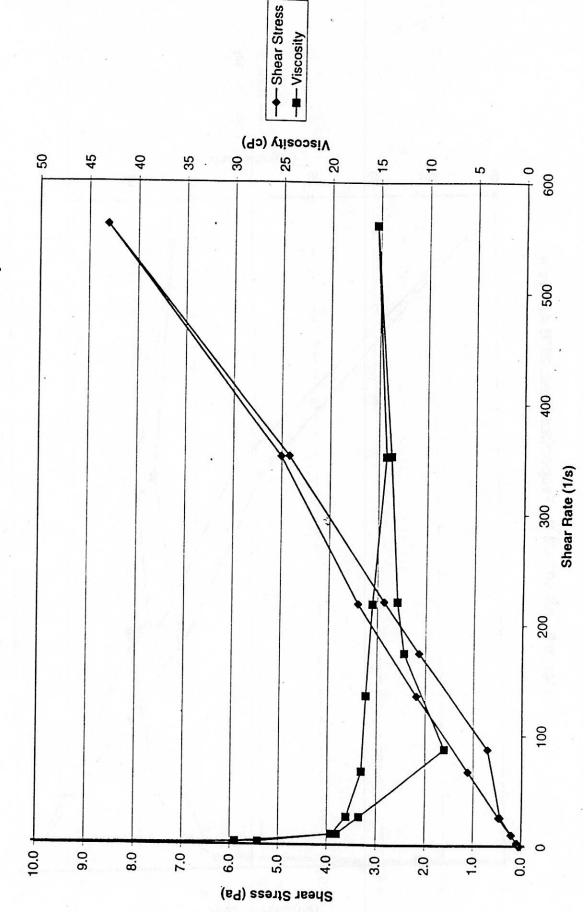
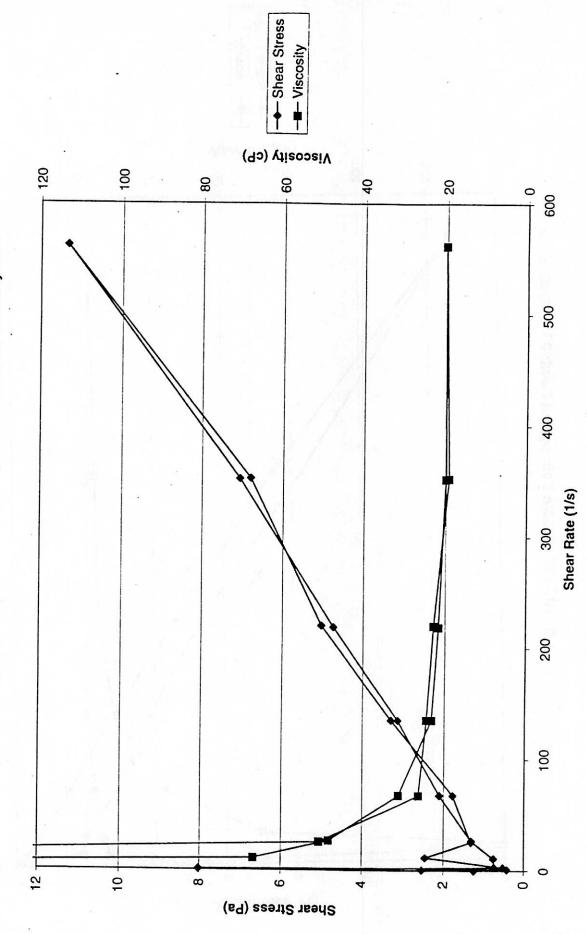
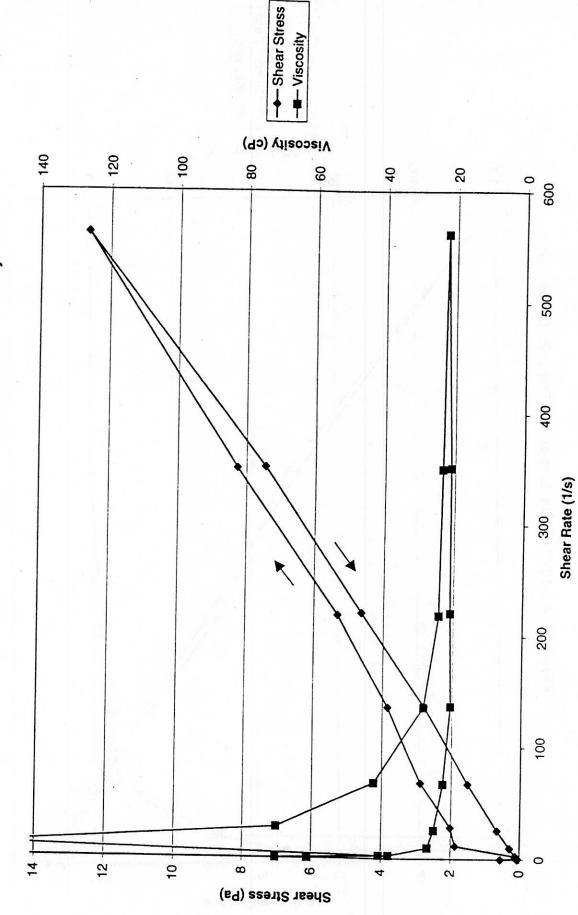
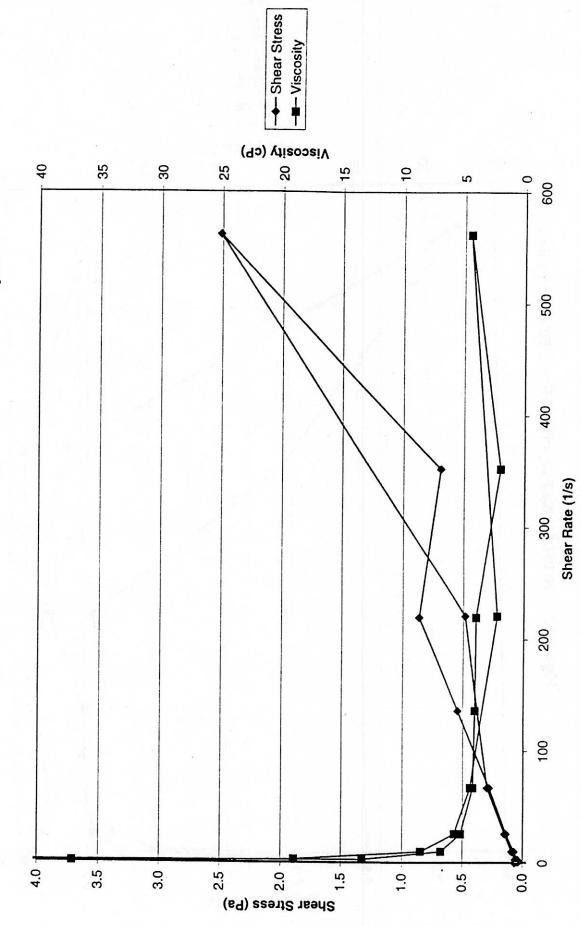



Figure 6. AN-107 8M Na Evaporated Feed: 25°C Analysis 3

Bohlin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 7. AN-107 10M Na Evaporated Feed: 25°C Analysis 1


Figure 8. AN-107 10M Na Evaporated Feed: 25°C Analysis 2

Bohlin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 9. AN-107 6M Na Evaporated Feed: 50°C Analysis 1

410

Bohlin CS Rheometer with Small Sample Cell Measuring Geometry

£.

Figure 10. AN-107 6M Na Evaporated Feed: 50°C Analysis 2

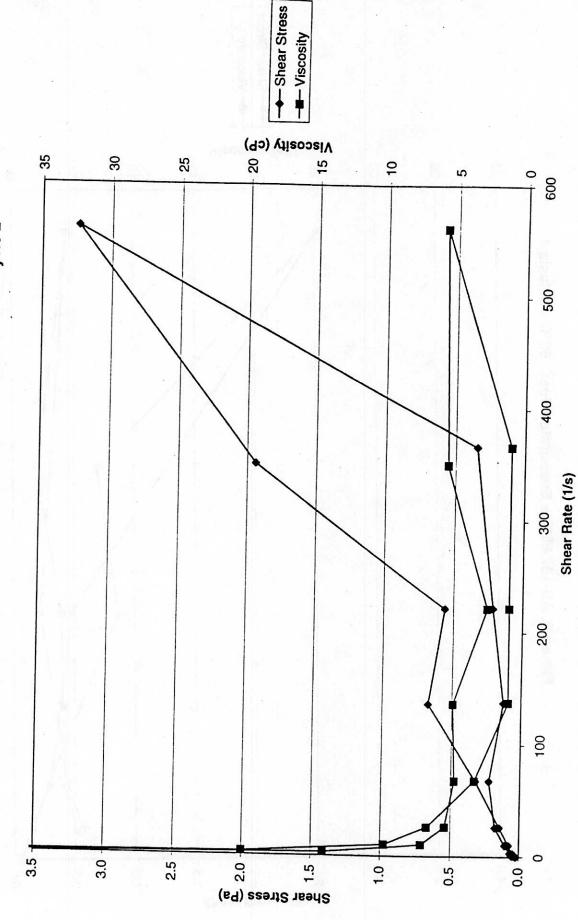
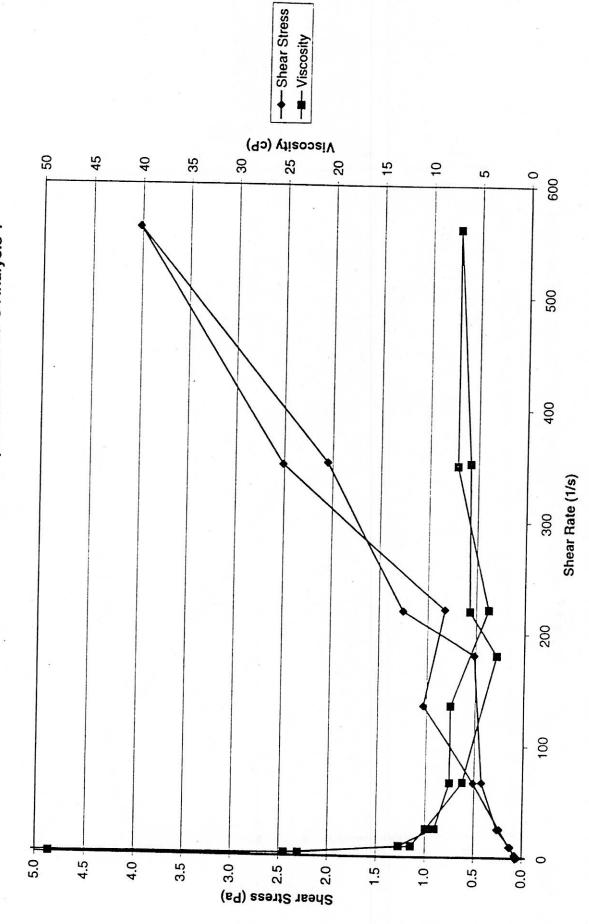



Figure 11. AN-107 8M Na Evaporated Feed: 50°C Analysis 1

Bohlin CS Rheometer with Small Sample Cell Measuring Geometry

-Shear Stress S Viscosity (cP) 50 40 20 10 0 009 200 400 Shear Rate (1/s) 300 200 100 Shear Stress (Pa) 2.0 4.0 2.0 0.0 0.

Figure 12. AN-107 8M Na Evaporated Feed: 50°C Analysis 2

Bohlin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 13. AN-107 10M Na Evaporated Feed: 50°C Analysis 1

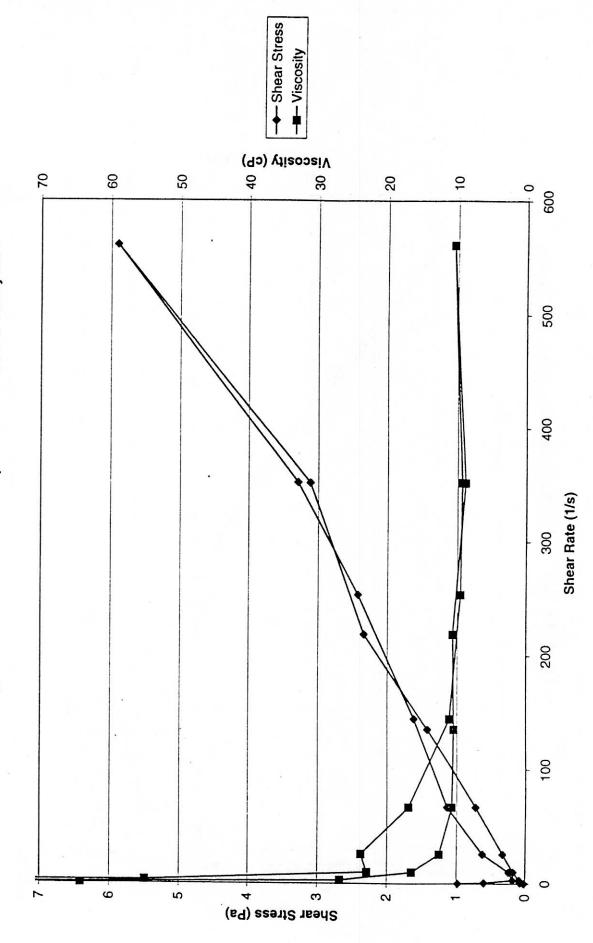


Figure 14. AN-107 10M Na Evaporated Feed: 50°C Run 2

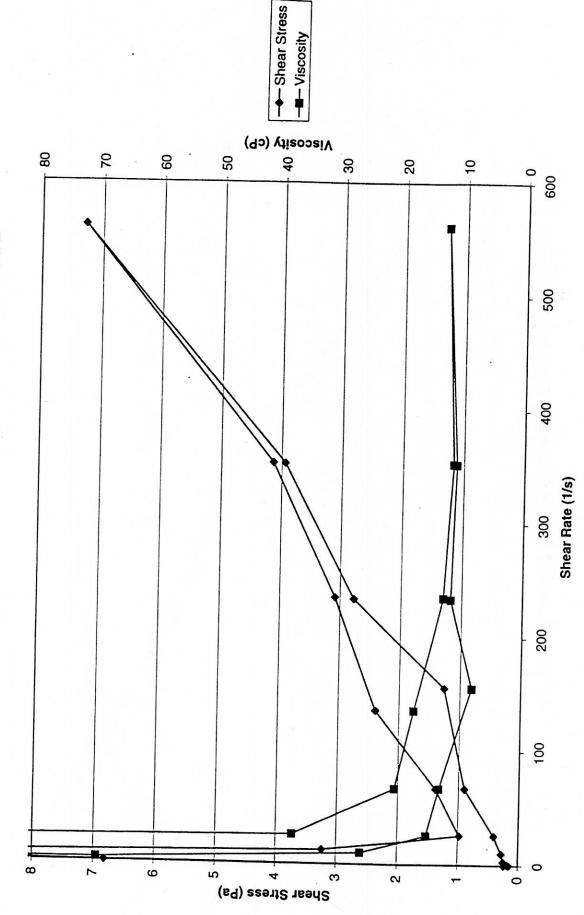


Figure 15. 47.2 cP Standard Brookfield PNNL Barcode 179430 Analyzed 02/02/00

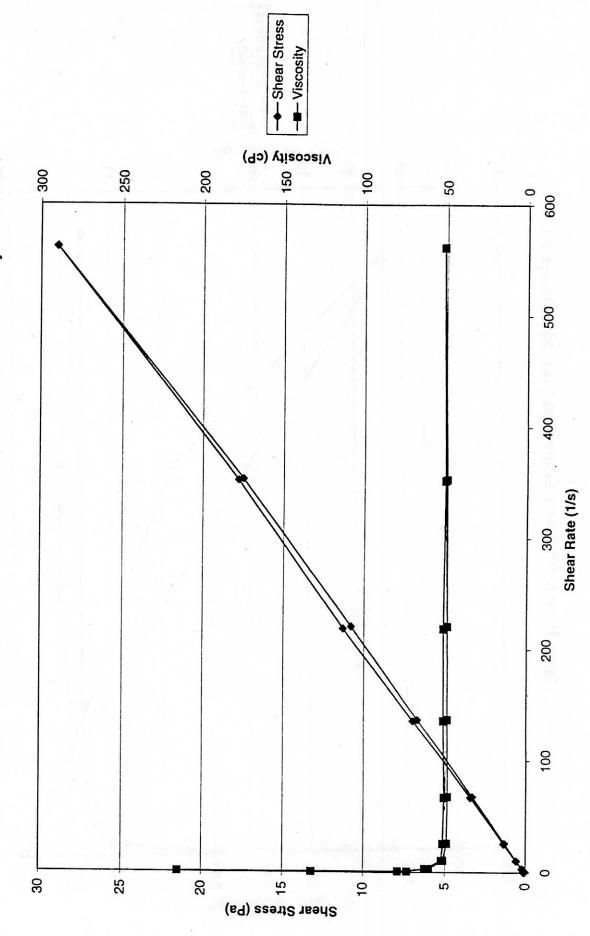
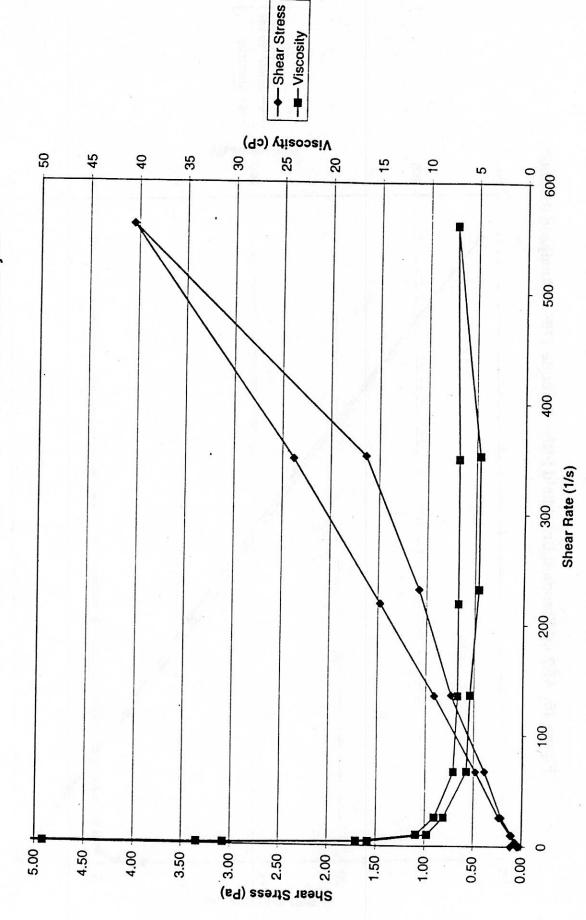



Figure 16. AW-101 6M Na Evaporated Feed: 25°C Analysis 1

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 17. AW-101 6M Na Evaporated Feed: 25°C Analysis 2

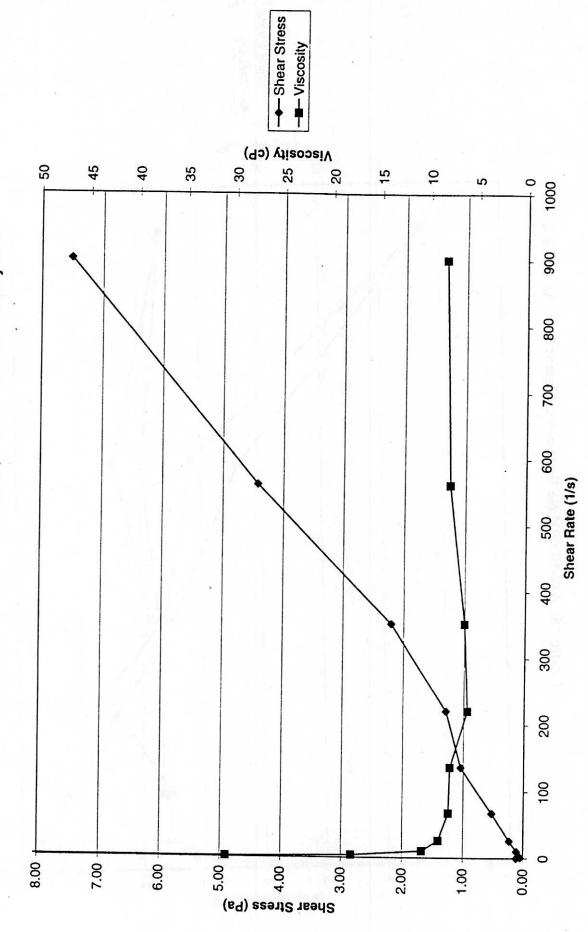
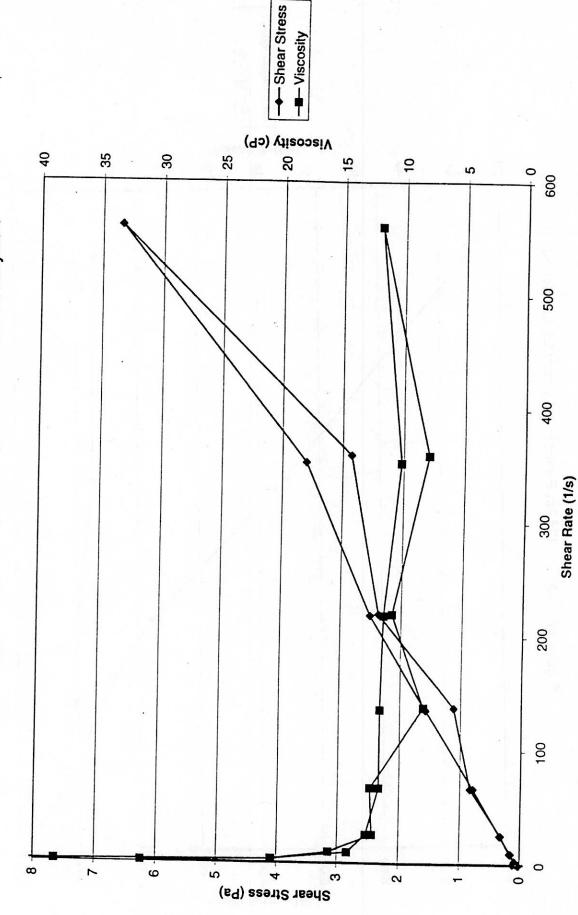



Figure 18. AW-101 8M Na Evaporated Feed: 25°C Analysis 1

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

14.5

Figure 19. AW-101 8M Na Evaporated Feed: 25°C Analysis 2

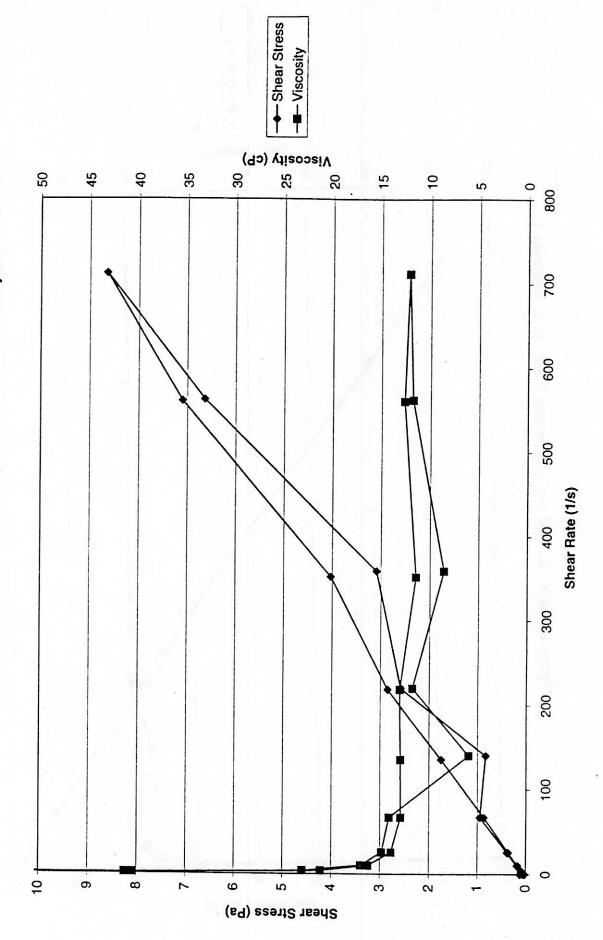
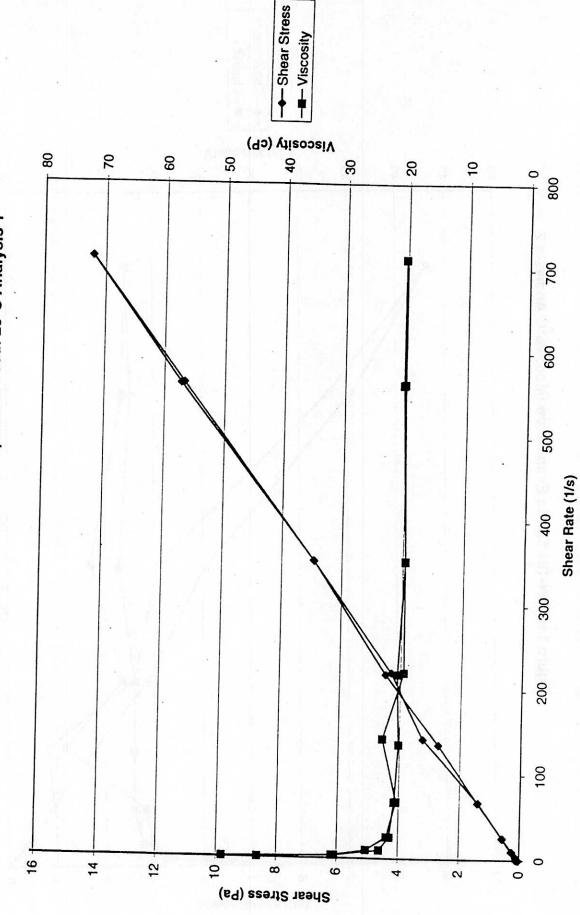



Figure 20. AW-101 10M Na Evaporated Feed: 25°C Analysis 1

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

.....

Figure 21. AW-101 10M Na Evaporated Feed: 25°C Analysis 2

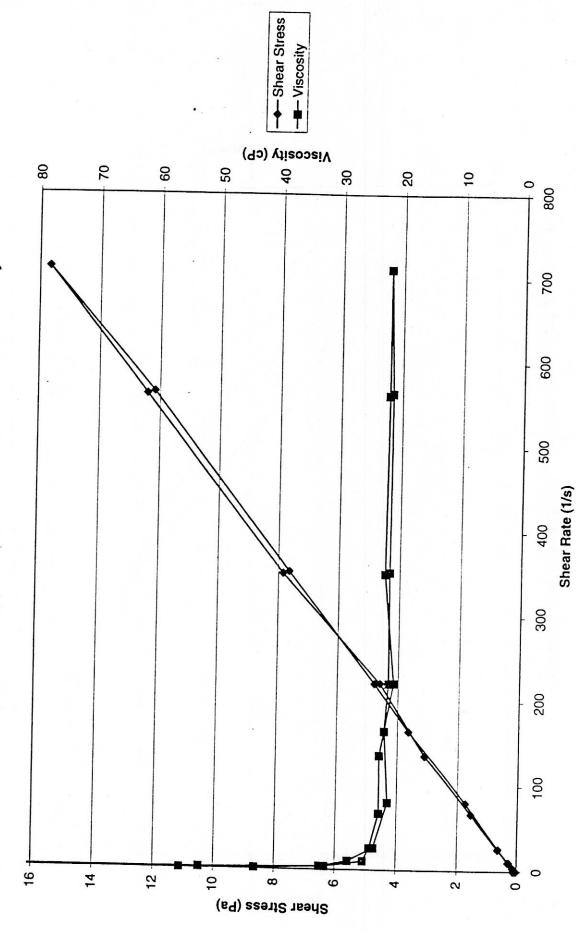
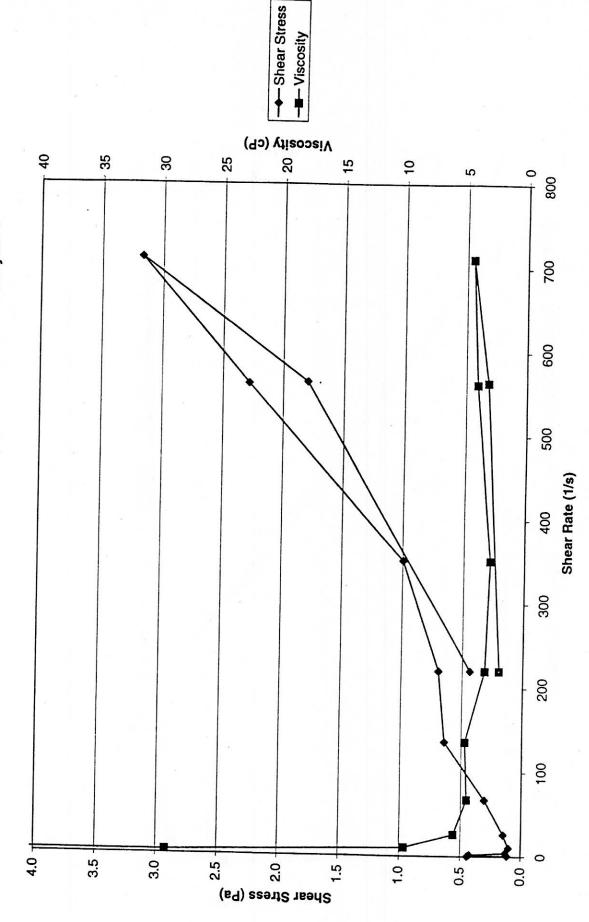
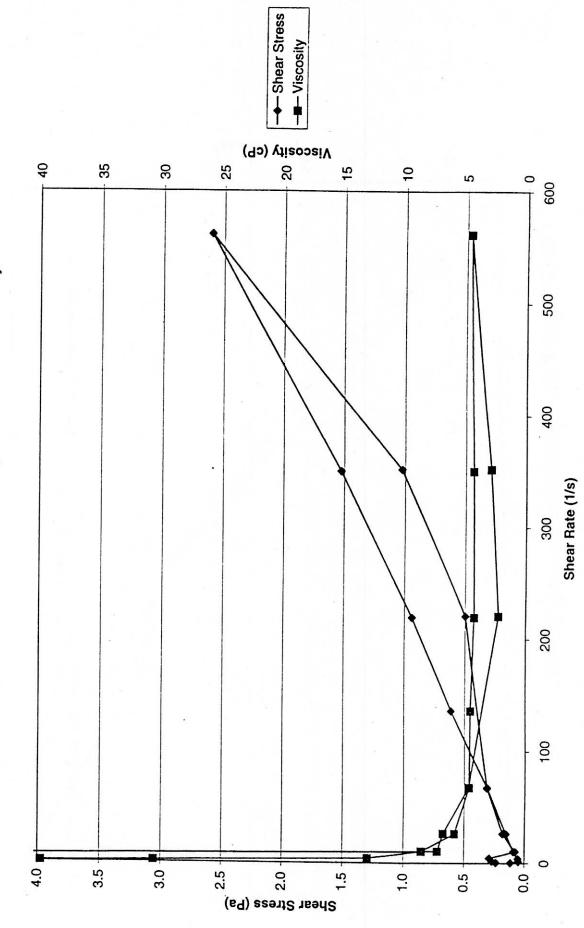




Figure 22. AW-101 6M Na Evaporated Feed: 50°C Analysis 1

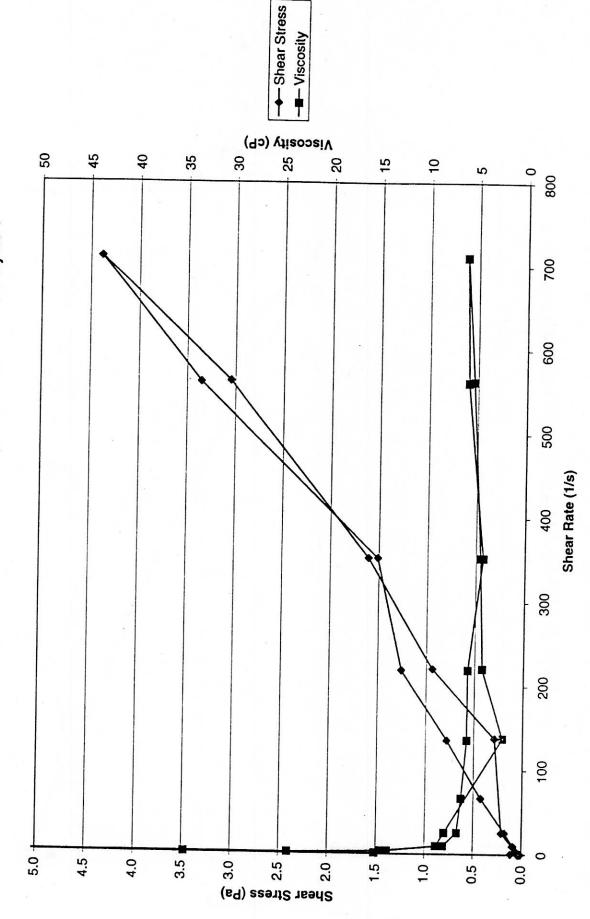

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 23. AW-101 6M Na Evaporated Feed: 50°C Analysis 2

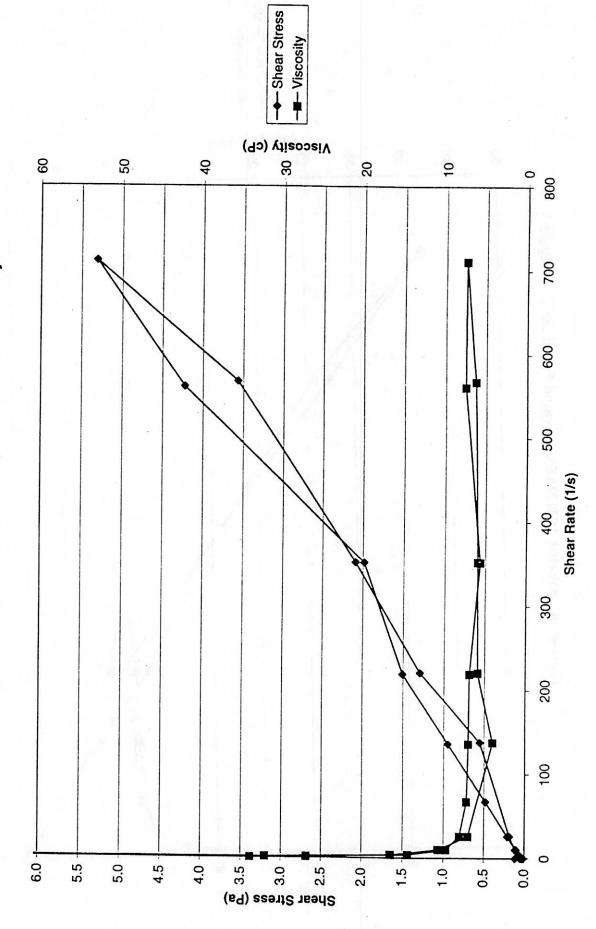

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 24. AW-101 8M Na Evaporated Feed: 50°C Analysis 1

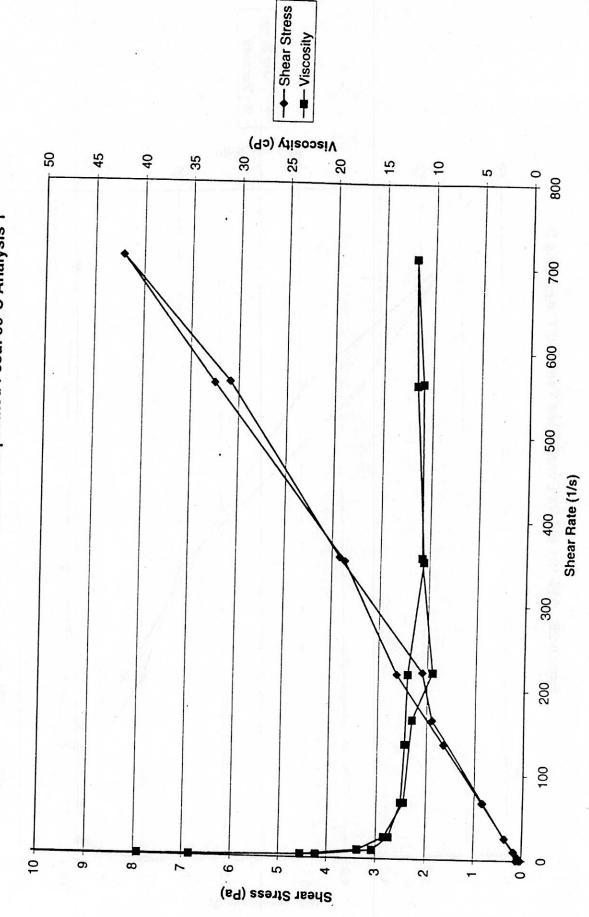

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 25. AW-101 8M Na Evaporated Feed: 50°C Analysis 2

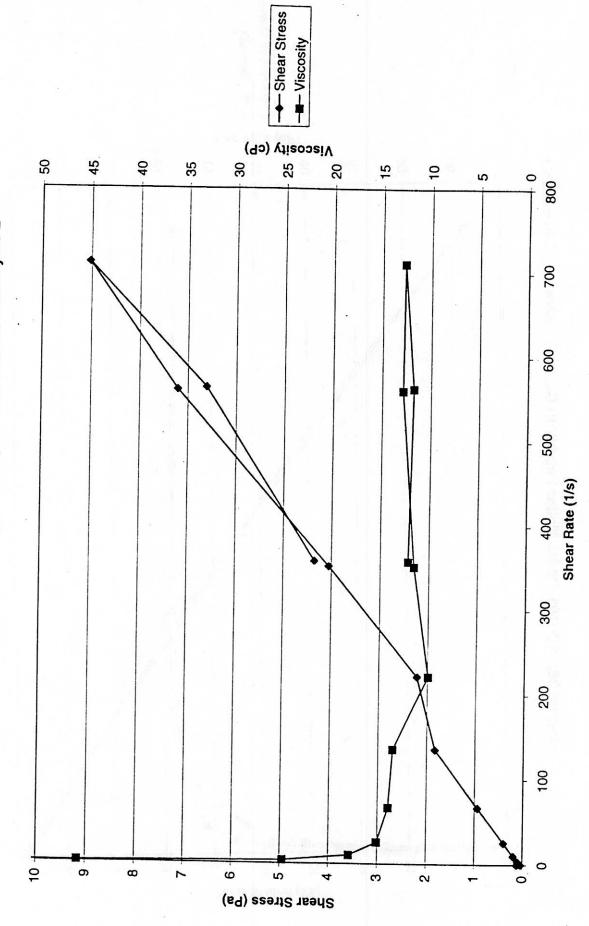

3

Figure 26. AW-101 10M Na Evaporated Feed: 50°C Analysis 1

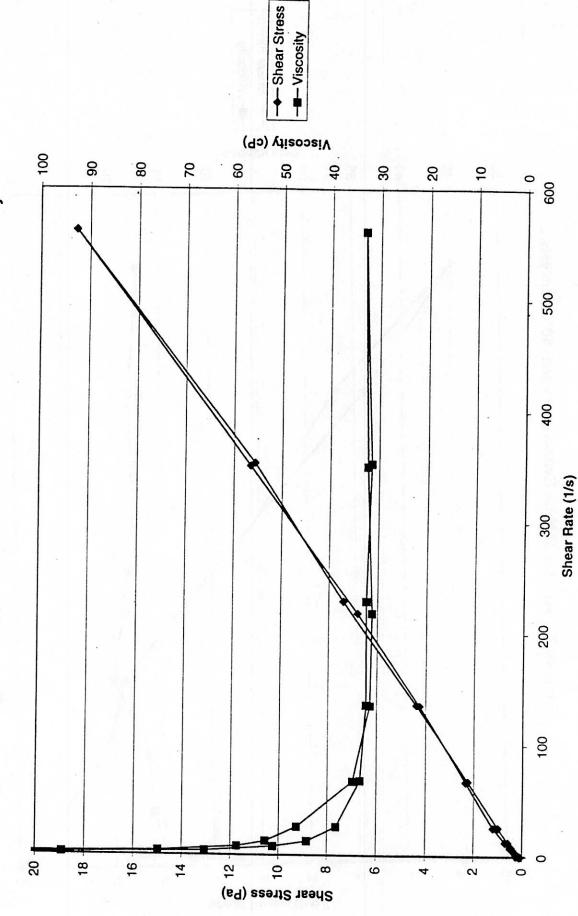

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 27. AW-101 10M Na Evaporated Feed: 50°C Analysis 2

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 28. AW-101 6M Na Melter Feed With Glass Formers: 25°C Analysis 1

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 29. AW-101 6M Na Melter Feed With Glass Formers: 25°C Analysis 2

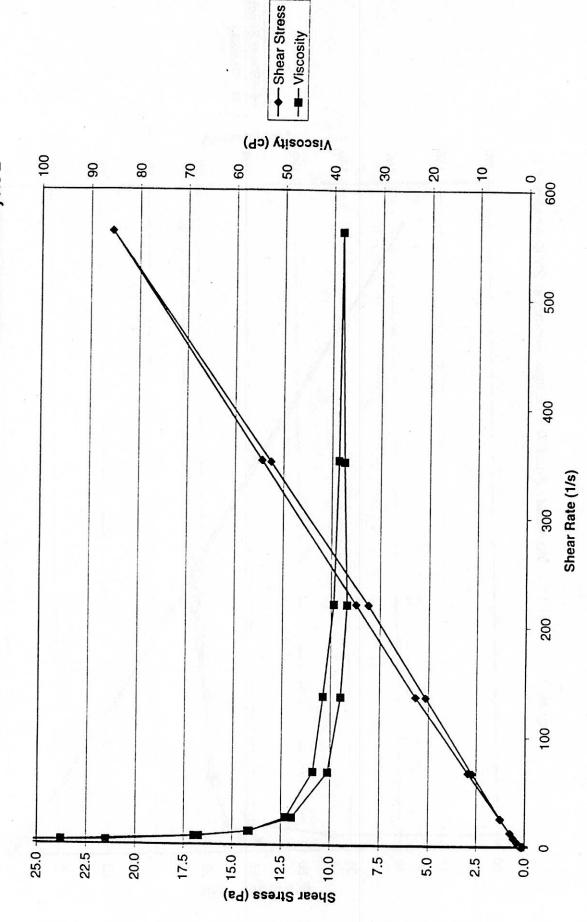


Figure 30. AW-101 8M Na Melter Feed With Glass Formers: 25°C Analysis 1

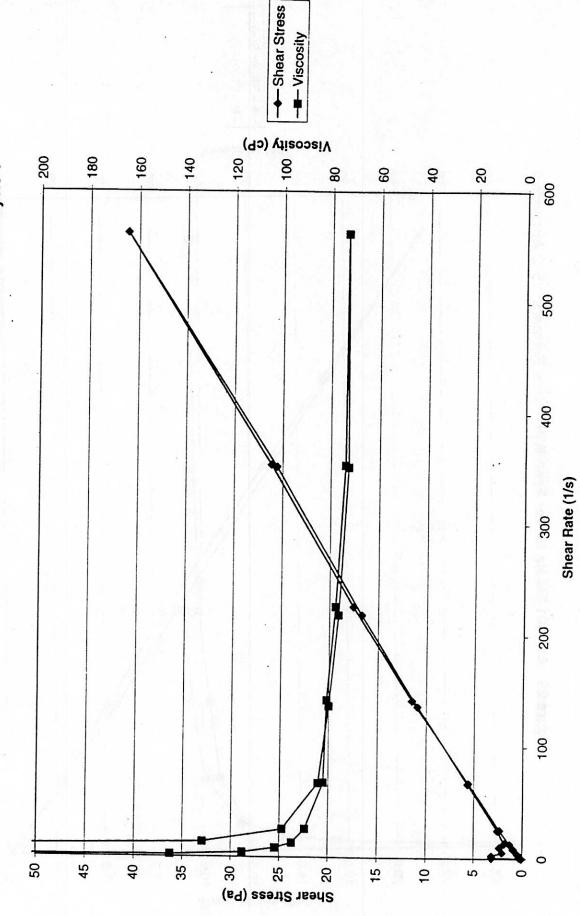


Figure 31. AW-101 8M Na Melter Feed With Glass Formers: 25°C Analysis 2

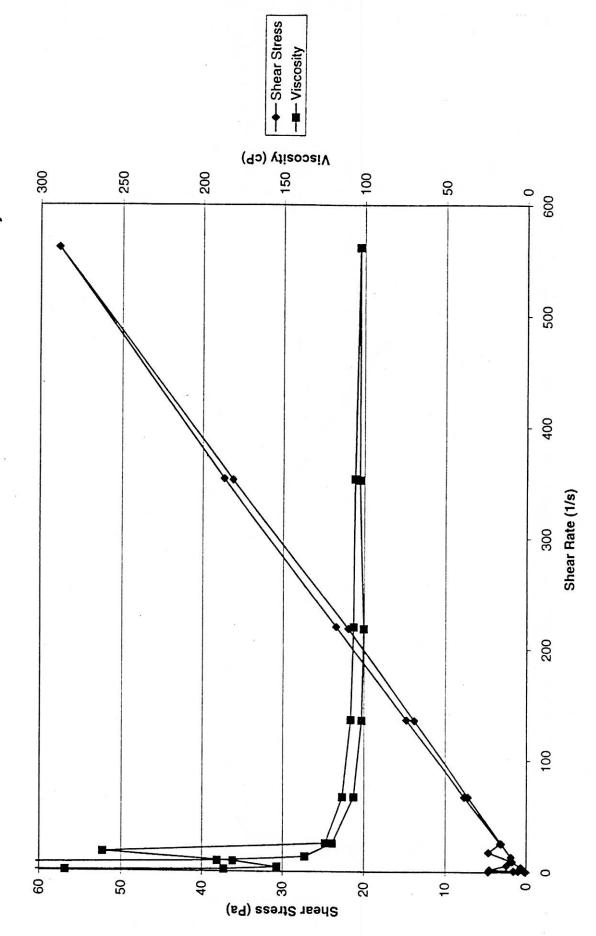
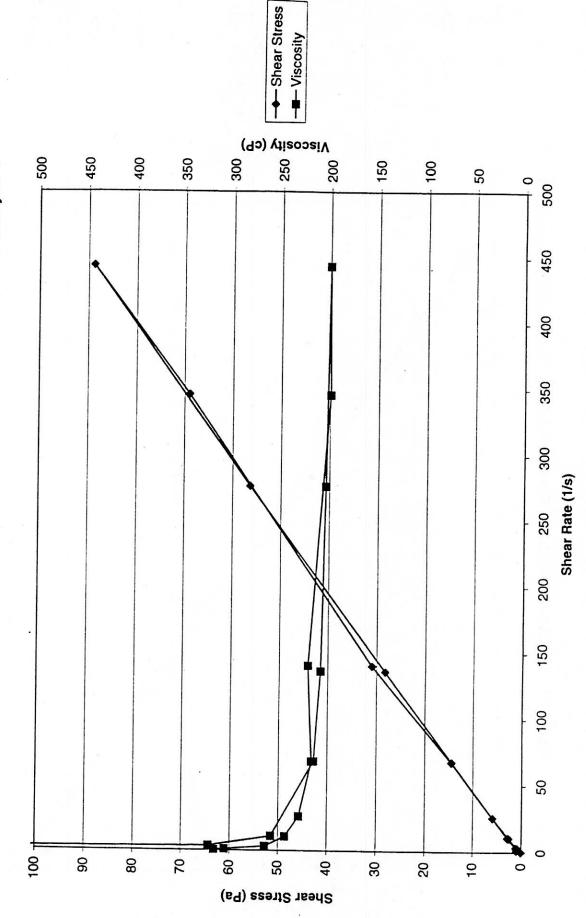



Figure 32. AW-101 10M Na Melter Feed With Glass Formers: 25°C Analysis 1

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 33. AW-101 10M Na Melter Feed With Glass Formers: 25°C Analysis 2

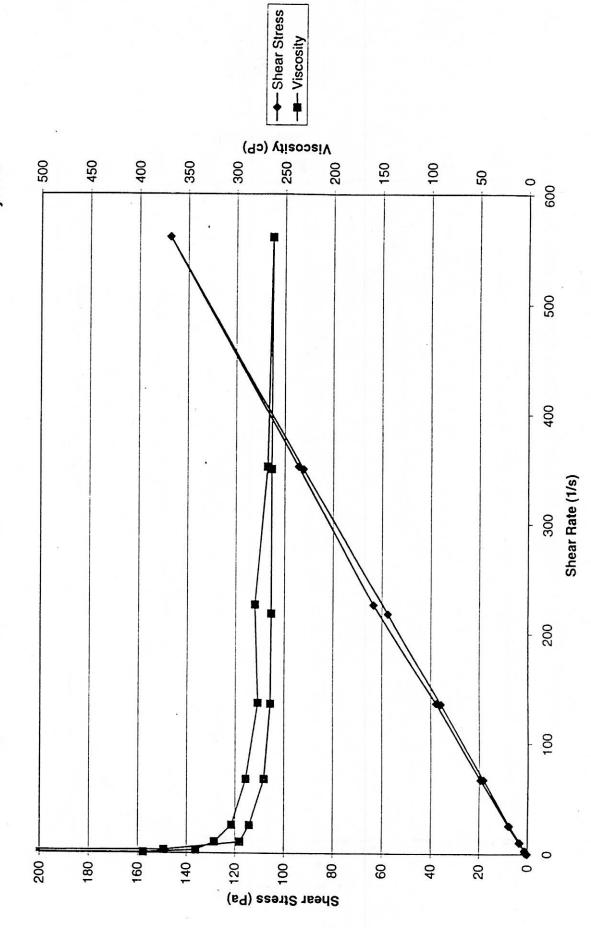
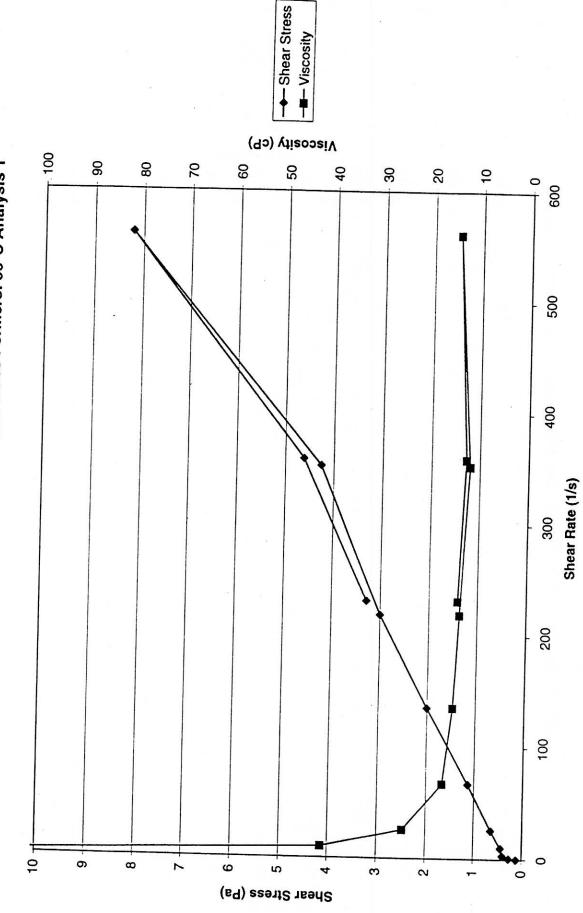
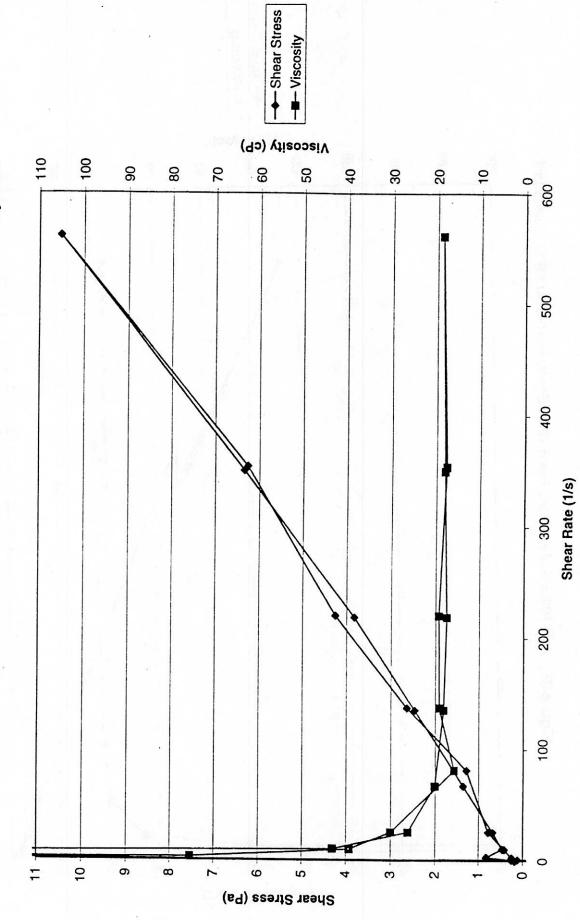




Figure 34. AW-101 6M Na Melter Feed With Glass Formers: 50°C Analysis 1

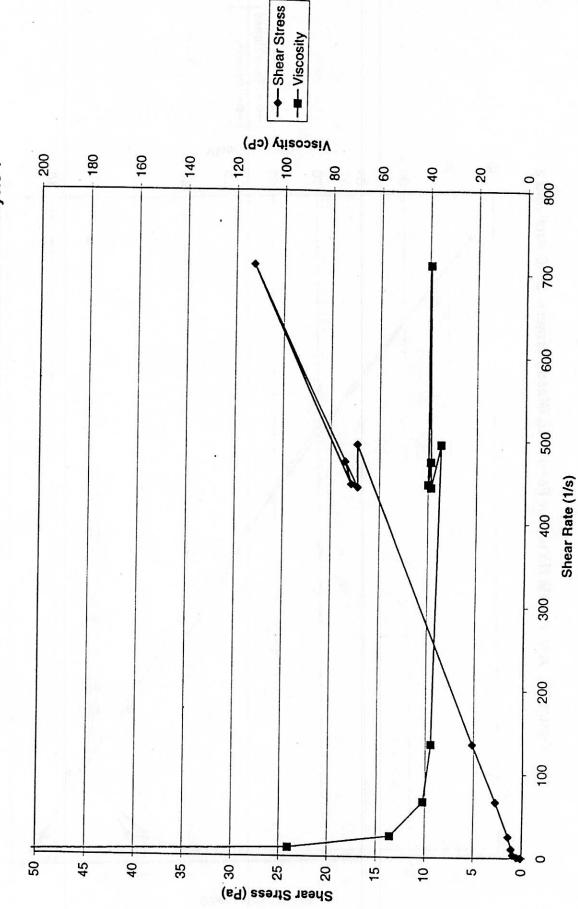

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 35. AW-101 6M Na Melter Feed With Glass Formers: 50°C Analysis 2

்ர் ்ரி

Figure 36. AW-101 8M Na Melter Feed With Glass Formers: 50°C Analysis 1

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 37. AW-101 8M Na Melter Feed With Glass Formers: 50°C Analysis 2

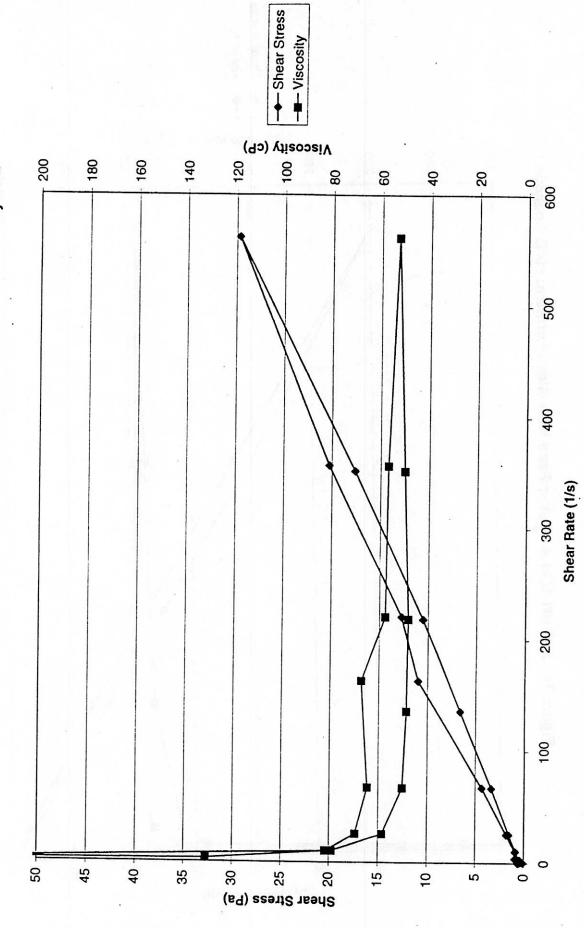


Figure 38. AW-101 10M Na Melter Feed With Glass Formers: 50°C Analysis 1

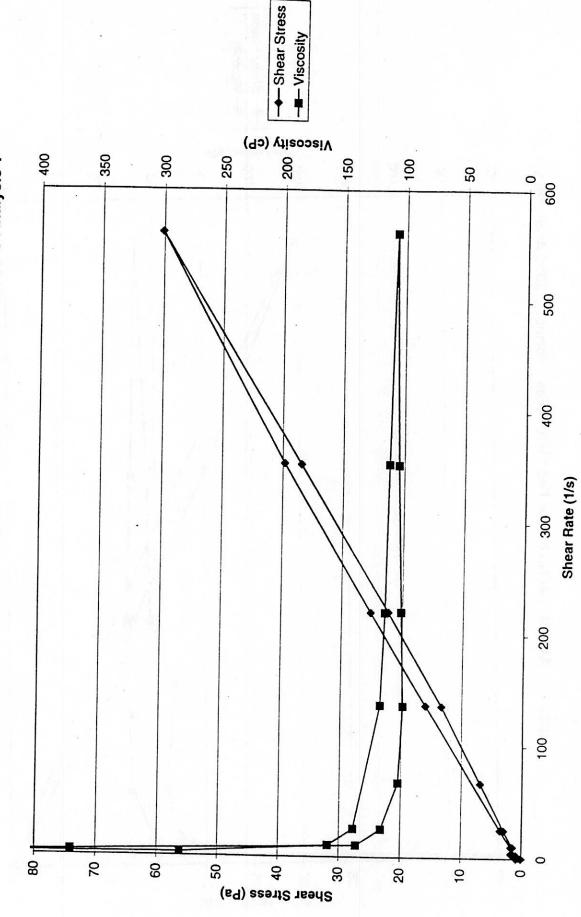
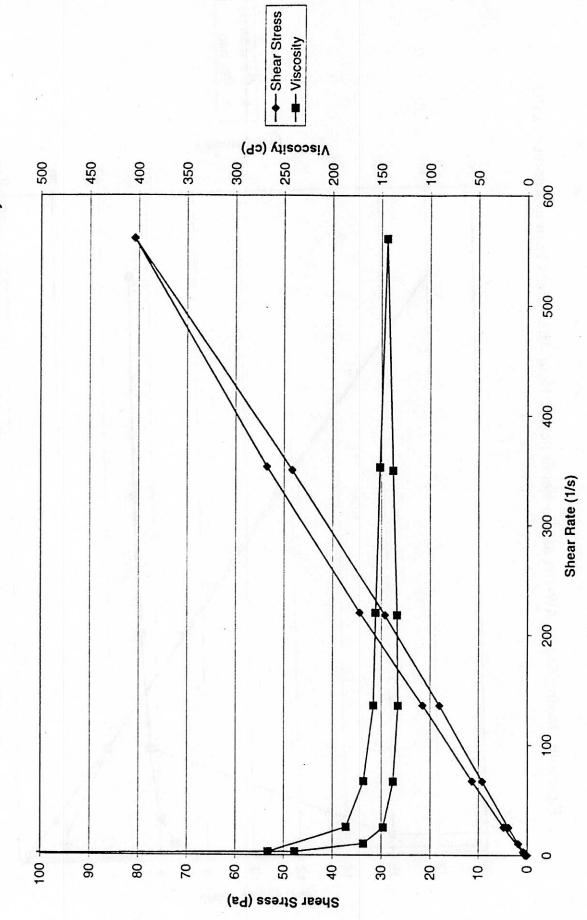



Figure 39. AW-101 10M Na Melter Feed With Glass Formers: 50°C Analysis 2

1.6.

Figure 40. Mixing Study, AW-101 8M Na Melter Feed 1 Hour After Glass Former Addition: 25°C Analysis 1

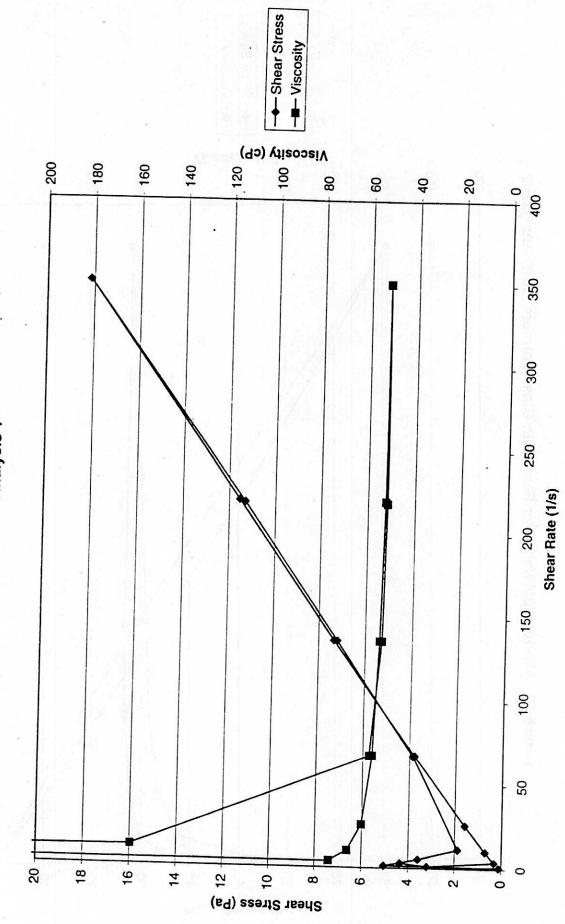


Figure 41. Mixing Study, AW-101 8M Na Melter Feed 1 Hour After Glass Former Addition: 25°C Analysis 2

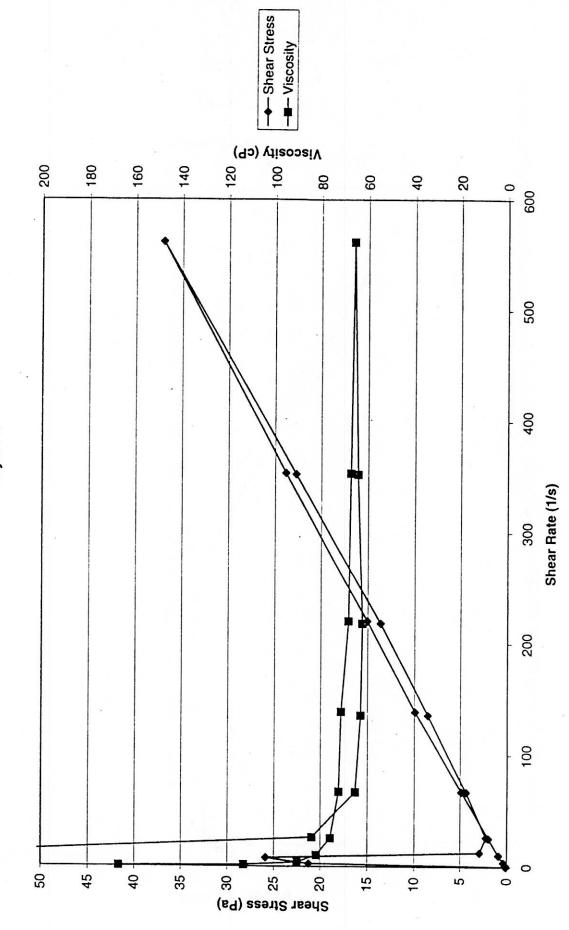


Figure 42. Mixing Study, AW-101 8M Na Melter Feed 1 Hour After Glass Former Addition: 25°C Analysis 3

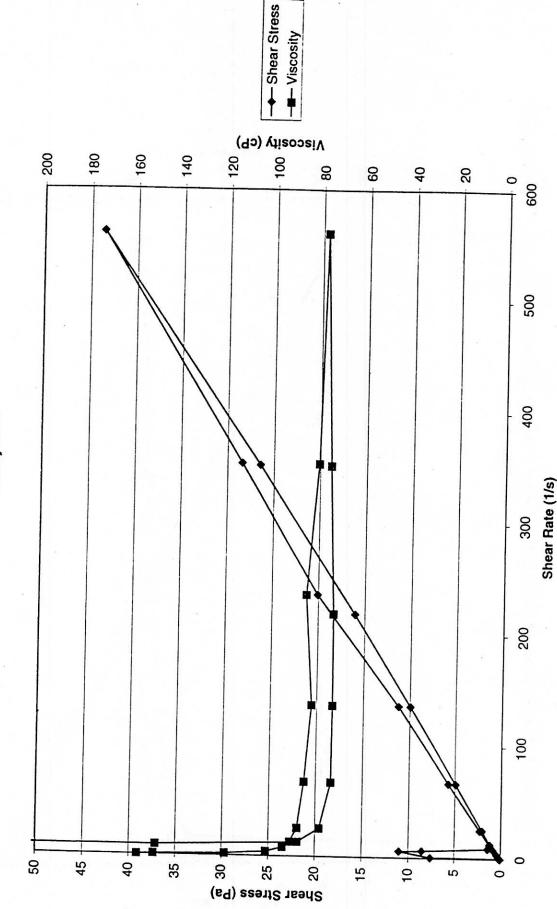
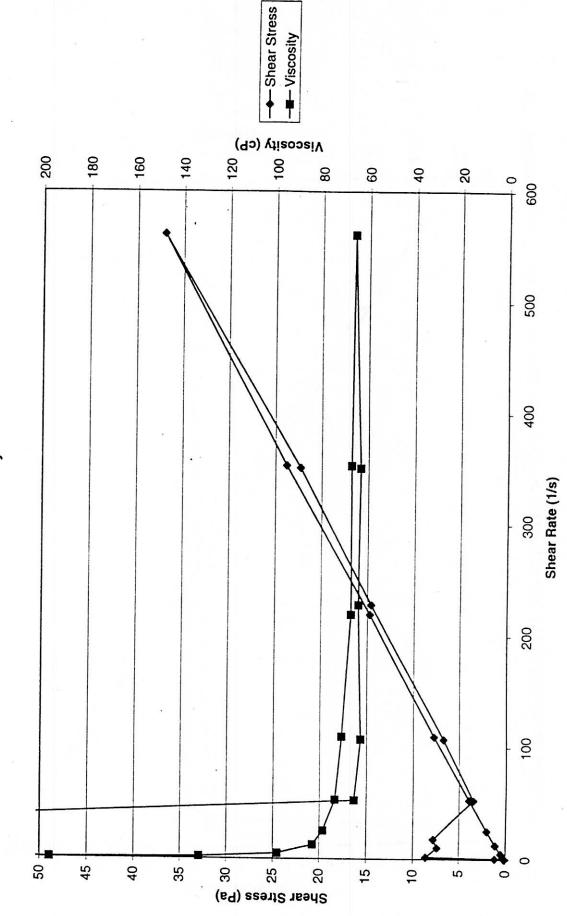
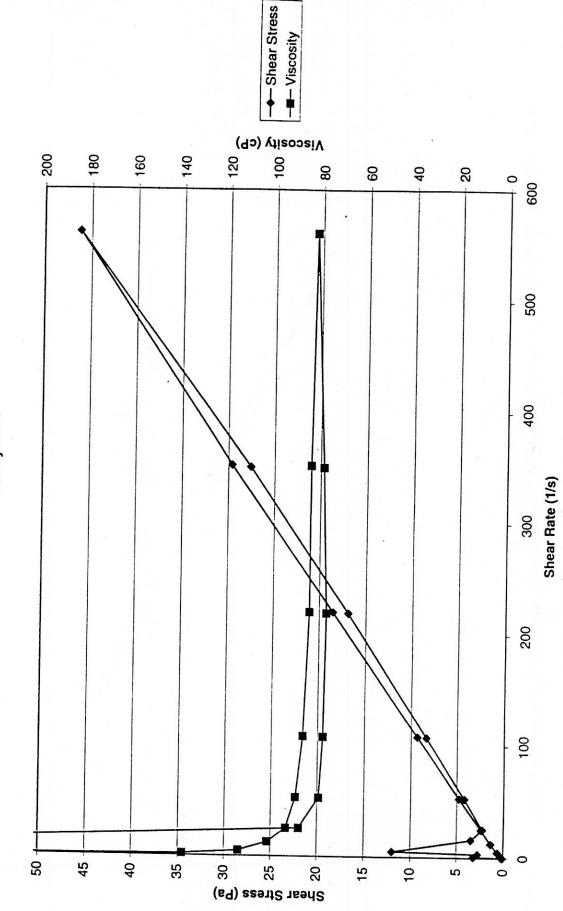




Figure 43. Mixing Study, AW-101 8M Na Melter Feed 1 Day After Glass Former Addition: 25°C Analysis 1

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 44. Mixing Study, AW-101 8M Na Melter Feed 1 Day After Glass Former Addition: 25°C Analysis 2

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 45. Mixing Study, AW-101 8M Na Melter Feed 1 Week After Glass Former Addition: 25°C Analysis 1

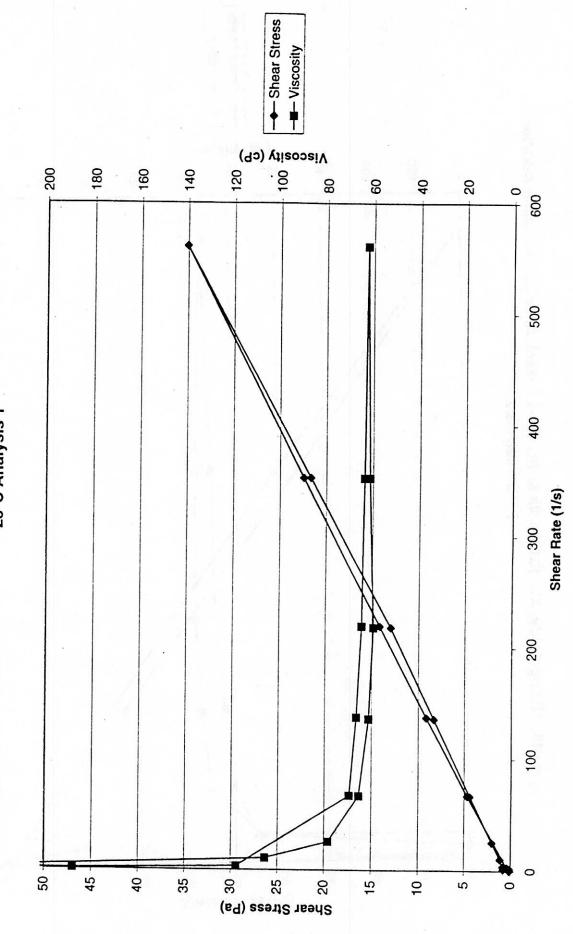
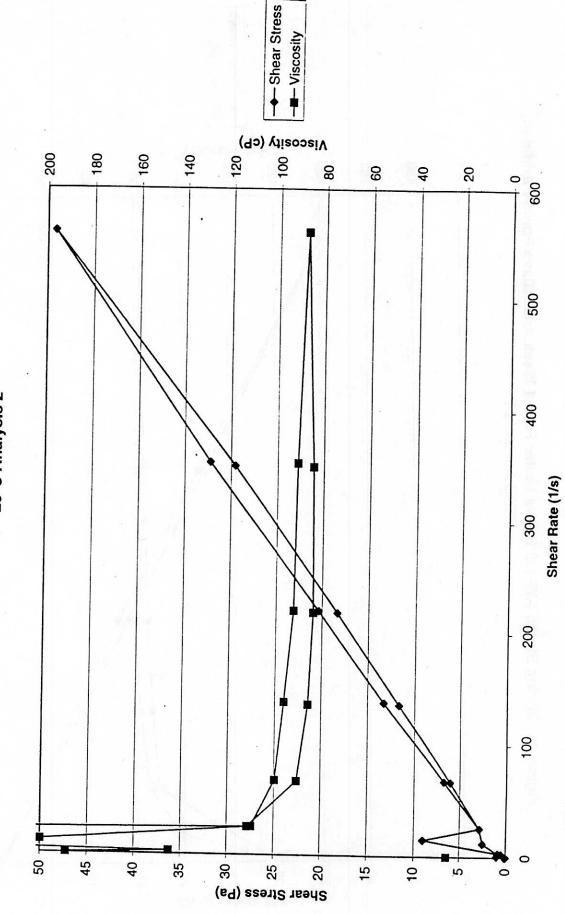
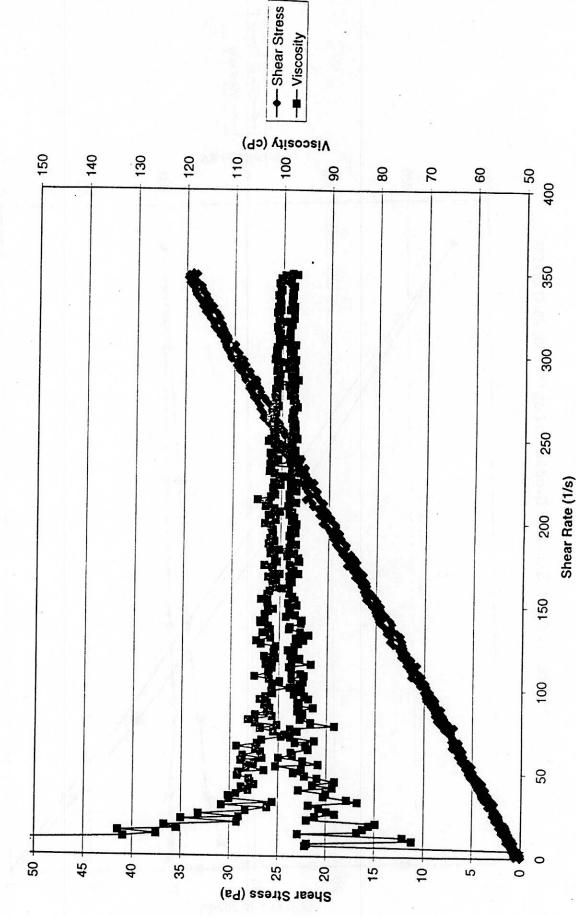



Figure 46. Mixing Study, AW-101 8M Na Melter Feed 1 Week After Glass Former Addition: 25°C Analysis 2



-Shear Stress Viscosity (cP) Shear Rate (1/s) Shear Stress (Pa)

Figure 47. 95 cP Standard Brookfield Lot 111199, 25°C on 3/8/00

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 48. 95.5 cP Standard Brookfield lot 111199, 25°C on 3/15/00

Bolin CS Rheometer with Small Sample Cell Measuring Geometry

Figure 49. Aging Study: AW-101 8M Na Melter Feed After 1 Week of Settling: 25°C Loosely Settled Solids, Analysis 1

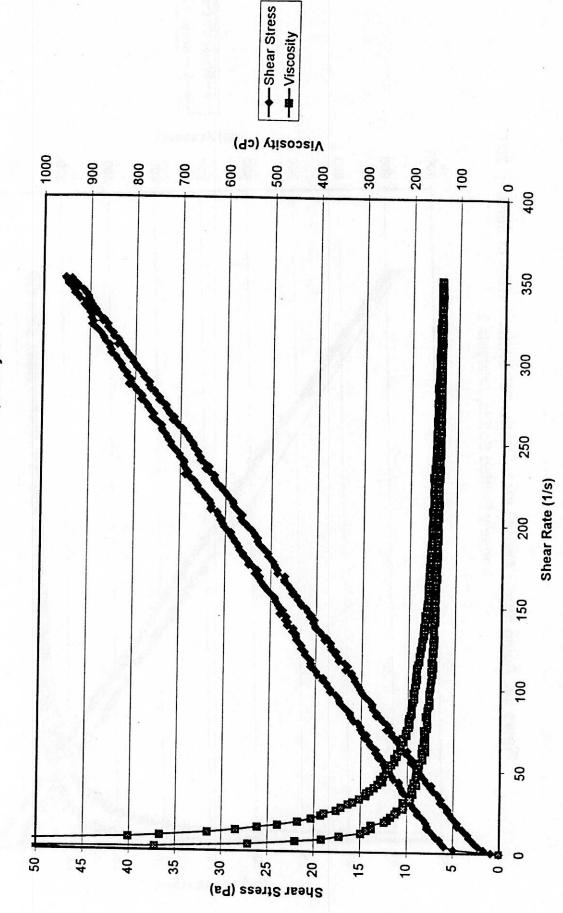


Figure 50. Aging Study: AW-101 8M Na Melter Feed After 1 Week of Settling: 25°C Loosely Settled Solids, Analysis 2

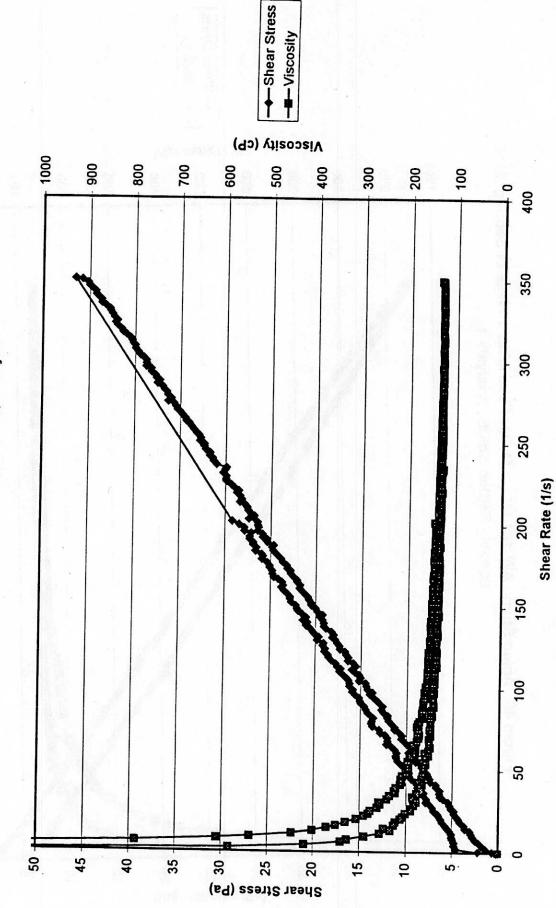


Figure 51. Aging Study: AW-101 8M Na Melter Feed After 1 Week of Settling: 25°C Tightly Settled Solids, Analysis 1

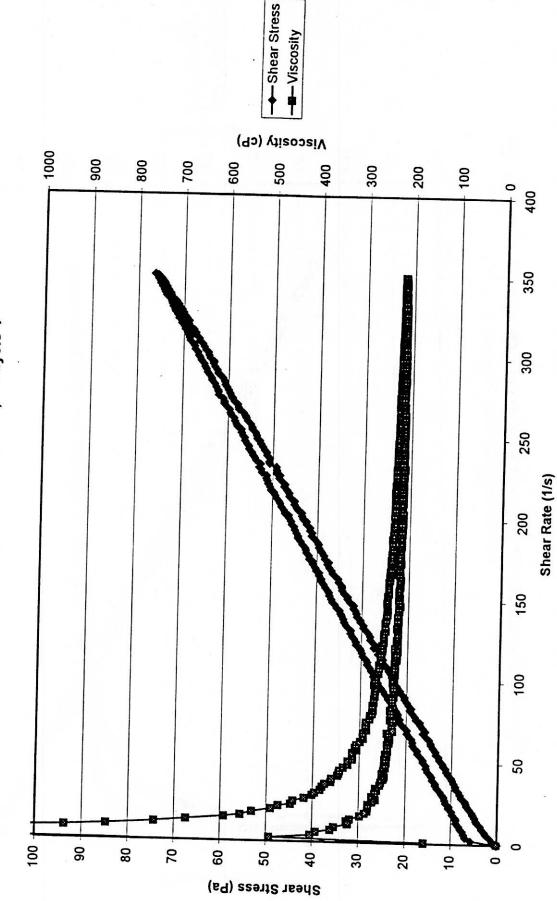


Figure 52. Aging Study: AW-101 8M Na Melter Feed After 1 Week of Settling: 25°C Tightly Settled Solids, Analysis 2

Figure 53. 95.5 cP Brookfield Lot 111199 at 25°C 7/13/00

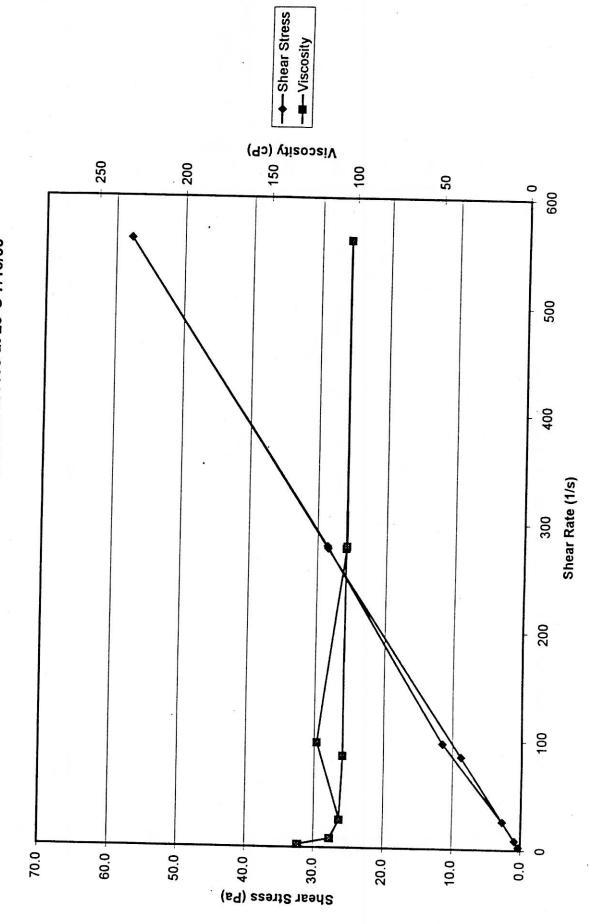


Figure 54. AN-107 5M Na Evaporated Feed with Glass Formers: 25°C Sample 2 Analysis 1

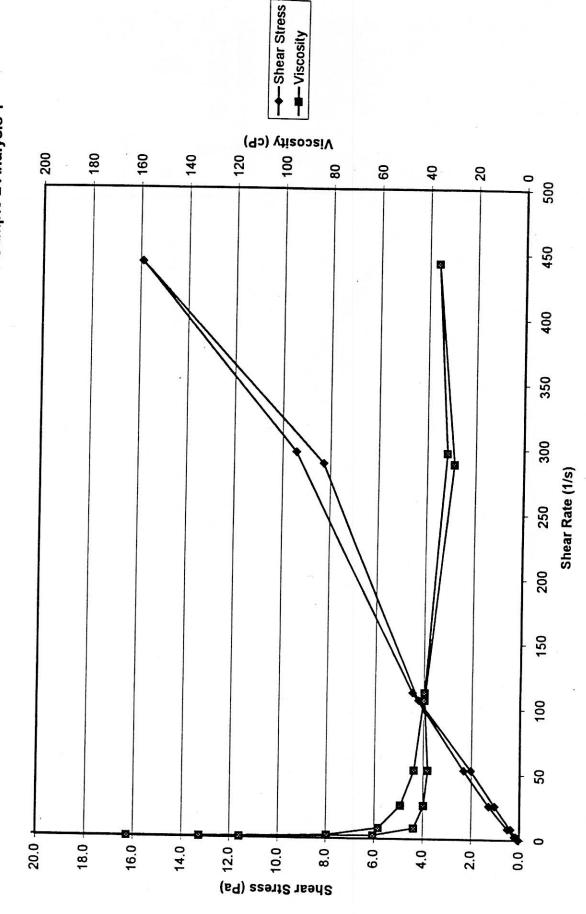


Figure 55. AN-107 5M Na Evaporated Feed with Glass Formers: 25°C Sample 2 Analysis 2

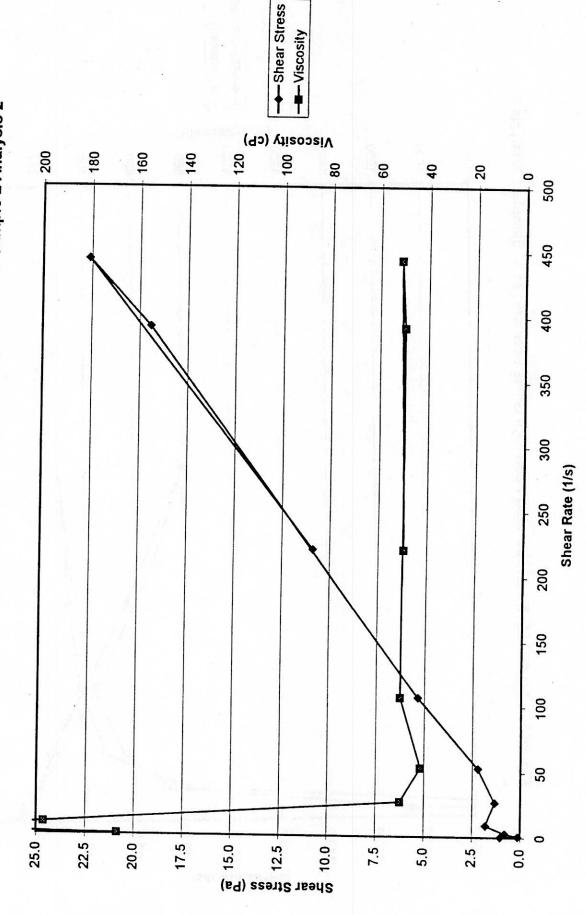


Figure 56. AN-107 6M Na Evaporated Feed with Glass Formers: 25°C Sample 1 Analysis 1

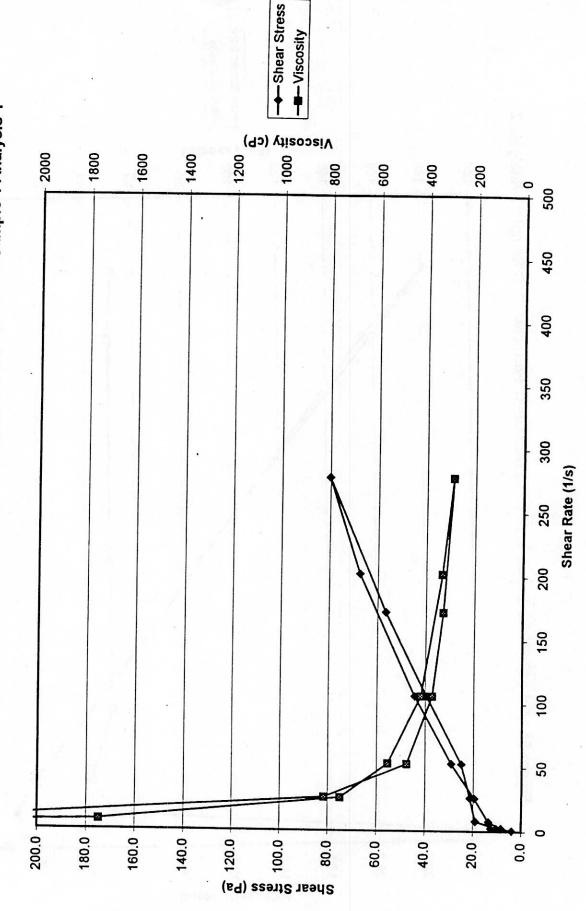


Figure 57. AN-107 6M Na Evaporated Feed with Glass Formers: 25°C Sample 1 Analysis 2

Attachement to BNFL Test Plan 29953-046

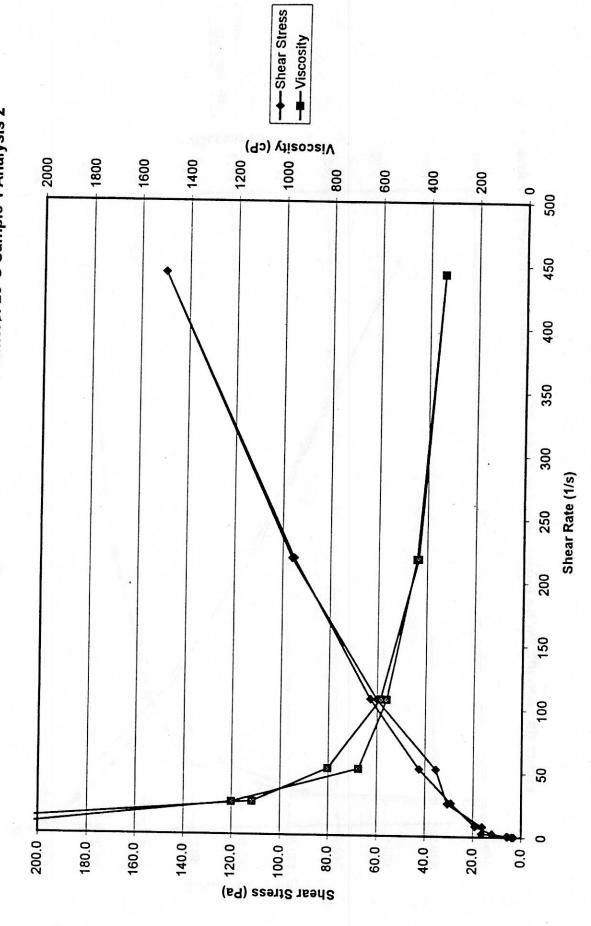


Figure 58. AN-107 6M Na Evaporated Feed with Glass Formers: 25°C Sample 1 Analysis 3

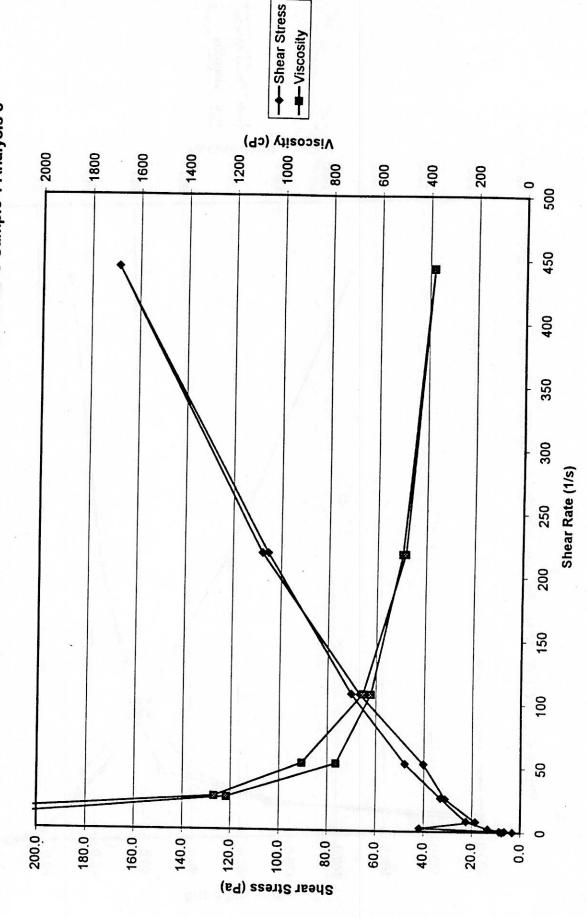


Figure 59. AN-107 8M Na Evaporated Feed with Glass Formers: 25°C Sample 1 Analysis 1

Attachement to BNFL Test Plan 29953-046

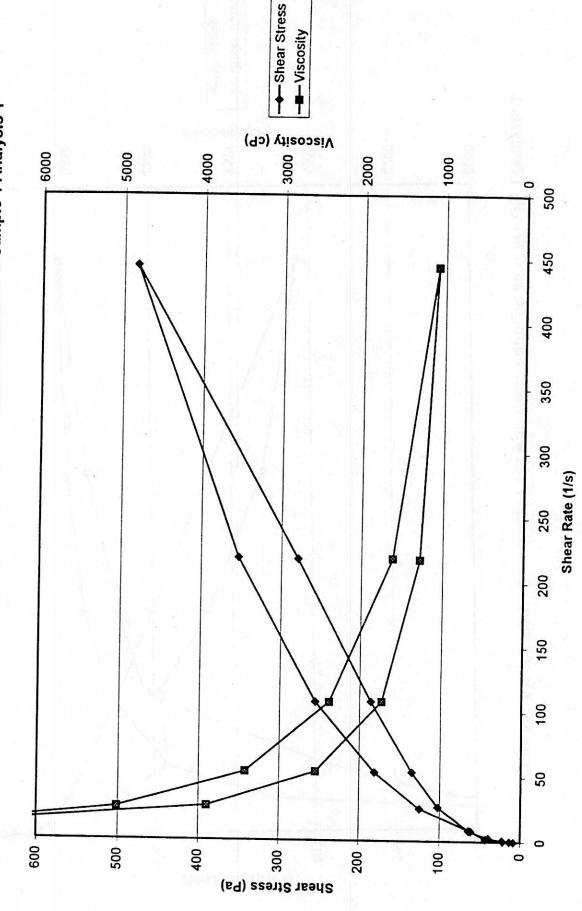


Figure 60. AN-107 8M Na Evaporated Feed with Glass Formers: 25°C Sample 1 Analysis 2

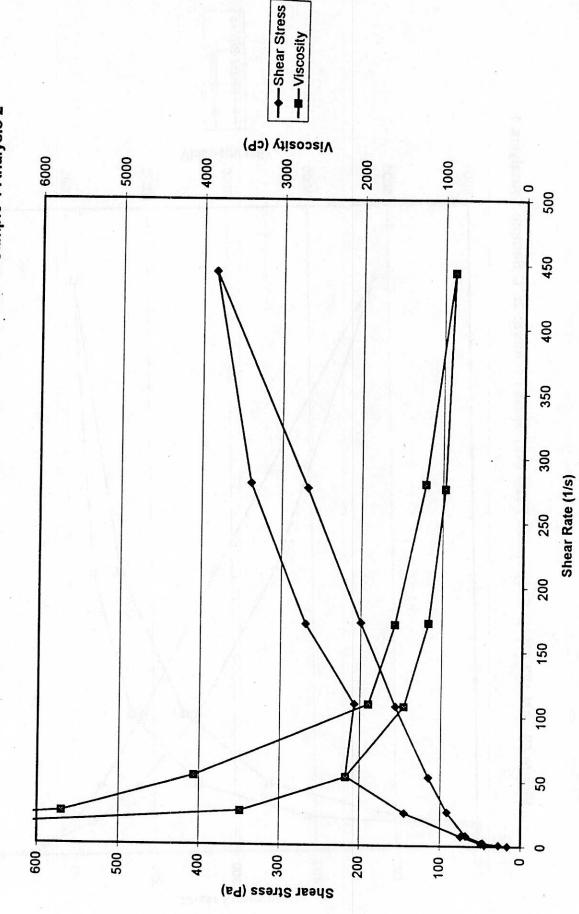


Figure 61. AN-107 5M Na Evaporated Feed with Glass Formers: 50°C Sample 1 Analysis 1

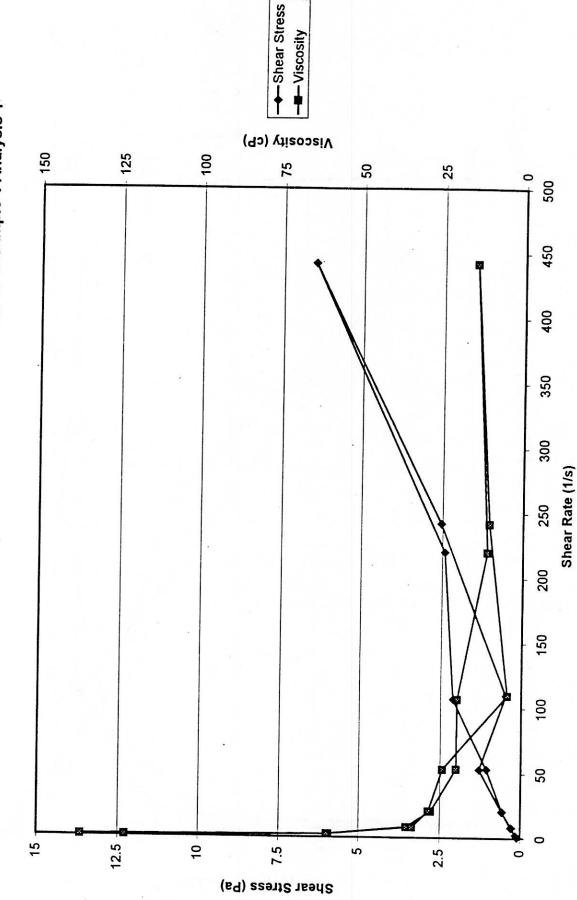


Figure 62. AN-107 5M Na Evaporated Feed with Glass Formers: 50°C Sample 1 Analysis 2

Attachement to BNFL Test Plan 29953-046

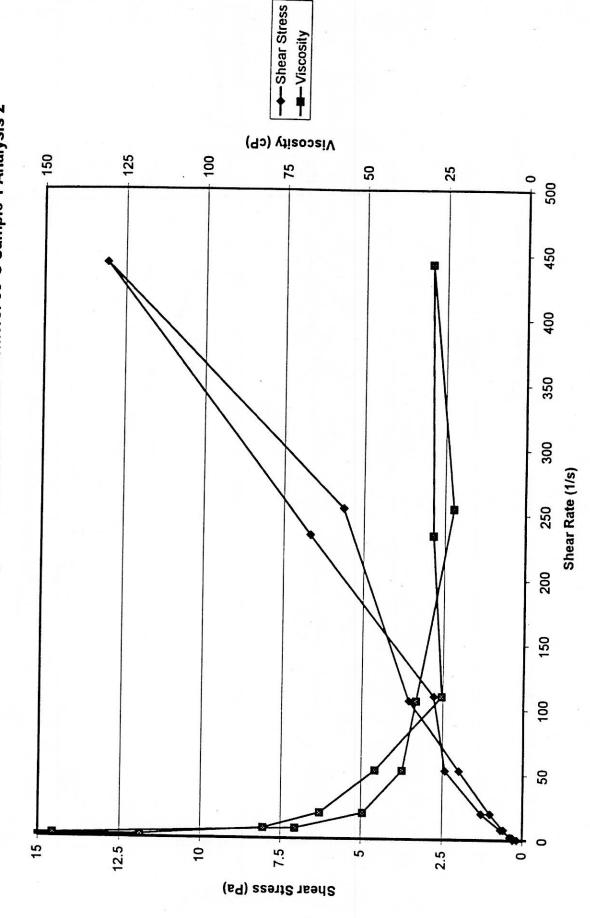


Figure 63. AN-107 5M Na Evaporated Feed with Glass Formers: 50°C Sample 1 Analysis 3

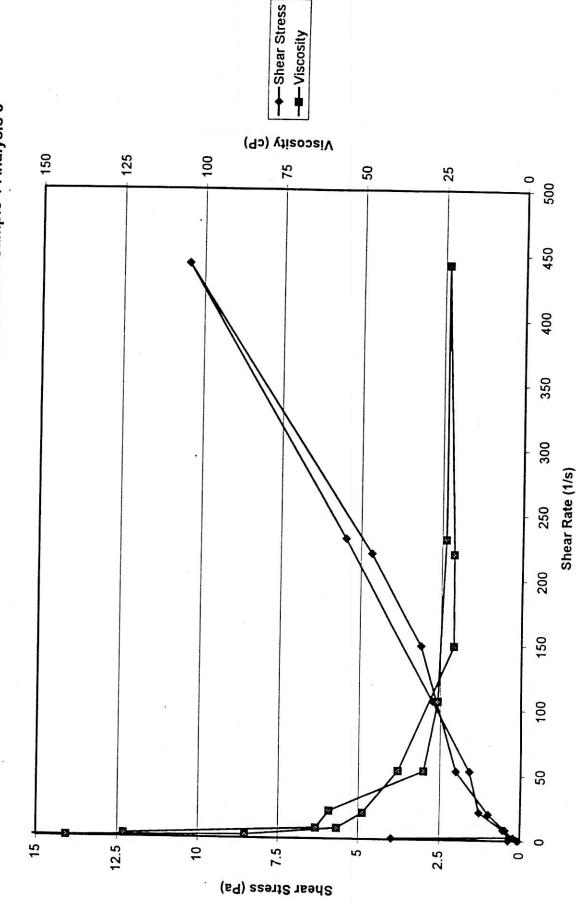


Figure 64. AN-107 6M Na Evaporated Feed with Glass Formers: 50°C Sample 2 Analysis 1

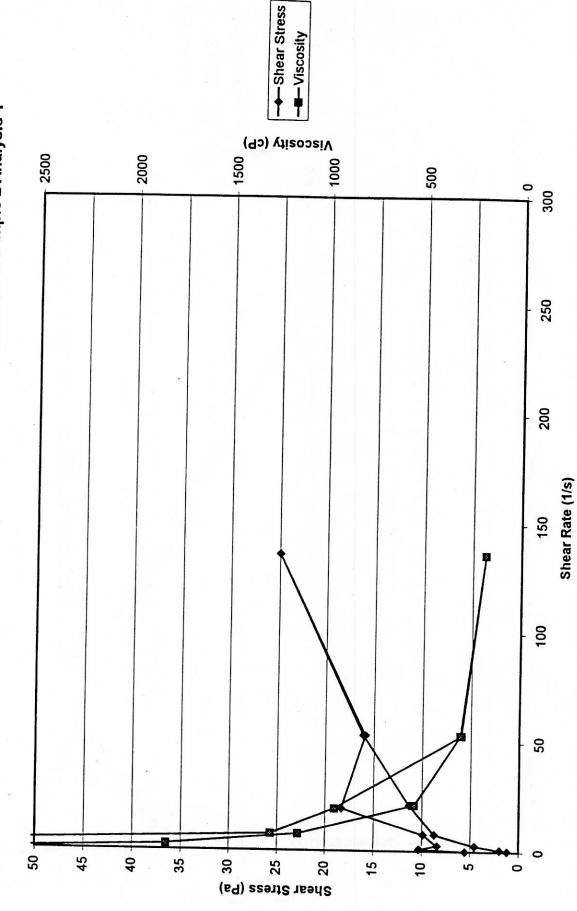


Figure 65. AN-107 6M Na Evaporated Feed with Glass Formers: 50°C Sample 2 Analysis 2

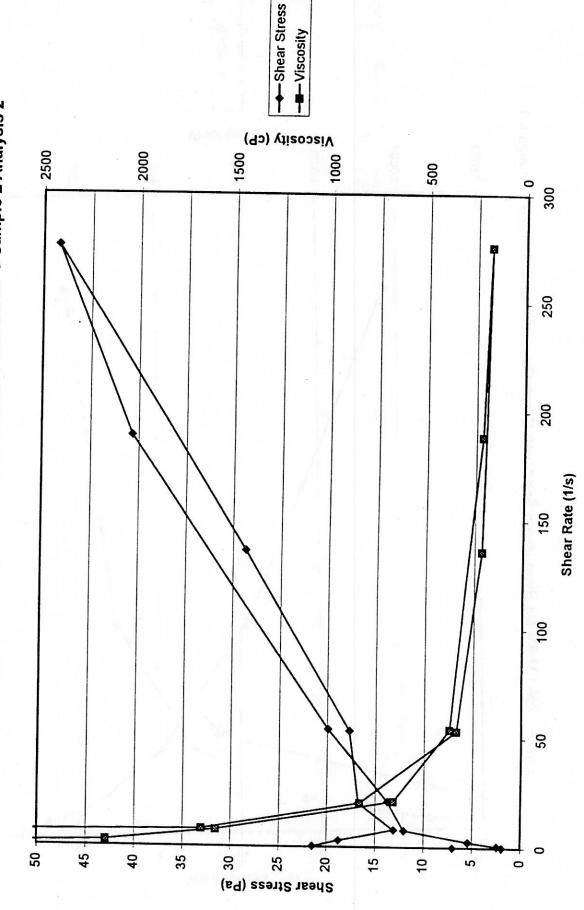


Fig 66. AN-107 8M Na Evaporated Feed with Glass Formers: 50°C Sample 1 Analysis 1

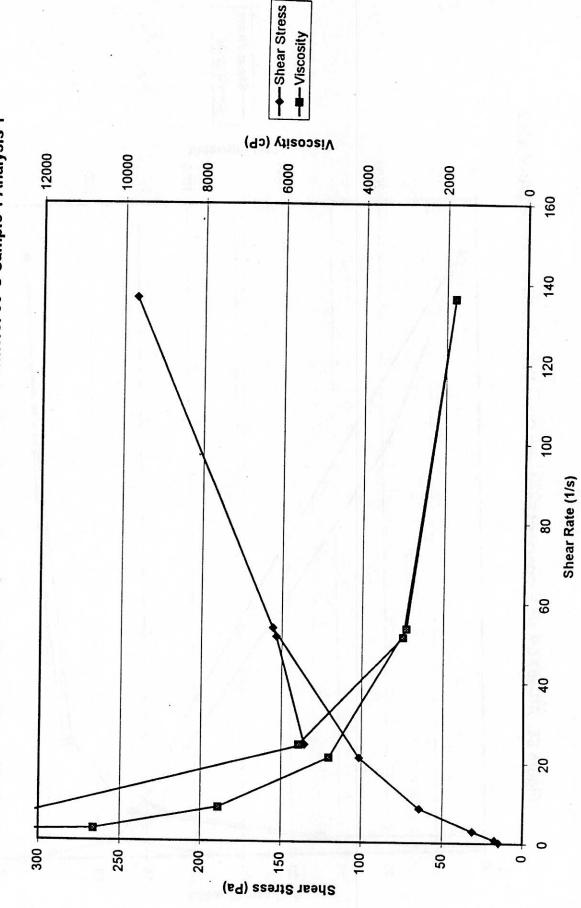


Figure 67. AN-107 8M Na Evaporated Feed with Glass Formers: 50°C Sample 1 Analysis 2

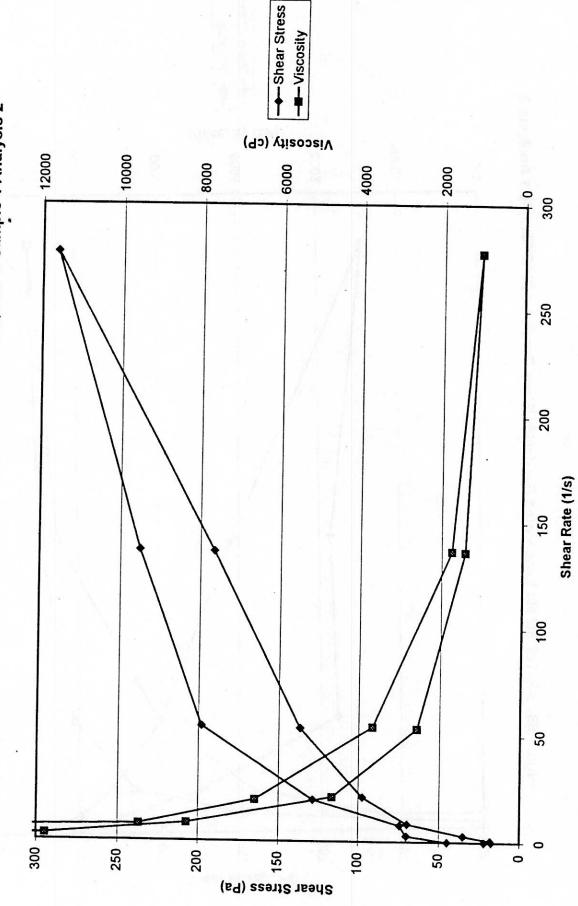


Figure 68. AN-107 8M Na Evaporated Feed with Glass Formers: 50°C Sample 1 Analysis 3

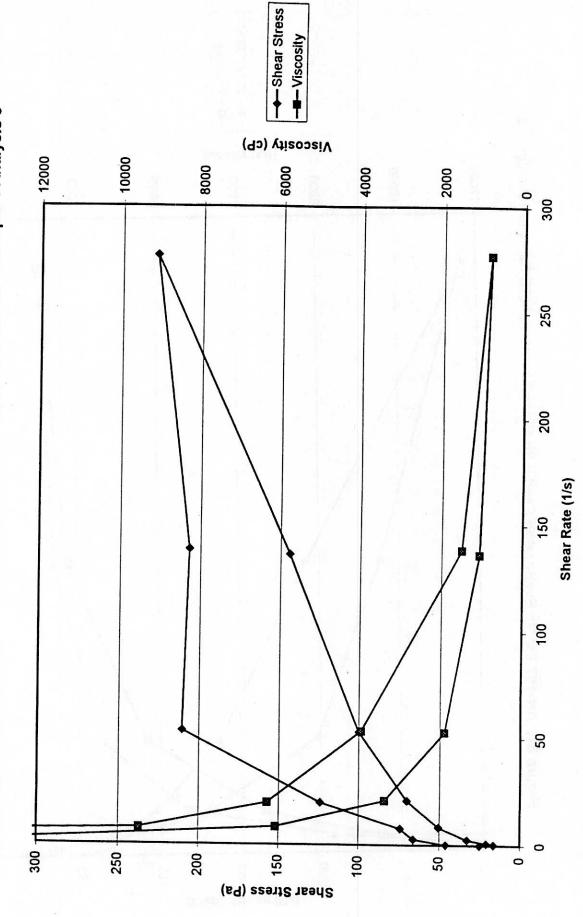


Figure 69. Mixing Study: AN-107 8M Na Melter Feed 1 Hour After Glass Former Addition: 25°C Sample 1 Analysis 1

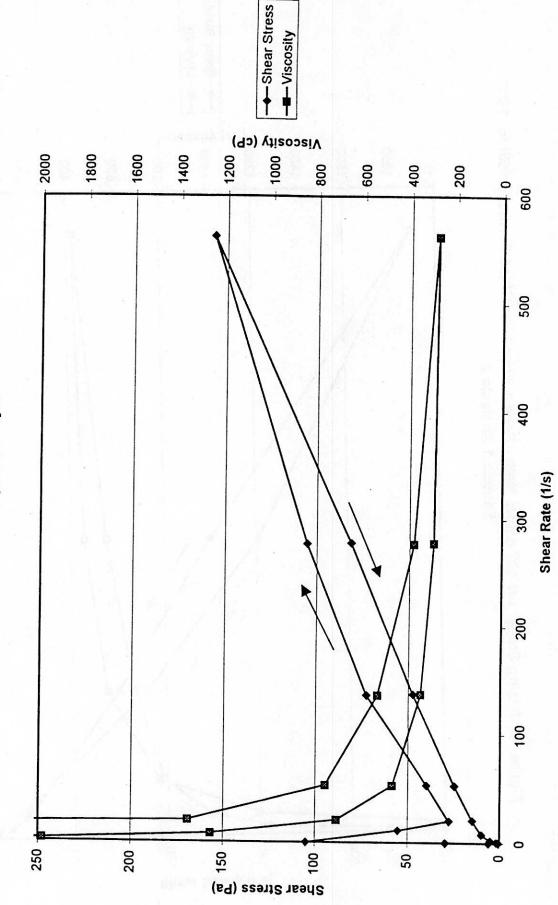


Figure 70. Mixing Study: AN-107 8M Na Melter Feed 1 Hour After Glass Former Addition: 25°C Sample 1 Analysis 2

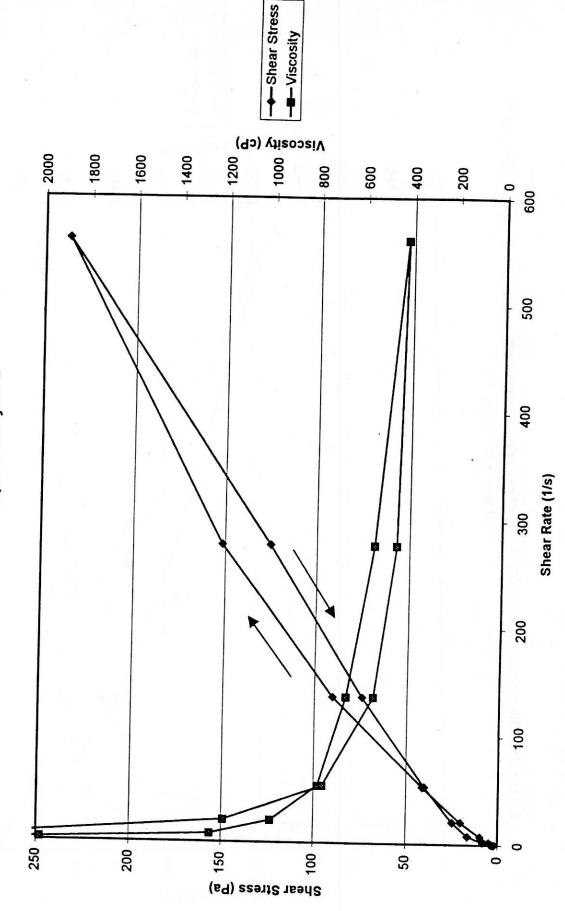


Figure 71. Mixing Study: AN-107 8M Na Melter Feed 1 Hour After Glass Former Addition: 25°C Sample 1 Analysis 3

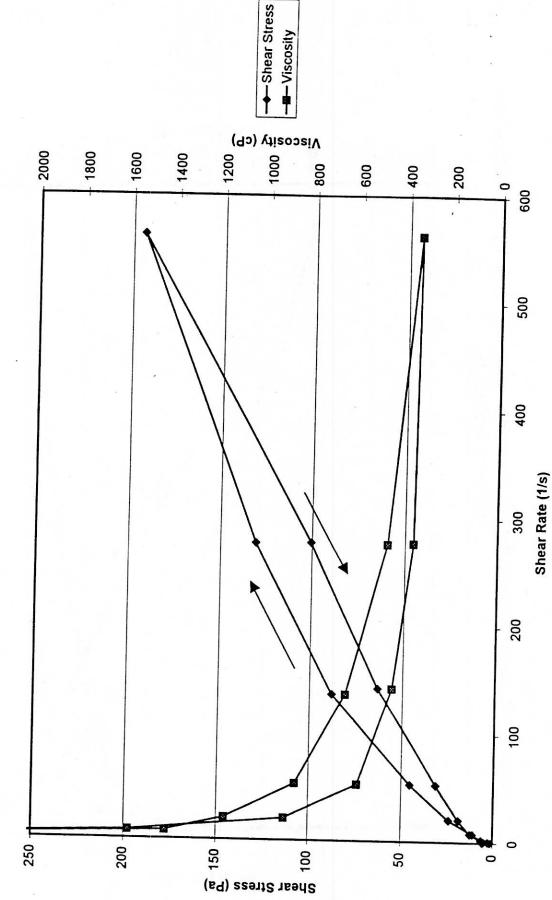


Figure 72. Mixing Study: AN-107 8M Na Melter Feed 1 Day After Glass Former Addition: 25°C Sample 1 Analysis 1

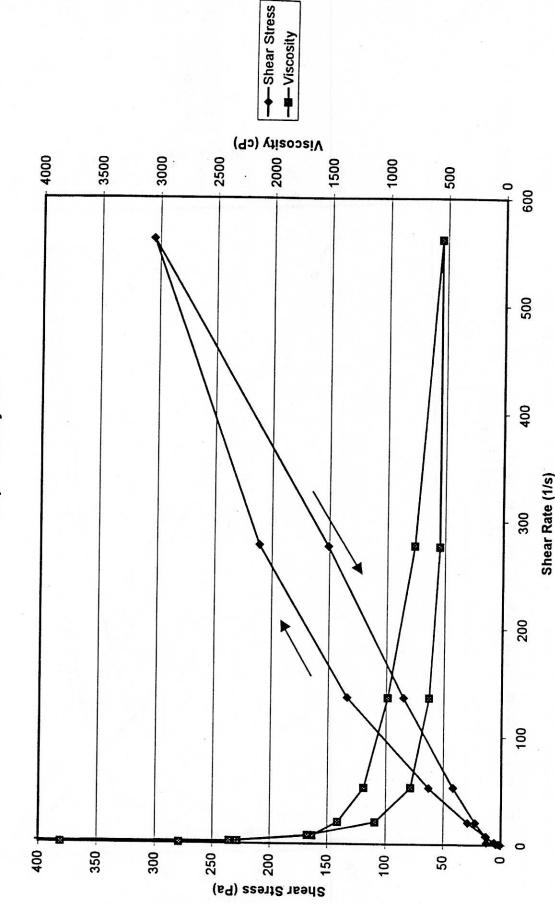


Figure 73. Mixing Study: AN-107 8M Na Melter Feed 1 Day After Glass Former Addition: 25°C Sample 1 Analysis 2

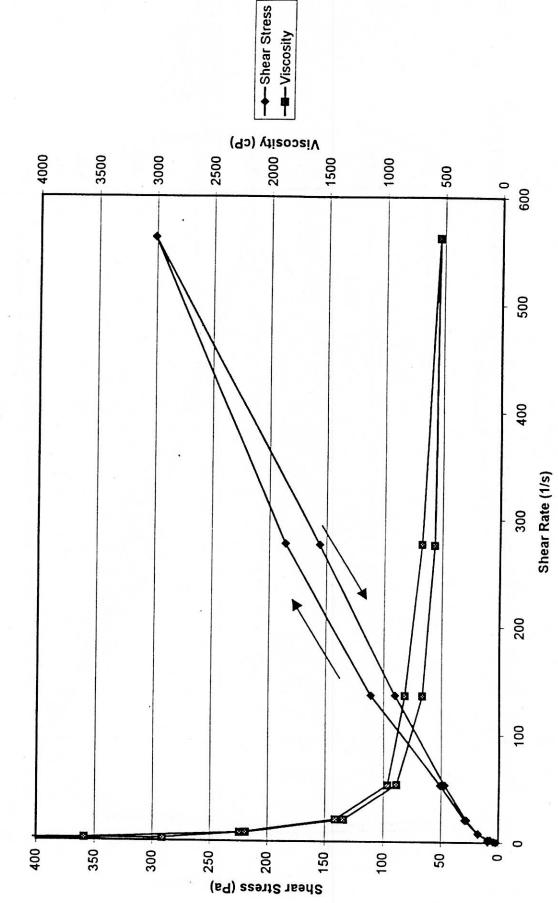


Figure 74. Mixing Study: AN-107 8M Na Melter Feed 1 Week After Glass Former Addition: 25°C Sample 1 Analysis 1

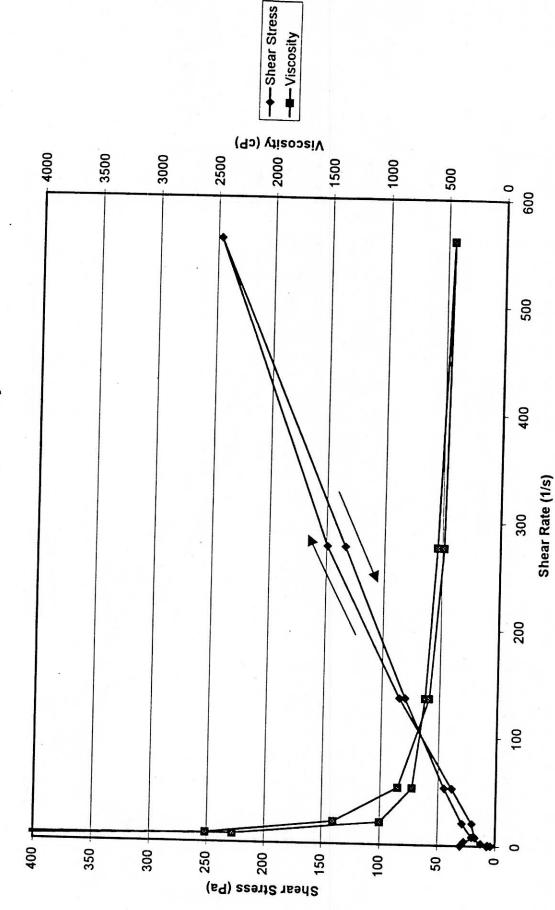


Figure 75. Mixing Study: AN-107 8M Na Melter Feed 1 Week After Glass Former Addition: 25°C Sample 1 Analysis 2

Attachement to BNFL Test Plan 29953-046

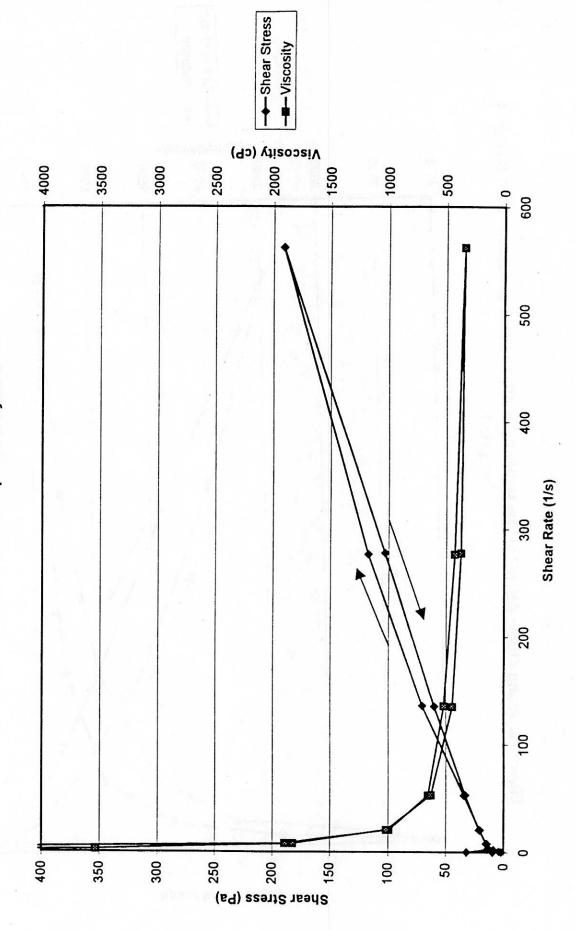


Figure 76. Aging Study: AN-107 8M Na Melter Feed After 1 Week of Settling: 25°C Sample 1 Analysis 1

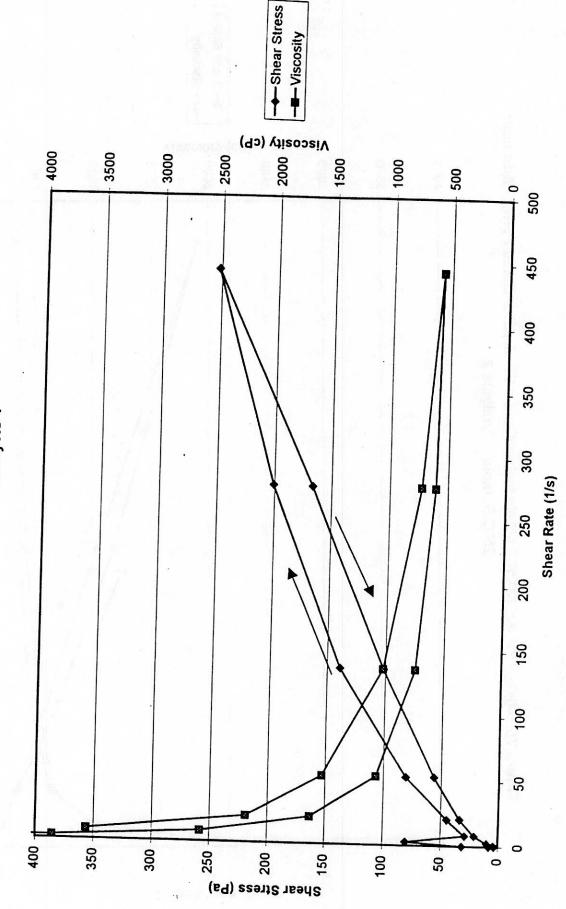


Figure 77. Aging Study: AN-107 8M Na Melter Feed After 1 Week of Settling: 25°C Sample 1 Analysis 2

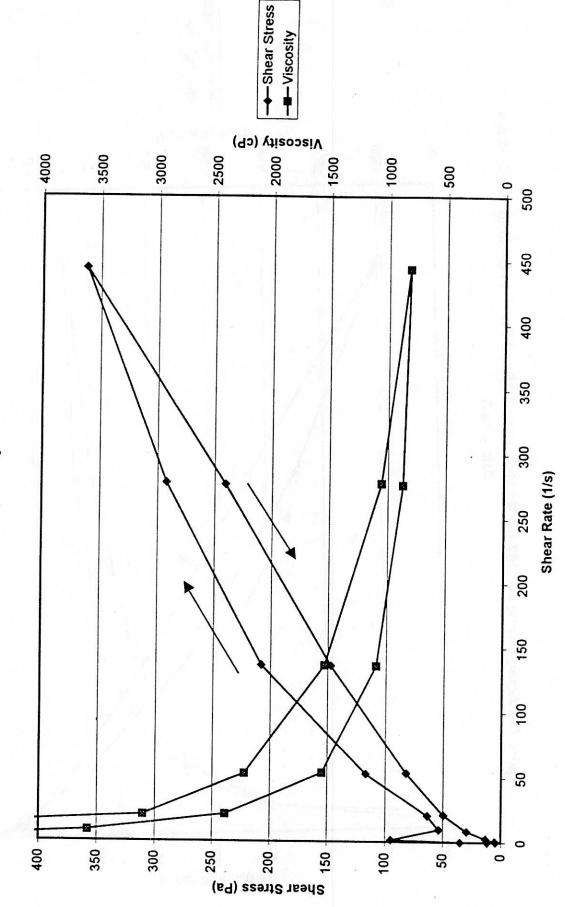
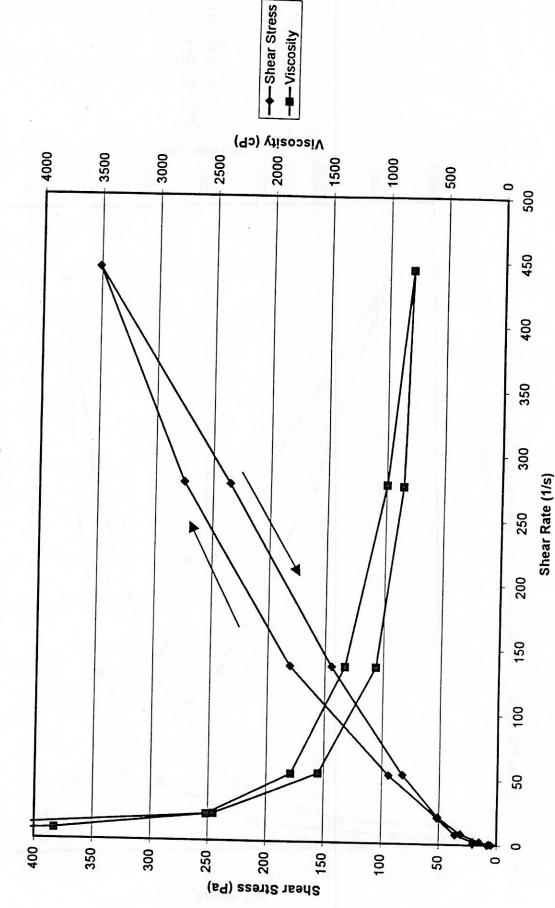



Figure 78. Aging Study: AN-107 8M Na Melter Feed After 1 Week of Settling: 25°C Sample 1 Analysis 3

Appendix B: Test Plan (BNFL-TP-29953-046)

Client Number: TP-W375-99-00032

PNNL Test Plan	Document No.: BNFL-TP-29953-46 Rev. No.: 0 Document Control: Only the original signed copy is controlled
Title: LAW Melter Feed Rheological and Physical Pro	perties Measurements
Work Location: Radiochemical Processing Laboratory	Page 1 of 54
Author: Paul Bredt	Effective Date: Upon Final Approval Supersedes Date: New
Use Category Identification: Reference Identified Hazards: Radiological Hazardous Materials Physical Hazards Hazardous Environment Other:	Required Reviewers: X Technical Reviewer X Building Manager Radiological Control ES&H X Quality Engineer
Are One-Time Modifications Allowed to this Process NOTE: If Yes, then modifications are not anticipated to it see SBMS or the controlling Project QA Plan as appropriate On-The Job Training Required? Yes orX_N	npact safety. For documentation requirements of a modification e.
FOR REVISIONS: Is retraining to this procedure required?YesX Does the OJT package associated with this procedure required. YesNoX_N/A	
Approval Signature	Date
Author Paul Byfor 1	1 9/24/99
Technical Reviewer	9/24/99
RPL Manager TC Concepts	9/24/99
Project Manager Eugene V. Money	9-24-99
Building Manager Ruyl	1 9-24-28
RPL QE	10/4/99
BNFL Gram	

Test Plan: BNFL-TP-29953-046 Page 2 of 54

LAW Melter Feed Rheological and Physical Properties Measurements

<u>Scope</u>

This test plan defines work to be conducted on AN-107 and AW-101 slurry samples following pretreatment. Samples are to be evaporated under vacuum (40-80 torr) at ~50°C to three sodium concentrations as specified by the client prior to initiation of work (probably 6, 8, and 10 M). Following evaporation, solids concentration, settling rate, density and shear stress versus shear rate will be measured on the samples at ambient temperature (~25°C) and 50 °C. Glass formers, as specified by the client prior to initiation of work, will then be added to the samples. Following glass former addition, solids concentration, solids settling rate, density and shear stress versus shear rate will then be measured on the samples at ambient and 50°C. One of the samples will then be actively mixed for one week in a vessel with an impeller to vessel diameter ratio of 77:120. Mixer speed will be specified by the client prior to initiation of work. During this week of mixing, shear stress versus shear rate will be measured after 1 hour, 1 day and 1 week. The slurry will then be left undisturbed for 1 week while observations are made of any gas retention and release behavior by focusing a remote video camera on the solid-liquid interface. The viscosity of this slurry will be further measured after 1 week with no mixing.

Test instructions will be issued to provide specific details to RPG staff regarding the implementation of Technical Procedure 29953-010, "Measurement of Physical and Rheological Properties of Solutions, Slurries and Sludges". Client expectations for successful achievement of project data needs have already been established via the "LAW Melter Feed Rheology" test specifications, numbered TS-W375LV-TE00001, provided to Battelle by BNFL.

Justification of Use Category

This procedure is reference use. Reference use was selected as the use category since this analysis is not a complex process and there are no safety impacts to the order of events. In addition, we may wish to modify the order of analyses or eliminate some analyses depending on the needs at the time of the operation.

Applicability

This test plan applies to RPL staff performing work on BNFL Privatization samples under Project 29953.

Work with actual samples is to be performed in radiological fume hoods and glove boxes in the RPL by staff under the direction of a cognizant scientist.

Test Plan: BNFL-TP-29953-046 Page 3 of 54

Prerequisites

1) Keep the sample in a sealed glass container as much as possible to prevent it from drying and reduce the potential for organic contamination.

2) Cross-contamination between samples and contamination of samples from outside sources must be minimized at each step. Use new tools and bottles for each sample as much as possible. Those tools which are reused should be washed and rinsed prior to reuse.

3) Secondary containment is to be used whenever practical to minimize sample loss in the event of

a spilled sample or broken sample bottle.

4) This Test Plan requires work in an oven or viscometer at 50°C. Unless otherwise indicated, a value of ±5°C is acceptable.

Quality Control

M&TE List:

Quality control has been implemented in Technical Procedure 29953-010, "Measurement of Physical and Rheological Properties of Solutions, Slurries and Sludges". This work is to be conducted under the quality requirements of the Standards-Based Management System (SBMS).

Balance 1:		
Calib 1	ID 510-06-01-007	Calib Exp Date 8-2000
	Location 4.1 4.5517	
Balance 2:		
Calib I		Calib Exp Date
Locati	ionNot neede	8 PRB 3/20/00
Thermocoupl	E: metr ID Nist treetiz# 300-01	-Calib Exp Date eerf. Frete serre # 65 85
	Location Hood#1 Lb517	
Digital Therm	nometer:	
Calib	TD	Calib Exp Date
Locati	ion	
Vacuum Gaug	ge:	
Calib	ID	Calib Exp Date
Locati	ion	N.7 NZ-11/3 3/20/00

Work Flow

- 1) Load 3 subsamples of a waste in glass jars and place in vacuum oven.
- 2) Apply a vacuum (40-80 torr positive pressure) to the jars at 50° C ($\pm 5^{\circ}$ C).

3) Monitor sample masses.

4) At predetermined mass loss intervals, remove each subsample from the vacuum and cap.

Transfer each subsample to a graduated cylinder and measure the density.

Mobilize the material in the graduated cylinders and monitor the settled solids volumes over a 3 day period at ambient temperature (~23°C).

(7) Place the graduated cylinders in an oven at 50°C for 1 day.

(8) Measure the density of the material in each of the graduated cylinders at 50°C.

- 9) Mobilize the material in the graduated cylinders and monitor the settled solids volumes over a 3 day period at 50°C.
 - 10) While stirring, remove homogeneous subsamples from each of the three graduated jars in duplicate and analyze for shear stress versus shear rate at ambient temperature (~25°C) and 50°C.
 - Add the prescribed quantities of glass formers to each of the three graduated cylinders and stir for one hour using an overhead mixer. Cover sample & Alle for storber vellow cite of sample damped for the sample damped for

(12) Measure the density of the material in each of the graduated cylinders at ambient. -

13) Mobilize the material in the graduated cylinders and monitor the settled solids volumes over a 3 day period at ambient temperature (~23°C). - 51:1 bak & may mixer 1/73/49

14) Place each of the graduated cylinders in an oven at 50°C for 1 day.

15) Measure the density of the material in each of the graduated cylinders at 50°C.

- 16) Mobilize the material in the graduated cylinders and monitor the settled solids volumes over a 3 day period at 50°C.
- 17) While stirring, remove homogeneous subsamples from each of the three graduated jars in duplicate and analyze for shear stress versus shear rate at ambient temperature (~23°C) and 50°C.
- 18) Transfer one of the three samples prepared in step 15 to an airtight glass mixing vessel with sampling port. The vessel is to have a impeller to vessel diameter ratio of 77:120.
- 19) Mix this sample for one week at ambient temperature. The impeller speed will be specified by the client prior to initiation of work.
- 20) During the week of mixing, remove subsamples after 1 hour, 1 day, and 1 week through the sampling port. Immediately measure the shear stress as a function of shear rate on these samples. These shear stress versus shear rate analyses are to be conducted at ambient temperature (~23°C).

21) After the week of stirring, transfer the material back to the graduated cylinder and leave undisturbed for 1 week at ambient temperature (~23°C).

- 22) During this one week, monitor for gas retention/release behavior using a video camera focused on the settled solid-liquid interface.
- 23) After one week, measure shear stress versus shear rate on the sample at ambient temperature.

PR Brue 10/14/19

Bredt, Paul R

Stuart Arm [SArm@bnflinc.com] Tuesday, October 12, 1999 8:06 AM From:

Sent:

Bredt, Paul R To:

Smith, Gary; pegg@cua.edu; GMcArthur@bnflinc.com; MBeary@bnflinc.com; Cc:

^ProjectDocumentControlMailbox@bnflinc.com

Target Sodium Concentrations for Processing the AW-101 Sampl Subject:

Paul,

Please use the target sodium concentrations of 6, 8 and 10M in the AW-101 sample rheological and physical property measurements.

> Thanks, Stuart.

Test Plan: BNFL-TP-29953-046

Page 5 of 54

Work Instructions

AW-101

l)	Record the current sodium concentration of the pretreated.	AW-101	feed.
----	--	--------	-------

Data Source Dean Kurath CS IX Report [Na]= 4.6 (C1)

2) Record the [Na] targets provided by BNFL.

Target [Na]=
$$\frac{6 \text{ M}}{\text{(C2a)}}$$
 (C2a) $\frac{e^{A_{1}D}}{1.31}$

Target [Na]= $\frac{8 \text{ M}}{\text{(C2b)}}$ (C2b) 1.74

Target [Na]=
$$10 M$$
 (C2c) 2.18

3) 200 ml of each evaporated slurry are required for this testing. Use the formula below to calculate the volume of pretreated slurry (V1) required to achieve 200 ml of evaporated slurry.

V1a=
$$(C2a/C1) \times 200 \text{ml}$$

V1a= $(C2a/C1) \times 200 \text{ml}$

V1b= $(C2a/C1) \times 200 \text{ml}$

V1b= $(C2a/C1) \times 200 \text{ml}$

V1b= $(C2a/C1) \times 200 \text{ml}$

V1c= $(C2a/C1) \times 200 \text{ml}$

V

4) Weight three 500 ml glass graduated cylinders labeled AW-101 EVAP A, AW-101 EVAP B, AW-101 EVAP C (Fisher cat #08-566-11F or equivalent).

5) Measure the distance between the highest and lowest graduation on the graduated cylinders using a ruler.

500 nl g-al

Distance _____cm Distance cm Distance

6) Place approximately Vla ml of pretreated AW-101 feed into graduated cylinder AW-101 EVAP A. Record the mass and volume, and then return this material to the primary AW-101 feed container.

AW-101 EVAP A

Total	1043.3	_g
Tare	420.2	g- 500 grad
Slurry	623.1	_g
Volume	500	ml

7) Calculate the Density of the AW-101 feed.

Density= 1.2464 y/nl g/ml should be 1.228 g/ml from Dan Blackord

8) Using this density, calculate the mass of material required for samples A, B, and C.

to 120 m of tim Mla= Vla x Density 196x 1.228 = 249 14 16/2 261 × 1.25 = 325 9 326 × 1.25 = 406 g Mla= 196 mc x12464 > 244.3 MID= 261 x 1.2464 = 325.3 MIC= 326 × 1.7464 > 406.3

9) Weigh three 250 ml glass jars.

AW-101 EVAP 1

AW-101 EVAP 2

AW-101 EVAP 3

Tare 2a 114.9 g Tare 3a 115.0 g

2b 113.9 3b 115.3 115.7 Tare

10) Transfer the required mass calculated above (Mla, Mlb, and Mlc) into each of the 250 ml jars (Mla in AW-101 EVAP 1, M1b in AW-101 EVAP 2, and M1c in AW-101 EVAP 3).

AW-101 EVAP 2 (5) AW-101 EVAP 1 Total 360.0 g Totala 297.1 252.57.2 Total 34 310.7 36 326.0

Tare 115.7 g 2Tare a 114.9 25113.9 Tare 34 115.0 56 115.3

Slurry 244.3 g 25lurry 182.1 25143.3 Slurry 195.7 336 210.7

#2 510.0 Total 2 3 25.4 4

11) Calculate the target mass for each sample assuming all mass loss is the result of water evaporation. 150 ML target fixed Turustan assuming 150ml
VITORINA T=MINTVIN-150-1) Targetla=Mla-(Vla-200) YYS Targetla= $\frac{244 - (196 - 150)}{3249 - (196 - 150)} = 198.3 g 158mc$ T/s = 241 - (196 - 150) = 195g $T_{argetlb} = \frac{244 - (196 - 150)}{3253} = \frac{244 - (196 - 150)}{3259} = \frac{244 -$ Target 1c=4063-(324-150) = 236,3 g

PR Bredt 1 : 195 + 115.7 Test Plan: BNFL-TP-29953-046 26 = 2145 (13.3) + 1/3.9 09/24/99 Page 7 of 54 = 208.4 12) Place glass jars labeled AW-101 EVAP 1, AW-101 EVAP 2, and AW-101 EVAP 3 in a vacuum oven at 50°C (±5°C) and adjust the vacuum to an indicated pressure of 40-80 torr (this need not be done with a calibrated vacuum gauge). 13) Monitor the mass of each sample on a regular basis to assess the rate of evaporation. TARCET 235 314 208 235 + tare AW-101 EVAP 1 **AW-101 EVAP 2** AW-101 EVAP 3 Date 14/22/99 10-22-99 Date Date 10/22/99 Mass Mass 254.7 Mass 305.3 320.5 ¥ Date 10-25-99 4pm Date Date Mass Mass 270.5 217.0 Mass 212 Date 1.6-26-99 @4 100 Date Date Mass 341.7 Mass 237.3 278.4 Mass 290.8 After over Night 10.27-91 10/21/19@8 am Date 10/27/99 @ 8 Am Date VAC \$ Mass Mass 223.7 261.1 Mass heat @ 70 Date 10.28-99 8 pm Date Date Mass 323.8 Mass 242.7 207.6 Mass 218.5 236.8 Stoppel. 10-28-99@4PM Date Date Date Mass 312.7 Mass 235.7 207.6 Mass 228.2 236.8 Date 11-10-49 @ 1pm Date Date Stopped & Mass 234.7 312.4 Mass 207.7 Mass 234.2 225.2 Coured Simple Date Date Date Mass Date Minso Mass 11/10/49@1332 Mass > 1/10/49@10+ 11/30/97 @10Am Date 225.9 4 Mass 11/30/99 @10Am Date 143499 313.7 Mass 234.9 208.4 Santa starrier target marche were slightly exceeded & then adjusted to exact 14) When the mass of each of the sturries reaches the targets calculated above, remove them from the Tonget ma vacuum and cap the sample. Record the mass. - Sample we covered with purefilm **AW-101 EVAP 1** AW-101 EVAP 2 (b) 313.7 234.8 Total Total 208 4 g Total 225.9 115.7 Tare 113.9 g Tare 114.9 g 115.0 115.3 g Tare Slurry 94.5g Slurry 119.4 g Slurry 110,9 * Rusuiby @ 22 in H20 & not place just burning on temp - 70°C

3b = 230.3(210.7) + 1/5 3 = 234.7

Main welding Tare with

		Ys.	= 44.84	851 131	me bit with s	tir ban					
	PR Bred		Not wit of	fresh 3	ALL VII WITH		1.	Test Plan: H	NFI TP.	29953-046	
	09/24/99	• 2		* 4	= 1/Wt with	r not ut	with bar	Test Flan. I		Page 8 of 54	
	2 to	graduated c	ylinder AW	/-101 EV -101 EV and volu	AP 1 to grade AP B, and AV me of materia li+ B Sec	uated cylin W-101 EV	nder AW AP 3 int	-101 EVAP to graduated	cylinder A		د تو
	AW-101	EVAP A			EVAP B		-AW-10	1 EVAP C		Scome	Grad
	Total Tare Slurry Volume	468. 272. 185.	<u>5</u> g	Total Tare Slurry Volume	441.9 5 231.9 159	32.8 g g ml	Total Tare Slurry Volume	463.5 238.3	g 3 g g ml	4178.3 269.5 208.8 145	·
	16) Prev	veigh 3 teflo	n coated ma	ignetic sti	r bars.	and the second	1.	20936			
		B., -			3.89 023			C 5 <i>755</i> g		11/24/94 +	15
	17) Pre v	1 - 50 weigh/3 101	nl volumetr	ic flasks.	- Neck size teflm of	of ionl	volumetri choice.	1 \$ 25 m wolk	metres are 2/99	too small f	BALANCE 201
Wε	With just 18) Place of the	r ພວມ e one stir ba	A 54.9627 84.81133 ir in each of c flask Ca ~ \$ a c \(\) 6	the volum	metric flasks and solume of the solume of th	gund fill to the stir bar	the mark	with DI wated isplacement	er. Record	360 19 d the mass 0	- 06-01- - 1.000
2.18876	Total Flask Bar Water 4 = 19) Place	A 87.451 (34.962 (3.273. 48.615 3.1415 e stir bar A	52 g 17)g 17 g 17 g 17 g 17 nn 10 nn	Total Flask Bar Water	B 87,5092 (34.96276 (3.84625 48.6562 3.2618 A, stir bar B ir	7_g -)g -)g -)g - 6_g - 6_g	Total Flask Bar Water	C 87.4595 (34.9627 (38.6356 48.6356 3.1897 B, and stir b	52 g 6)g 55)g 21 g ar C in A'	. 44676 W-101	1/29/99 195
	100	mercia con a second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	raduated cylinine and date f				e. After ~:	2 minutes,	
		AW-101 E	WAPA	Time _			Date				
		AW-101 E	VAP B	Time_			Date				
N	et	AW-101 E	CVAP C	Time _		_	Date				
5	om L	Water	33		1	AO	551.	· S B 123/99			
,	- -	84.811 34.9 49.9	6276	mho	13		111	123/99			
		49.9	84.	ra5							

Page 9 of 54

21) After turning off the stirrer, record the ambient temperature volume of settled solids and liquids after 5 minutes, then every 10 minutes for the first hour, and then every half hour until the end of the work day. As well, record these volumes every 4 hours during the second and third day.

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)
5 min					()
15 min		1	Page 182		LU1 - 1,000
25 min				916.3	- Plant
35 min					
45 min					rs Eaber
55 min		0.81	,		
l hour					
1.5 hour				g (24-1)	3 0 111
2 hour			1		
2.5 hour					19-30
3 hour					N. F. IN
3.5 hour		4.443		- 514	
4 hour					A PART III
4.5 hour					T son in
5 hour		I Company		- The state of the	
5.5 hour					
6 hour					
6.5 hour					100
7 hour		.1.9.			
24 hour					
28 hour					
32 hour	7.45				V
48 hour	13		n kara wasa y		
52 hour					
56 hour					

rosolds 11/23/99 PRD

Test Plan: BNFL-TP-29953-046 Page 10 of 54

AW-101 E	VAP B w	ithout glas	s formers at a	umbient tem	perature
Target	Date	time	Total	Solid	Liquid
			(ml)	(ml)	(ml)
5 min					
15 min					
25 min		Ú.,			
35 min					
45 min					
55 min	*		_		
l hour					
1.5 hour					
2 hour			7	100	
2.5 hour					
3 hour		*.			A
3.5 hour					
4 hour		10/2			
4.5 hour					
5 hour				1	
5.5 hour			3		5-04
6 hour					
6.5 hour					I I I
7 hour					AL STREET
24 hour					
28 hour					
32 hour					
48 hour					
52 hour					
56 hour					

No 5,1:25 11/23/99 PAB

Test Plan: BNFL-TP-29953-046

Page 11 of 54

Target	Date	time	Total	Solid	Liquid
			(ml)	(ml)	(ml)
5 min					
15 min	\				
25 min					
35 min					
45 min					
55 min					•
l hour	\				
1.5 hour		Λ			
2 hour					
2.5 hour					
3 hour					
3.5 hour					
4 hour					
4.5 hour					
5 hour					
5.5 hour			1		
6 hour					
6.5 hour					
7 hour					
24 hour				V	
28 hour				Λ	
32 hour					
48 hour					
52 hour					
56 hour					

No 501:85 11/23/99 PRB

Page 12 of 54 22) Place the graduated cylinders in an oven at 50°C for 1 day. Remove the samples and record the mass

and volume. AW-101 EVAP A AW-101 EVAP C AW-101 EVAP B Total Total Total Tare Tare Tare g Slurry Slurry Slurry g Volume Volume Volume

23) Mobilize the material in each of the graduated cylinders using a magnetic stir plate. After ~2 minutes, turn off the stir plate and record the time and date for each of the three samples.

AW-101 EVAP A Time	Date
AW-101 EVAP B Time	Date
AW-101 EVAP C Time	Date

24) Return the graduated cylinders to the oven at 50°C.

25) After turning off the stirrer, record the volume of settled solids and liquids after 5 minutes, then every 10 minutes for the first hour, and then every half hour until the end of the work day. As well, record these volumes every 4 hours during the second and third day.

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)
5 min			10 - 0		
15 min		1			
25 min					
35 min					
45 min					
55 min					
l hour					
1.5 hour			1	<u> </u>	
2 hour					
2.5 hour					
3 hour	V				1
3.5 hour					400
4 hour					
4.5 hour					
5 hour					
5.5 hour				1	
6 hour					
6.5 hour					1
7 hour					
24 hour		2			
28 hour					1
32 hour					1
48 hour					1
52 hour					
56 hour					

11/23/99 PRB

Test Plan: BNFL-TP-29953-046 Page 14 of 54

A-1V-101	EVAP	B without	glass	formers	at 50°C
----------	-------------	-----------	-------	---------	---------

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)
5 min			The same and		
15 min					
25 min				36 144	
35 min					
45 min					
55 min			1		
l hour					
1.5 hour			The same and same		
2 hour					
2.5 hour					
3 hour				and an essay of the contract of	
3.5 hour					
4 hour					
4.5 hour					
5 hour				1	
5.5 hour					
6 hour			1,000		
6.5 hour			\$ to		
7 hour			- 4		
24 hour				-	
28 hour					
32 hour			1 - 1		
48 hour				9	
52 hour			an rate ray		
56 hour			- 12-54		

No solids 11/23/99 PBB

AW-101	EVAP	C without gla	ss formers at 50°C
711-101	LVAL	C without gia	ss formers at 50°C

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)
5 min			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	()	(114)
15 min					
25 min					
35 min			S. Carle		
45 min					
55 min					
l hour					
1.5 hour				12.	
2 hour					
2.5 hour		1			
3 hour			1		-
3.5 hour					
4 hour ·	ke e				
4.5 hour					
5 hour					
5.5 hour		The state of the	1		1
6 hour					
6.5 hour					
7 hour					
24 hour				1	
28 hour				1	
32 hour					1
48 hour			- 4	-	1
52 hour	10000				
56 hour					\

No 501:15 1/23/99 1RB

\$ 5 NCE glove Box was @ 19°C
PR Bredt 09/24/99 equilibrium weedel to be Test Plan: BNFL-TP-29953-046 Born 40min before the Page 16 of 54 word come into high range himt
26) If not performed in the last 30 days, analyze one standard between 10 and 100 cP for shear stress as a function of shear rate at 25°C from 0 to approximately 1000 s ⁻¹ . Print out a copy of the rheogram and attach to this test plan.
Viscometer Bohlacs Location 506 Geometry C-255hort
Viscosity 47.2 cP Lot Barrow # 179430 Manufacturer Brook field 02\$100 A
27) Remove the graduated cylinders from the oven and allow to cool overnight.
28) While stirring the samples on a magnetic stir plate Remove subsamples from each of the graduated cylinders and analyze for shear stress as a function of shear rate in duplicate. Conduct the analysis at 25°C and 50°C from 0 to approximately 1000 s ⁻¹ . Print out a copy of the rheograms and attach to this test plan.
AW-101 EVAP A File name 02 1200 F Date analyzed 02-02-2000
AW-101 EVAP A Duplicate File name 020200 Date analyzed
AW-101 EVAP B File name H Date analyzed
AW-101 EVAP B Duplicate File name T Date analyzed
AW-101 EVAP B C PEB File name Date analyzed
AW-101 EVAP & Duplicate File name Date analyzed
29) If possible, return this material to the respective graduated cylinders.
(AW-101 A 020200 Q 2-2-2000 03
Dur V R
50°C S B 0202 80 N D-P 1/2 P
C 020200 L
Dup I m
19 Swoon 2/2/2000

PR	Bredt
09/	24/99

Test Plan: BNFL-TP-29953-046 Page 17 of 54

30) Add the BNFL prescribed quantity of glass formers to each of the three graduated cylinders and stir for 1 hour. Use the space below to record the quantity of glass formers added and the time and date stirring started and stopped.

AW-101 EVAP A	Stir Start (time/date)	Stir Stop (time/date)	_

Glass Formers:

Source Chemical	Manufacturer	Lot#	Target wt%	Amount (g)	Actual Added (g)
- 34:5-12:55		plant and the second		4 1949 - 1948 (1	
	1		N. College and Col		
		\	2 1 22 20 10 10 10 10 10 10 10 10 10 10 10 10 10		
	Aur Land	1	4		
	1				
			1		
			+		
		Zamenda II			439 - 432
				1	
	1		smand**		46

Sec attachment 1RB 2/9/00

	P B Stir Start		1. Stir Stop (tir		
Source Chemical	Manufacturer	Lot#	Target wt%	Amount (g)	Actual Added (g)
	+	1 1		1 100 00	
	14.		178 11		<u> </u>
			- 1		
				180 - 180 -	
		Lagrand V	idea Bra		
	-		Barret .		
			Afforhaut		
		5-	ve 100		
		/	2101	26	
		1	()	A	4
			7		
		1 1 1 1 1 1 1 1 1 1		1 / 1 / 1 / 2	
					<u> </u>
AW-101 EVA		tir Start (time Glass Formers		Stop (time/date)_	
Source				Stop (time/date)_ Amount (g)	Actual Added
Source	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added
AW-101 EVA	(Glass Formers	5:		Actual Added
Source	(Glass Formers	5:		Actual Added

Jul ...

7
ממק
α
@ 3 - Sodium concentrations (6M Evap A 8M Evap B and 10

10M Evap C)	
8M Evap B, and	
ons (6M Evap A,	
Sodium concentrati	
9)	

	10 M	46 mL	Actual WI	10 M OL	1	15.35 W	40.67 10	72 07		11.88	Ser S	/·o·/		83.63	7 22	1	6.76		1.	2 6.43		Pay	-0	-
	Evap C	Start Vol = 146 mL	Target Wt Ac	10 M		13.277	40.635 식		0.319	11.880 //	(3 - 1)X	7.030 /	-	83.605 8.3	4.555 4	+	6.747 6,	10 160 1% 1	}					
Г		+				+	+										1							
2 studies	8M	= /3 mL	Actual Wt	8 M (B-2)		3.5>	16.32	5	7	4.79		2.83		25.41	1.87		7	4.06	1, 5,	0.00				
Evap B split for 2 studies	Evap B - 8M		-	8 M (B-1)	/I	7.72	16.3	1 7	7:1	4.10	,	18.6	711.40	25.43	1.85	, ,	8	4.17	177	00.00				
Eva	Ç	7	l arget Wt	Σ α	5 311		16.254	4.127		4.752		2.812	33 442	20.442	1.822	2 600	4.033	4.064	6.532	81.81				
	Evap A 6M Start Vol = 142 ml	Action 10th		<u>×</u>	7.74	72 25	42.10	6.07	107	9	= 7		16.11		4,64	75 6	2:11	5.96	9.55	0.00				
	Evap A Start Vol =	Tarnet W/	S M	20	7.748	22 743	20.1.02	6.022	6 033	0.935	7,00	4.102	48.789	+-	2.658	3.937	+	5.929	9.530	119.36				
		Pe	10M		90.94			70.68	81 37	10:10	18 15	70.13	572.64	6	31.20	46.21	3	69.59	111.85	√t		88	1	
	pee	Target (q) per liter of feed	8M		72.75	222 66		56.54	65 10	+	38 52	+	458.11	20.40	+	36.97		55.67	89.48	Total W		151/15	100/1	-
L	Melter F	t (q) per	7 6M	L	1 54.56	166 99	+-	42.41	48 82	-	28 89		343.58	10 72	-	27.73		41.75	67.11			date:		oale.
107 404	101-AA		-		7 41.74	4 127.8		9 32.44	37.35	-	22.1	+	262.8	14 25	+	21.21	-	31.94	51.34			Take I		
7077	ממבת ונו	Barcode	CMS#		176127	176094		179549	176095		179563		176091	161516		142046		179548	none		\bigcap	1		1
ormers to be 2			Grade	Raw Kvanite 325	Mesh	Technical Grade		Powder untreated, NYAN 325 Mesh	Red Iron Oxide, 325 Mesh (5001)		325 Mesh (#180)	Sil-co-Sil 75, 200	Mesh	Premium Grade, Airfloated		KADOX-920		Flour 325 Mesh	Granular Sugar				2	
Table 1. Glass Formers to be added to AW 464 Mail.			Additive		Kyanite (Al2SiO5)	(H3BO3)		(CaSiO3)		g2Si04	with some Fe2SiO4)	а	Sand (SiO2)	Rutile (TiO2)	1	ZnO)	and	4)	Sugar		•	prepared by:	reviewed by:	1

02/15/2000

Test Plan: BNFL-TP-29953-046 Page 19 of 54

31) Cap the graduated cylinders and record the mass and volume.

	ANY 101 PWAD A	AW-101 EVAP B - 1	ANY 101 EVAD C	
.0.	AW-101 EVAP A	AW-IUI EVAP B-1	AW-101 EVAP C	
1 fier	>575.9	5-51-4,407.9 q	675.69	1 .
Total	457.3 g	Total 432.8 g	Totalg &	- were betore
Permer Tare	172.0 g	Tare 231.9 g	Tare 269.5 g	1 glace formers
Addition Slurry	303.9 g	Slurry176.0 g	Slurry 406.1 g	143
Volum	ne 142 ml	Volume 7.3 ml	Volume 1.45 ml	3/20/00
(4) C	>191	98 ras	230	-/ -/

32) Mobilize the material in each of the graduated cylinders using a magnetic stir plate. After ~2 minutes, turn off the stir plate and record the time and date for each of the three samples.

AW-101 EVAP A	Time Of: 50 Am	Date 2-16-00
AW-101 EVAP B	Time 10:30	Date
AW-101 EVAP C	Time/0',00	Date

Test Plan: BNFL-TP-29953-046 Page 20 of 54

33) After turning off the stirrer, record the ambient temperature, volume of settled solids and liquids after 5 minutes, then every 10 minutes for the first hour, and then every half hour until the end of the work day. As well, record these volumes every 4 hours during the second and third day.

AW-101 EVAP A with glass formers at ambient temperature

Amnications 23.5°C

	Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)	
	5 min	2/16/00	09:50	186141	126191		
	15 min			141	187		
	25 min	17		191	185		
	35 min			191	182		
	45 min			191	180		
	55 min			191	179		
	l hour		`	191	178	from the second	
	1.5 hour			191	177		
	2 hour		1	191	176	· And	
	2.5 hour						
	3 hour			190	168		
	3.5 hour			190	165		
	4 hour	1 4	13:30	190	160		Replical Stopper
	4.5 hour			190	157		
	5 hour			190	150		
	5.5 hour	1		190	145		
	6 hour	'		190	140		
	6.5 hour			190	1:7	wenth	me
N21.	Thour	2/17/00	\$7:30	190	107		
	24 hour	1 4	10:00	190	105		
	28 hour	1	2 pm	140	105		
	-32 hour		4 pm	190	105		
46	48 hour	2/15/00	08:00	190	105		
	52 hour	1:1	12 p.L	190	105		
	56 hour	1 1	1600m	140	105		

6 dags 2/02/00 9 Am

169 105

Test Plan: BNFL-TP-29953-046 Page 21 of 54

Target	Date	time	Total	Solid	Liquid				
	 		(ml)	(ml)	(ml)				
5 min	2/16/00	10:30	98	98					
15 min	ļ		98	98	4 april 2 3 4 E				
25 min			98	99					
35 min			98	98				*	
45 min			985	98					
55 min			98.5	98					
l hour		•	78.6	97.5	E erter				
1.5 hour			98.5	97					
2 hour					Lord	Lini			
2.5 hour			99	96,5					
3 hour			99	96.5					
3.5 hour			99	96	42	- Reg	lucal	Stopper	her
4 hour			99	45.5	1260			12	
4.5 hour			99	95	194 E				
5 hour				94					
5.5 hour			1	94					
6 hour			94	72	Westho	ae sizk	\		
6.5 hour					F-35-6		,		
hour	2/11/00	\$7:30	99	72	134-21-				
24 hour	1 . 1	60:30	99	. 72		Transition in			
28 hour	V	2 pm	99	71.5				*	
32 hour		400	99	71.5		1			
48 hour	2/18/00	8 Am	99	71	Mark I	1			
52 hour	1	12.pm	99	71		1			
56 hour	11	1600	99	71		1			
6 dege	2/22/00	9 Am	98	71.5					

(of 24000

Test Plan: BNFL-TP-29953-046 Page 22 of 54

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)			
5 min	2/16/00	10:00	130	230	1-1-1			
15 min			230	230				
25 min			230	230				
35 min			230	230				
45 min		100		to a color of the color				
55 min								
l hour								
1.5 hour			1 1 1 1	1 1 1 1 1 1 1 1 1				
2 hour			230	225				
2.5 hour					Lunch f	`~a_		
3 hour			230	220				- T
3.5 hour			230	217			- :	20 +
4 hour		13:30	230	215			- Forgot,	So I but repl Stopper
4.5 hour			230	213				Stopper
5 hour				212	700 Feb.			
5.5 hour				212				
6 hour			V	211	100			
6.5 hour			324	200	Went how	ne 175		
Thour	2/17/00 (27:30	229	200				
24 hour	1000	@ 10 Am	229	200				
28 hour	1 4	200	228	198				
32 hour		400	278	197				
48 hour	4A100	8.4m	228	193				
52 hour		12 pm	227	191				
5 (L								

~ 6 days 422/00 9 Am 227 190

2/20/6/p

Test Plan: BNFL-TP-29953-046 Page 23 of 54

24) Place the graduated cylinders in an oven at 50°C for 1 day. Remove the samples and record the mass and volume. Stat 2/22/00 @ 9 Am rys

AW-101	EVAP A

AW-101 EVAP B - |

AW-101 EVAP C

Total	575.8 g	Total	407.7	g	Total _	675.3	_g
Tare	272.0 g		231.9	0.99	Tare	264.5	g - Seepa8
	303.8 g	Slurry _	175.8	g	Slurry	405.8	_g `O
Volume	191 ml	Volume_	97	ml	Volume	125	ml
							- C15

35) Mobilize the material in each of the graduated cylinders using a magnetic stir plate. After ~2 minutes, turn off the stir plate and record the time and date for each of the three samples.

AW-101 EVAP A	Time <u>0945</u>	Date 2-23-66
AW-101 EVAP B	Time 1005	Date 2-23.00
AW-101 EVAP C	Time 0950	Date 2-23-00

36) Return the graduated cylinders to the oven at 50°C.

* Small Ant of Sample is lost on the mixer rod & blade on each sample <. 5ml is
projected 1065.

\$ - Rubber Stoppers blewout in over on B & C SAmples

2/23/1/

17

Test Plan: BNFL-TP-29953-046 Page 24 of 54

37) After turning off the stirrer, record the volume of settled solids and liquids after 5 minutes, then every 10 minutes for the first hour, and then every half hour until the end of the work day. As well, record these volumes every 4 hours during the second and third day.

AW-101 EVAP A with glass formers at 50°C

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)	1000		
5 min	2/23/00	\$9:50	191	189				emule.
15 min		10:05	141	185			201:0	Line
25 min		10:20	191	180		(@ 10:15	183	
35 min		10:30	190	176		Park Harangel		
45 min		10:40	140	173		2.272 - Elsevier		
55 min		10:50	140	168				
1 hour		11:00	190	164		- s week dre		
1.5 hour		11:40	190	15%		The same of the same		
2 hour .				1 - 7 - 7		M (30% / 23)		
2.5 hour		12:45	190	1#5	40	=		
3 hour		1:15	191	140				
3.5 hour		1:30		130	S. Ostania			
4 hour		200	•	115		Company of the compan		
4.5 hour		2:30	1	105				
5 hour		3 pm	142	98				
5.5 hour	1 1 1 1	3:30	Mar.	95.5				
6 hour	V	4 pm	V	95		The state of the state of		
6.5 hour				1		home rys		
7 hour						- nome -ys		
24 hour	2/24/00	\$4:00	142	94				
28 hour	N.	13:08	192	94				
32 hour	2/25/00	04:00	191	94				
18 hour	2/25/00	13:00	198	94				
52 hour	1/23/110		170	17		+		
6 hour						-		

Iffer Wecker 2/240 10 Am 191 94

Just 2 4/00

Test Plan: BNFL-TP-29953-046 Page 25 of 54

Target	Date	time	Total	Solid	Liquid	
<i>5</i> :	11/		(ml)	(ml)	(ml)	
5 min	2/23/00		96.5	965		4
15 min	1-1	1 20	\ \	96.5		
25 min	 - 	30	9615	95		
35 min	1-1	40		94		
45 min		V 50	¥	93		
55 min		11:00	96.5	43		
1 hour		11:10		93	· + -1	4 3
1.5 hour		11:40	1	92.5		
2 hour					1000000	Kuch
2.5 hour		12:45	96.5	90.5		
3 hour		1:15		88		
3.5 hour		1:30		87		
4 hour		200		85	777	
4.5 hour		2:30	1	83.5		
5 hour		3 gm	96.5	82		
5.5 hour		3:30	1	81.5		
6 hour	1	4 pm	1	81.		1200+
6.5 hour						home 195
7 hour					er per de la	
24 hour	2/24/00	4 Am	96.5	64		
28 hour	1,7	1300	4	64		
32 hour		1600	Ý	64		\ \ \ /
48 hour	2/25/00	6900	96.5	64	>	No change
52 hour	2/25/00	1300	96.5	64		7 0 ~9341
56 hour	1,,					7 428

٠٠.

56 hour

Test Plan: BNFL-TP-29953-046 Page 26 of 54

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)	905) A	
5 min	423/00	0955	221	221			
5 min		10:10	222	222	15.02		
25 min		10:20		222	2-2-4		
35 min		1 30	221	221			
5 min		48	220	220	war for a large		
5 min		1 50	220	220			
hour		11:00	220	220	148		
.5 hour		11:40	218	215		. 2	
hour	1 0				1000	Lun	
5 hour		12:45	218	215			
hour		1:15					
.5 hour		1:30		1		Hand to tel	e if al
hour		2180	218	212		11-2	<u></u>
.5 hour		2:30		1			'X
hour		3 pm	218	210	Estimate		
.5 hour		3:30					
hour	1	402	1	1			
5 hour						west how	
hour							
4 hour	2/24/00	0900	220	161			
8 hour		1300	220	160			
2 hour	4	1600	220	160			
3 hour	2/25/00	9900	220	160			
2 hour	3/25/00		220	160			

After Weeken 2/28/00 159 220 10 Am

2/28/00

AW-101 EVAP 🕻

AW-101 EVAP Duplicate

Viscometer Bohlis CS

Geometry C-25-short

38) If not performed in the last 30 days, analyze one standard between 10 and 100 cP for shear stress as a function of shear rate at 25°C from 0 to approximately 1000 s⁻¹. Print out a copy of the rheogram and attach to this test plan.

Location 506

Viscosity 47.2	cP Lot Bariale	179430	Manufactur	er Brook Pid	2	
Viscosity 47.2 \$ 7.2 0 1 60 A File name 0 20 2 0 6 0 20 2 6 6 39) Remove the graduated cylin	A Date analyzed B-OK within limits	1 2/2/2000)	455,000	-2007 Eil 1	Names
39) Remove the graduated cylin	nders from the oven and	d allow to coo	ol overnight.	95.5cP st.	Ø20	SOCOP C
40) While stirring the samples cylinders and analyze for st 25°C and 50°C from 0 to a test plan.	on a magnetic stir plate hear stress as a function	n of shear rate	samples from e in duplicate.	each of the gradua Conduct the anal	ysis at	°C E
AW-101 EVAP A	File name Ø301 Ø Ø	Date anal	yzed 03-c1-	00 73		
AW-101 EVAP A Duplicate	File name 6301 65	E - Sub Kiş E Date anal	yzed			
AW-101 EVAP B	File name	Date anal	y'zed	1112		
AW-101 EVAP B Duplicate	File name / /-	Date anal	vzed			

エ Date analyzed_コ, k

L Date analyzed

41) If possible, return this material to the respective graduated cylinders.

File name

File name

Will Reman 3-2-00 3

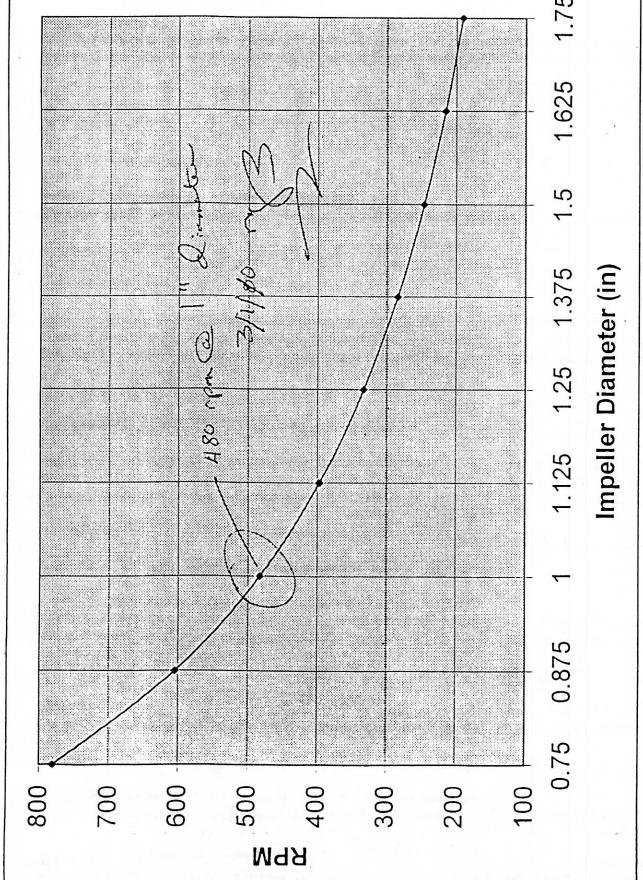
42) Assemble a mixing vessel using the following parts or equivalent. Attach impeller to a stirring motor capable of maintaining a constant rotational rate from 100-1400 rpm.

Part	Vendor	Catalog number
500 ml O-ring Sealed Kettle, 3.75 inch OD, 5 3/8 inch flange	Labglass	LG-8071-100
Clamp	Labglass	LG-7316-106
O-ring	Labglass	LG-1022-476
Kettle top with three 24/40 necks	Labglass	LG-8072-100
2 3/8 diameter 4 blade impeller	Fisher Scientific	14-505-20G

Modified this design due to sample volume on Split only being 73mc (see Adjacet sketch.) rays 2/11/60 for modified mixing Vessel drawing.

OB-01-8/2

Viscosity 477	S Location 506	Geometry C-25-short
Viscosity 11.2	CP Lot Bariate 179430	Geometry C-25-short Manufacturer Brook field Expres 2-1-2001 200 95.5cPstd File A
File name 0202 04 A	Date analyzed 3/2/2	Expre 2-1-2001
0707666	- DK within limits	200
0 202pp B	Icaally -	95.5cPstd File M
9) Remove the graduated cylinder	ers from the oven and allow to c	cool overnight. Ø 2 Ø
o) While stirring the samples on	a magnetic stir plate remove su	msamples from each of the graduated
25°C and 50°C from 0 to ann	ar stress as a function of shear r	rate in duplicate. Conduct the analysis at
test plan.	oroximately 1000 s. Print out a	a copy of the rheograms and attach to this
tost pian.	50°C 0.	
	File name 630260 L Date an	
W-101 EVAP A Duplicate I	File name M Date an	nalyzed_0302@1:50 Rerm.
	File name 330200 J Date an	16
W 101 EWADD D II . T	File name \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	and the same
W-101 EVAP B Duplicate 1		Harry Zed 15:13 Keran Edap C@
W-101 EVAP & Duplicate F	File name 03-\$266 H Date an	12!15 Rem En C@ 12!15 Rem En C@ 13!15 Rem En C@
W-101 EVAP & Duplicate F W-101 EVAP & Duplicate F	File name 03-4266 H Date an	alyzed 3-2-64 1135 9392 pg D alalyzed 1135 9302 pg E *
W-101 EVAP © Duplicate F	File name <u>03 4266 H</u> Date an	alyzed 11:45 0302 pg D 4 alyzed 11:45 0302 pp E *
W-101 EVAP © Duplicate F	File name <u>03 4266 H</u> Date an	alyzed 11:45 0302 pg D 4 alyzed 11:45 0302 pp E *
W-101 EVAP Duplicate F V 101 EVAP Duplicate F O If possible, return this materia	File name <u>03 \$ 266 H</u> Date an File name <u>03 \$ 266 T</u> Date an all to the respective graduated cyl	halyzed $3-2-66$ 11135 9392 96 9 Halyzed 1135 9392 96 1135
W-101 EVAP Duplicate F W-101 EVAP Duplicate F) If possible, return this materia) Assemble a mixing vessel using	File name 03.4266 H Date an File name 03.4266 I Date an all to the respective graduated cyling the following parts or equival	lalyzed 3-2-66 11135 93 92 P&D Halyzed 11:45 03 02 8 p E * Hinders. Gda Hent. Attach impeller to a stirring motor
W-101 EVAP Duplicate F W-101 EVAP Duplicate F Output Output Discrepancy Output Discrepancy Assemble a mixing vessel using	File name <u>03 \$ 266 H</u> Date an File name <u>03 \$ 266 T</u> Date an all to the respective graduated cyl	lalyzed 3-2-66 11135 93 92 P&D Halyzed 11:45 03 02 8 p E * Hinders. Gda Hent. Attach impeller to a stirring motor
W-101 EVAP Duplicate F W-101 EVAP Duplicate F) If possible, return this materia) Assemble a mixing vessel usir capable of maintaining a const	File name 03.4266 H Date an File name 03.4266 I Date an all to the respective graduated cyling the following parts or equival tant rotational rate from 100-14	lalyzed 3-2-66 11135 93 92 P&D Halyzed 11:45 03 02 & E + 6 Hinders. G decent. Attach impeller to a stirring motor 00 rpm.
W-101 EVAP Duplicate F W-101 EVAP Duplicate F O If possible, return this material Assemble a mixing vessel using capable of maintaining a constitute.	File name 03.4266 H Date an File name 03.4266 T Date and I to the respective graduated cyling the following parts or equival tant rotational rate from 100-14	lalyzed 3-2-66 11135 93 92 P&D alyzed 11:45 03 02 8 p E + 6 linders. lent. Attach impeller to a stirring motor 00 rpm. Catalog number
W-101 EVAP Duplicate F W-101 EVAP Duplicate F) If possible, return this materia) Assemble a mixing vessel using capable of maintaining a constant ort ort ort ort ort ort ort o	File name 03.4266 H Date an File name 03.4266 I Date an all to the respective graduated cyling the following parts or equival tant rotational rate from 100-14	lalyzed 3-2-66 11135 93 92 P&D Halyzed 11:45 03 02 & E + 6 Hinders. G decent. Attach impeller to a stirring motor 00 rpm.
W-101 EVAP Duplicate F W-101 EVAP Duplicate F) If possible, return this materia) Assemble a mixing vessel usir capable of maintaining a construct ort ort ort ort ort ort ort o	File name 03.4266 H Date an File name 03.4266 I Date an all to the respective graduated cyling the following parts or equival tant rotational rate from 100-14. Vendor Labglass	lalyzed 3-2-66 11135 93 92 P&D salyzed 11:45 03 02 & E + 66 linders.
W-101 EVAP Duplicate F W-101 EVAP Duplicate F O If possible, return this material Assemble a mixing vessel using capable of maintaining a constitute O ml O-ring Sealed Kettle, 3.75 h OD, 5 3/8 inch flange	File name 03.4266 H Date an File name 03.4266 T Date and I to the respective graduated cyling the following parts or equival tant rotational rate from 100-14	lalyzed 3-2-60 11135 93 92 PØD lalyzed 11:45 03 02 ØØE * linders. G de lent. Attach impeller to a stirring motor 00 rpm. Catalog number LG-8071-100 LG-7316-106
V-101 EVAP Duplicate F V-101 EVAP Duplicate F O If possible, return this material O Assemble a mixing vessel using capable of maintaining a constitution of the control of	File name 03.4266 H Date and File name 03.4266 L Date and I to the respective graduated cyling the following parts or equival tant rotational rate from 100-14. Vendor Labglass Labglass	Inders. Catalog number LG-7316-106 LG-1022-476
W-101 EVAP Duplicate F W-101 EVAP Duplicate F) If possible, return this materia) Assemble a mixing vessel using	File name 03/266 H Date and File name 03/266 T Date and I to the respective graduated cyling the following parts or equivalent rotational rate from 100-14 Vendor Labglass Labglass Labglass	lalyzed 3-2-60 11135 93 92 PØD lalyzed 11:45 03 02 ØØE * linders. G de lent. Attach impeller to a stirring motor 00 rpm. Catalog number LG-8071-100 LG-7316-106
W-101 EVAP Duplicate F W-101 EVAP Duplicate F) If possible, return this materia) Assemble a mixing vessel using	File name 03.4266 H Date an File name 03.4266 I Date an all to the respective graduated cyling the following parts or equival	lalyzed 3-2-66 1135 0302 p
/-101 EVAP Duplicate F /-101 EVAP Duplicate F If possible, return this materia Assemble a mixing vessel usin capable of maintaining a constitution of the constitution	File name 03.4266 H Date and File name 03.4266 L Date and I to the respective graduated cyling the following parts or equival tant rotational rate from 100-14. Vendor Labglass Labglass	lalyzed 3-2-66 11135 93 92 P&D salyzed 11:45 03 02 & E + 66 linders.
V-101 EVAP Duplicate F V-101 EVAP Duplicate F If possible, return this materia Assemble a mixing vessel usir capable of maintaining a const t ml O-ring Sealed Kettle, 3.75 n OD, 5 3/8 inch flange mp ing	File name 03.4266 H Date and File name 03.4266 L Date and I to the respective graduated cyling the following parts or equival tant rotational rate from 100-14. Vendor Labglass Labglass	lalyzed 3-2-60 11135 93 92 PØD lalyzed 11:45 03 02 ØØE * linders. G de lent. Attach impeller to a stirring motor 00 rpm. Catalog number LG-8071-100 LG-7316-106
V-101 EVAP Duplicate F V-101 EVAP Duplicate F If possible, return this materia Assemble a mixing vessel usir capable of maintaining a const t ml O-ring Sealed Kettle, 3.75 n OD, 5 3/8 inch flange mp ing	File name 03/266 H Date and File name 03/266 T Date and I to the respective graduated cyling the following parts or equivalent rotational rate from 100-14 Vendor Labglass Labglass Labglass	Inders. Catalog number LG-7316-106 LG-1022-476
V-101 EVAP Duplicate F V-101 EVAP Duplicate F If possible, return this materia Assemble a mixing vessel usir capable of maintaining a const t ml O-ring Sealed Kettle, 3.75 n OD, 5 3/8 inch flange mp ing tle top with three 24/40 necks	File name 03/266 H Date and File name 03/266 T Date and I to the respective graduated cyling the following parts or equivalent rotational rate from 100-14 Vendor Labglass Labglass Labglass	Inders. Catalog number LG-7316-106 LG-1022-476
V-101 EVAP Duplicate F V-101 EVAP Duplicate F If possible, return this material Assemble a mixing vessel usin capable of maintaining a const t In MI O-ring Sealed Kettle, 3.75 in OD, 5 3/8 inch flange ing	File name 03/266 H Date and File name 03/266 T Date and I to the respective graduated cyling the following parts or equivalent rotational rate from 100-14 Vendor Labglass Labglass Labglass	Inders. Catalog number LG-7316-106 LG-1022-476
V-101 EVAP Duplicate F V-101 EVAP Duplicate F If possible, return this materia Assemble a mixing vessel usir capable of maintaining a const t ml O-ring Sealed Kettle, 3.75 n OD, 5 3/8 inch flange mp ing tle top with three 24/40 necks	File name 03 \$266 H Date and File name 03 \$266 L Date and It to the respective graduated cyling the following parts or equival tant rotational rate from 100-14 Vendor Labglass Labglass Labglass Labglass	Catalog number LG-7316-106 LG-8072-100


increased on dup run, here Gwar done and it too increased in viscosity. Everyonation

in cell is suspected. Mys 3/2/00

PR Bredt in actual operating consistions Test Plan: BNFL-TP-29953-046 09/24/99 (sec Attackel graph) 3/1/86 Page 28 of 54
43) Transfer the sample specified by BNFL to the mixing vessel (do not transfer the stir bar). Record which sample was transferred as well as the day and time transferred below.
Sample transferred Evap B-2 Date 3/1/80 Time Q. 9 Am
44) Turn on the stirrer and adjust the rotational speed to that specified by BNFL. Record the time, date and speed below. See Attachel commit res
Speed rpm Date 3/1/56 Time @ 9:05 L. 45) After 1 hour of stirring, remove a sample through the sampling port and immediately analyze for shear stress as a function of shear rate in duplicate. Conduct the analysis at 25°C from 0 to approximately 1000 s ⁻¹ . Print out a copy of the rheograms and attach to this test plan.
Run 1 File name 030100 A Date analyzed 3-1-00 @,04-
Run 2 File name B Date analyzed 3-1-00 @ 10:30 - higher stress (filed) rgs 3-1-00 @ 10:45 46) After 1 day of stirring, remove a sample through the sampling port and immediately analyze for shear stress as a function of shear rate in duplicate. Conduct the analysis at 25°C from 0 to approximately 1000 s ⁻¹ . Print out a copy of the rheograms and attach to this test plan. Particle Sample 3-2-00 @ 9 min
Run 1 File name 03 \$2 \$6 A Date analyzed 0303.00 @ 9:45 Am. (Set up to 130 \$ - different faight from (set @ 500 \$ - OK run)) Run 2 File name 0303. \$6 B Date analyzed
47) After 1 week of stirring, remove a sample through the sampling port and immediately analyze for shear rate in duplicate. Conduct the analysis at 25°C from 0 to approximately
1000 s ⁻¹ . Print out a copy of the rheograms and attach to this test plan. Pull simple 3/8/00 Run 1 File name 03 68 00 A Date analyzed 3/8/to 145 © 8:30 Am
Run 2 File name 03 \$ 00 B Date analyzed
030800 C 48) After removing the last sample (after 1 week of stirring), transfer the sample back to the graduated cylinder. Record sample ID, volume and mass of material.
AW-101 EVAP B-2 3-8-00 @ 8:44 Am
Total 296.6 g Total 91.5 ml Switchel to 12 hr Rec mode Tare 140.2 g Solids 91.5 ml Q 9 Am since separation Slurry g Liquids 8 ml Appended really \$1000
49) Focus a video camera on the solids-liquid interface of the sample and collect video for one week taking care not to disturb the sample. Report any observed gas retention and/or release behavior to the cognizant scientist.
As not enough Sample at this point.

Sel.

Prepared by Staff Member 3/1/00

66/02/E 788 , 0/ N coix 58.1 = N

Test Plan: BNFL-TP-29953-046 Page 29 of 54

50) After the sample has remained undisturbed for 1 week, remove the standing liquid using a glass pipette.

51) Gently collect a subsample of the settled solids and immediately analyze for shear stress as a function copy of the rheograms and attach to this test plan. of shear rate in duplicate. Conduct the analysis at 25°C from 0 to approximately 1000 s⁻¹. Print out a solids analyzed in HLRF using Ms head with 5v1 Date analyzed_3/15/00 Run 1 File name 03/500C sensor. 2 types of settled solids identified i) loody settle 2) + ightly settled. Both Date analyzed 3/15/00 3/15/00 Run 2 File name 03/500F 95.5 c P Brookfield 16 + 111199 rm 3/15/00 types analyzed supported. Stondard Fik 031500A 5ee 030800 D, } for 95,5 cp Viscosity QC Part 3/9/00 -75 TAPE # 2 Lubrell - AW-101 Jettling Study in 48 hr much more forgot to Change out on Friday 8/10/2000 However Mankey @ 8 Am - Rec was Still operating and a 1/3 tape remained. No sign of gas evolution was Noticed over Any time AW-101 B-2 After I week AW-101 B-2 Ag more Total Vol 91.5 r Finder 72.3g 301iac 48.5 Fral wt 207.9 Aguerre 43.0 ~ Tare

19 3/15/00

Tast 5+ 9 53

PRB 2/25100

TUI PE	ed composition: not :	Sullate remova	II (ICIX effi	uent)				
7 444	Tc Effluent/vi				Tc Effluent/vi			
	t feed	-			t feed			
	average				average	NAME OF THE	AREA TO	
					ug/mL	1254,4 22.1		
	ug/mL							
Al	2378		* 11	TOC	13,600			
Ba				TIC	7940		4	
Ca	163			Br	< 500			
Cd	26.9			CI	< 500			
Co	2.1			F	3492			
Cr	44.3			NO2	28392			
Cu	11.7			NO3	112500			
Fe	8.5			oxalate	1375			1
K	715			P04	1400			
La				504	4008			
Mg				ОН		estimated		
Mn	1.4				1			
Мо	16.4		_					+
Na	111124			Notes: 1) F	content is pr	obably due	to organic	3
Ni	214.5		——— i	nterference).			-
Pb	58.7			14				
Si	31.5							
Sn								
Ti								
U					18	2		
Zn	8.0							+
								
В	17.4							+
Р	303							+
Nd								-
Sr	135							
W	76							
Y								

[NZ= 1.11×105 NJ/A - 10-6 mg . 1M.L 23g . 1000A = 47 4.83 M

AN-107

52) Record the current sodium concentration	of the pretreated AN-107 feed.
---	--------------------------------

[Na]= 4.83 M (C1) Data Source Dean Kurath TcIx report see previous	
53) Record the [Na] targets provided by BNFL.	5
Target [Na] = 6 M (C2a) 1. 2422	່ວວ
Target [Na]= 8 M (C2b) 1.6563	
Target [Na]= 10 M (C2c) 1,070	
Can'tdo.	
54) 200 ml of each evaporated slurry are required for this testing. Use the formula below to calculate the volume of pretreated slurry (V1) required to achieve 200 ml of evaporated slurry.	
$V_{10} = (C_{10} + C_{10} + $	
90 Hade 111, 8 = 1/24/00 chica B	
90 .100ml VIa= 6 M/4.83 in X+00 = 111.8 +24.2 mm PR 129/00	(
180 m L VIb= 0/4.83 × 180 = 298.1 ml VI 1040 decree	30-
90 too me Vic= 10/4.83 x . too = 207.0 ml	
Tene = 629.3mL 596.2mL cg 5 2/29/00 55) Weight three 500 ml glass graduated cylinders labeled AN-107 EVAP A, AN-107 EVAP B, and AN- 107 EVAP C (Fisher cat #08-566-11F or equivalent).	
AN-107 EVAP A AN-107 EVAP B AN-107 EVAP C	
Tare 234.0 g Tare 239.8 g Tare 230.8 g With Rubber	
Stoppen is 56) Measure the distance between the highest and lowest graduation on the graduated cylinders using a place ruler. 250mc Grad Cylinder	ك
High 250 ml	
Low(
Distance 23.3 cm	
AN-107 EVAP A AN-107 EVAP B AN-107 EVAP C	
Distancecm Distancecm Distancecm	
All cylinders are the same PRB 3/30/00	L

57) Place approximately Vla ml of pretreated AN-107 feed into graduated cylinder AN-107 EVAP A. Record the mass and volume, and then return this material to the primary AN-107 feed container.

AN-107 EVAP A

Total	1039.2	g
Tare	421.2	g
Slurry	618.0	g
Volume	500,0	ml

58) Calculate the Density of the AN-107 feed.

Density= 1.236 g/ml See e-mail from B. RAPKE references

Density= 1.236 g/ml See e-mail from B. RAPKE references

Density= 2/19/00

59) Using this density, calculate the mass of material required for samples A, B, and C.

Mla= Vla x Density
$$24260$$
 28.2 24260 38.2 24260 38.2 24260 38.2 24260 38.2 24260 38.2 24260 38.2 38

60) Weigh three 250 ml glass jars.

61) Transfer the required mass calculated above (Mla, Mlb, and Mlc) into each of the 250 ml jars (Mla in AN-107 EVAP 1, Mlb in AN-107 EVAP 2, and Mlc in AN-107 EVAP 3).

	AN-107 EVAP 1		AN-107 EV	AP 2		AN-107 EVA	P 3
Total	244.21	g Tota	1 490.52	g	Total	335,38	_g
Tare	106.01	g Tare	121.91	g	Tare	105.02	_g
Slurry	138.20	g Slur	ry 368.61	g	Slurry	230.36	_g

62) Calculate the target mass for each sample assuming all mass loss is the result of water evaporation.

Targetla=Mla-(Vla-200)

Targetla=
$$138.2 - (111.8 \text{ mc} - 90 \text{ mc}) = 116.4 \text{ g} + 106.01 = 222.41 \text{ g}$$

Targetlb= $368.5 - (298.1 - 180) = 250.4 \text{ g} + 121.41 = 372.31 \text{ g}$

Targetlc= $230.3 - (1863 - 90) = 134 \text{ g} + 105.02 = 239.02 \text{ g}$

H29/00 12 were

Swoboda, Robert G

From:

Bredt, Paul R

Sent:

Tuesday, February 29, 2000 7:47 AM

To: Subject: Swoboda, Robert G FW: composition

Thanks,

Paul

Paul R Bredt, Ph.D. Senior Research Scientist II Radiochemical Processing Group Pacific Northwest National Laboratory

Battelle Blvd., PO Box 999 Richland, WA 99352 paul bredt@pnl.gov

(509) 376-3777

----Original Message-----From: Rapko, Brian M

Thursday, February 24, 2000 10:56 AM Sent: Bredt, Paul R; Swoboda, Robert G To:

FW: composition Subject:

From this spreadsheet Dean sent me the recorded density of the feed is 1.2244 g/mL. - Brian

From:

Kurath, Dean E

Sent:

Tuesday, January 11, 2000 11:19 AM

To: Subject:

Rapko, Brian M composition

Brian, See the attached spreadsheet. Use the composition given for the Tc effluent/SO4 feed. Since we removed no Tc during Tc IX the composition should be ok.

As for the amount. The remaining feed is less than 1033 g (840 mL).

eed.effluent.composi on.AN-1...

Dean Kurath Staff Engineer MSIN: P7-28

Chemical Separations and Slurry Processing Group

Pacific Northwest National Laboratory

Richland WA, 99352

email: dean.kurath@pnl.gov phone:(509)376-6752 fax: (509)376-7127

Att 725 pl-2 40 725 pl-2 40 299 53 p58 54 p58 8 pp 414100

PR Bredt 09/24/99 Start Wt

244:21

490.52

Test Plan: BNFL-TP-29953-046

Page 32 of 54

335.38

63) Place glass jars labeled AN-107 EVAP 1, AN-107 EVAP 2, and AN-107 EVAP 3 in a vacuum oven at 50°C (±5°C) and adjust the vacuum to an indicated pressure of 40-80 torr (this need not be done with a calibrated vacuum gauge).

64) Monitor the mass of each sample on a regular basis to assess the rate of evaporation.

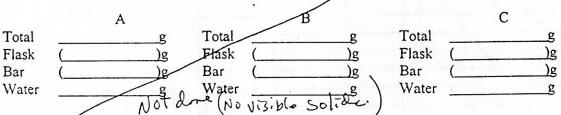
64) Mo TARGET Grass	nitor the mass of each sa ルルけ・ユユユ・4)	ample or	n a regular basis to asse ろフュ・31	ss the rate	of evaporation.
	AN-107 EVAP 1 (A)		AN-107 EVAP 2 (B)	AN-107 EVAP 3 (C)
Date	3-1-00 @8Am	Date		Date	
Mass	236.0	Mass	439.5	Mass	311.4
Date	3-11-0003gn	Date -		Date	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mass	231.2	Mass	419.3	Mass	301.4
Date	3-2-00@8A-	Date		Date	
Mass	220.1 Power	Mass	402	Mass	255.6
Date	3-3-00 Qx:30	Date		Date	
Mass	220.1	Mass	365.3 Done	Mass	244.1
Date Date	3/1/2000	Date	3-7-88	Date	
Mass	2226	Mass	372.7	Mass	
Date		Date		Date	3/9-00
Mass		Mass		Mass	238.9
Date		Date		Date	
Mass		Mass		Mass	
Date		Date		Date	
Mass		Mass		Mass	
Date		Date	- Substitution of the subs	Date	
Mass	The second secon	Mass		Mass	

65) When the mass of each of the slurries reaches the targets calculated above, remove them from the vacuum and cap the sample. Record the mass.

	AN-107 EVAP 1	AN-107 EVAP 2		AN-107 EVAP 3
Total	222.6 g	Total 372.1 g Tare 121.9 g Slurry 250 8 g	Total	238.9 g
Tare	106.01 g		Tare	105.0 g
Slurry	116.6 g		Slurry	133.9 g

3/8/66

PRB 120/00


68) Pre weigh 3 10 ml volumetric flasks.

A

to graduated cylinder AN-	N-107 EVAP 1 to graduated cylindrical EVAP B, and AN-107 EVA	AP 3 into graduated cylinder A	N-107 EVAP
C. Record the mass and v	olume of material in each of the	graduated cylinders.	AN107
AN-107 EVAP A	AN-107 EVAP B - /	AN-107 EVAP C	EUAPB-2
Total 350.1 g	Total 362.3 g	Total 363.7 g	365.4 9
Tare 234.6 g	Tare 239.8 g	Tare 230, 8 g	239.7
Slurry 116./ g	Slurry 1225 g	Slurry 132.9 g	125.7
Volume 90.5 ml	Volume 90.0 ml	Volume 92.5 ml	91.5 m
D: 1.283 3/L	P=1.361 3/ml	P= 1.437 JAN	p=1.374,
67) Preweigh 3 teflon coated n	nagnetic stir bars.	principal and the second secon	, ,,,
	P evaps 1.3	68	
A	/ В	C 5 4	ee page 8
	g	g	

69) Place one stir bar in each of the volumetric flasks and fill to the mark with DI water. Record the mass of the volumetric flasks. Calculate the volume of the stir bars by the displacement of water.

В

70) Place Stir bar A in AN-107 EVAP A, stir bar B in AN-107 EVAP B, and stir bar C in AN-107 EVAP C.

71) Mobilize the material in each of the graduated cylinders using a magnetic stir plate. After ~2 minutes, turn off the stir plate and record the time and date for each of the three samples.

AN-107 EVAP A	Time	Not New Date - No solide
AN-107 EVAP B	Time	Date
AN-107 EVAP C	Time	Date

Test Plan: BNFL-TP-29953-046 Page 34 of 54

72) After turning off the stirrer, record the ambient temperature volume of settled solids and liquids after 5 minutes, then every 10 minutes for the first hour, and then every half hour until the end of the work day. As well, record these volumes every 4 hours during the second and third day.

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)
5 min			()	1	()
15 min					1
25 min					1/
35 min					/
45 min	1				/
55 min				1	
l hour		a.e.		/	
1.5 hour				1/	
2 hour				/	
2.5 hour				/	1 1569.9
3 hour					
3.5 hour					
4 hour	1 21 -				2.2
4.5 hour			1/		
5 hour		BC NEW/ P	1	tiab casult	3 Pr. H201001 51
5.5 hour	188, 10 an a	1			R PERFECTION
6 hour					
6.5 hour					
7 hour		/			
24 hour					
28 hour	/		12 74		1 1
32 hour					1
48 hour					13/1
52 hour					1
56 hour	Y		1-	15	

20

بر. ماه

Test Plan: BNFL-TP-29953-046 Page 35 of 54

5 min		time	Total (ml)	Solid (ml)	Liquid (ml)
- 11tm					
15 min					
25 min					
35 min					
45 min					
55 min					
l hour					/
1.5 hour					1
2 hour				/	
2.5 hour					
3 hour				1/.	
3.5 hour				1/	
4 hour				/	7
4.5 hour			1 /		
5 hour					no di
5.5 hour					
6 hour			1/		
6.5 hour			7		
7 hour		/			
24 hour					
28 hour		1 /			
32 hour					
48 hour					
52 hour		Y		1	
56 hour	/			[7] 00 (

Did not All stir bon many soluter

Test Plan: BNFL-TP-29953-046

Page 36 of 54

AN-107 EVAP C without glass formers at ambient temperature

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)	from 0-10ml on 250ml Grad.
5 min	8/4:/00	7:30	92.5	ruinc		1
15 min					, , , , , , , , , , , , , , , , , , , ,	9,000 0 = 1000 2
25 min						250ml Grad.
35 min						743
45 min					-	
55 min						
l hour	8/1/00	8:30	92.5	< Imc		
1.5 hour						
2 hour						
2.5 hour						
3 hour						
3.5 hour						
4 hour						
4.5 hour						
5 hour						
5.5 hour						
6 hour						
6.5 hour						
7 hour	8/9/00	4 pm	92.5	KINL		
24 hour					-	
28 hour						~ G
32 hour						
48 hour						
52 hour			7			
56 hour	18/13/00	8 Am	92.5	< (mL		

8/13/00

			After	310 (64)							
/	PR Bred 09/24/9	dt 9	Renove	d Sub	- Aliquet	ie for	Viscos.	Test Pla	ın: BNFL-	TP-29953 Page 37	-046 of 54
	73) Place	volume	duated cylind	lers in an o	oven at 50°C	for 1 day	Remov	e the sampl	les and rec	ord the ma	nss
	1200		EVAP A		AN-107 EV	APB-	1	AN-107	EVAP C		
		$\frac{\frac{2}{10}}{8}$ bilize the	36.1 g 34.0 g 2.1 g 11 c ml 263/4 material in eatir plate and a	ecord the	e <u> 110 </u>	g g ml y/~ linders us	sing a mag	y 117. me 8 7 = 1.38 gnetic stir p	g g g m glate. Afte		Defocation topt wed tes,
		AN-107	EVAP A	Date Time_	3/23/0	0_	Time Date_				
	/	AN-107	EVAP B	Time _			Date	<u> </u>		Prior.	to medizing
/		AN-107	EVAP C	Thene_	\downarrow		Date_	Ψ		This s	to mabilizing muple hal ble floculant much me 025'C
\	75) Reti	ım the gr	aduated cylir	ders to the	e oven at 50°	C.				+	h-@25°C
	\	M)	Solide A or	B 5 3/1/	And y >	A: +	per his 1	Pauli of		Q di test.	Ľ
7	Y										Reserved
	Be	Pore o	vera M	leasur	ements						for stir
		3 1 1	A			<u>B</u>	-1		<u> </u>		B-2
		ul	3.37.4	1		35	0.5		348	, O	336.4
	Ta		234.	0		239	8.5		230.		239.7
	51	urry	103.	1		101	.7		117.	2	116.7
)): I ame	81.0			82.o			84.	0	86.5 KB
										4	14100

Test Plan: BNFL-TP-29953-046 Page 38 of 54

76) After turning off the stirrer, record the volume of settled solids and liquids after 5 minutes, then every 10 minutes for the first hour, and then every half hour until the end of the work day. As well, record these volumes every 4 hours during the second and third day.

Target	Date	time	Total	Solid	Liquid
			(ml)	(ml)	(ml)
5 min	3/23/00	9 Am	81.0	Ø	181
15 min				7	/
25 min		3.7		and help	
35 min					1/
45 min					X
55 min				/	
l hour					
1.5 hour					
2 hour				1/	
2.5 hour				7	4
3 hour			/		
3.5 hour					The Other
4 hour					
4.5 hour				3.5	
5 hour			1		
5.5 hour			X		
6 hour		7			1
6.5 hour					
7 hour					A
24 hour			4	CUAP	7
28 hour		/		K	***
32 hour			سر		
48 hour	./		0.7		1/
52 hour	7	1	1	//	/
56 hour		50	1		
/	N	b		3/1/1/	(9)

EVAP B-1

Test Plan: BNFL-TP-29953-046 Page 39 of 54

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)	
5 min	3/23/00	9 AM	83		83	
15 min	18					
25 min						
35 min						
45 min						
55 min						
l hour						
1.5 hour						
2 hour	- 401 1			1/		
2.5 hour				X		Man I
3 hour			/			
3.5 hour						
4 hour						
4.5 hour						
5 hour		- 46	/			
5.5 hour		/			61	AN 1,100 11/
6 hour					12	3/1/00 11>
6.5 hour					1.17	7 / 1
7 hour				1	KY .	
24 hour				1		REAL STREET
28 hour		/			n Piele In	
32 hour			,	A .		
48 hour			Ide			
52 hour		1				
56 hour	//	5	Ò.			

Test Plan: BNFL-TP-29953-046

Page 40 of 54

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)	idusC Servici
5 min	3/23/00	9:15	25.0		85	In 40 g of Floculeut material win
15 min						of floculent material was
25 min						mr. 22
35 min						Mr.a.
45 min		7-90	4.1			The state of the s
55 min					E CONTRACT	
l hour	•					
1.5 hour				No.		
2 hour	3/23/10	11:00	84		84	Tippel sideways and it Lockel !
2.5 hour		11145	84		80	
3 hour .		12:00	84		79	~ 75% solies - Tock pictur
3.5 hour		1 pm	10		75	\$ storred with glave red &
4 hour		2:30pm	1		64	Picture again ngs 3/23/
4.5 hour		4 pm	1		61	rgs 3/23/
5 hour		100			1.61	7
5.5 hour	51 TE	1 1 100				
6 hour			1			North Control of the
6.5 hour			TO THE STATE OF	/	1 8 2 3 1 1 1	
7 hour				1		The state of the s
24 hour	3/24/00	8 Am	84	/	56	
28 hour						
32 hour					1	
48 hour						
52 hour						
	3/27/00	8 Am	84		56	solids settled + 75°C

Decidal to dilute 10M

EVAP C to 5m by doubling

Volume from 84mL > 168mL See pg 44 rg3 8/2/00

a separate has sheet & transferred to this sheet 8/2/00 mgs

77)	If not performed in the last 30 days, analyze one standard between 10 and 100 cP for shear stress as a
	function of shear rate at 25°C from 0 to approximately 1000 s ⁻¹ . Print out a copy of the rheogram and
	attach to this test plan.

Viscometer Bohlin CS		Geometry C-25 Sh.1
Viscosity 95.5 cP	Lot 111195	Manufacturer Prinkfield
File name 030800 0	Date analyzed 3/6/00	
A = 1100	these verify with 300	Legg

78) Remove the graduated cylinders from the oven and allow to cool overnight.

	cylinders and analyze for s	on a magnetic stir plate remove subsamples from each of the graduated hear stress as a function of shear rate in duplicate. Conduct the analysis at approximately 1000 s ⁻¹ . Print out a copy of the rheograms and attach to this
	test plan.	@ 25°C Sout \$ 125
7 (Jun)	AN-107 EVAP A	File name 03/6 00 B Date analyzed 03-16-00 @ 18 Am
50 10	AN-107 EVAP A Duplicate	File name 0316 00 C Date analyzed Absorber street and - The best one (+15)
*	AN-107 EVAP B	File name 031600 E Date analyzed 03-16-00 @ 10:45
	AN-107 EVAP B Duplicate	File name 0316 00 F Date analyzed fulled mercian
	AN-107 EVAP	File name 0316 00 G Date analyzed 03-16-00 (w 11:15
	AN-107 EVAP Duplicate	File name 0316 00 H Date analyzed V 11:35 / ver
	(9)	rial to the respective graduated cylinders. Fruits (eq. 1)
	AN-107 E VP A	File is N311-KXM a 211 XX & Gernext
	1 A Dup	031600 N.
	AN-107 EVAP B	03/600 K = stras executed on down swing@360
	1 B Dup	031666 L = 0.0 Thesame 195 @ 3605
	AN-107 Evap C #	031600 I- 3-16. EXQ 11:50
	& C Dup	V 0316 00 J
	# - Sample died w Sample in cup w	hile boosting temp to 50°C, therefore & changed out all ith fresh sample, I had everyl 3/16/00 rays

200	Battelle	
	Pacific Northwest Laboratories	

Pacific Northwest Laboratories	ENGINE	ERING WORKSHEET	
Prepared By:	Date: 3/21/00	Project: Rat E) - 0 1/2	- A i
Ti abject:	72/00	Project: BNFL - AN10	1 herrogy
5 20 880 N N N N N N N	CONTRACTOR OF THE		
	Service and the service		Actual months of the second
AN-10-	7 EVAP B	Rerun Viscosity	@ 25°C \$ 50°C
25°C	File NAME	Start Date / tra	- 3/21/00@10Am
Visent)	03-21 ØB A	- overstread on r	eture C ~ cocs
~ 13	032100B	- OK Ru	
~18	(C	Juit ARRIVE a little of Stress exceeds ont	return @ a 3 50 s -
, 22	D	- Dempel simple The	it shit out, build
	Jan de maria	Over Stresed Ag	
V ~15cp	L E	- changel out most	of BAmple & clemed
Assessed A Comment	The Buck and	wheel & edge This run is	on good
@ 50°C		One than all the D	0
2 50°C	032100 F	- OK	
~ q.8	G	= over Straced	~ retur ~ 200 5-
~9+10	H	- Last of Samp	
	`	over Stran	

NOTE: S'Ample dries too quickly espiney@ 50°C

Test Plan: BNFL-TP-29953-046

Page 42 of 54

81) Add the BNFL prescribed quantity of glass formers to each of the three graduated cylinders and stir for I hour. Use the space below to record the quantity of glass formers added and the time and date stirring started and stopped.

AN-107 EVAP A	Stir Start (time/date)	Stir Stop (time/date)
	Glass Formers:	

Source Chemical	Manufacturer	Lot#	Target wt%	Amount (g)	Actual Added
					(5)
		 			
			2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
			and the same of the		
		0414			
		125			
	50 TO 18				
			and the state of t		
	HERMAN MORNEY		See chird in the relation		The second second
				William on I	
	His temperate in				
				 	

See 19 42a	As per discussions will be
says blacsec	esteps 81-102 will be steps 81-102 will be performed once glass from compositions are provided to Battelly
9,22,988	from BNFL.
	3/10/00

PR	Bredt
09/	24/99

Test Plan: BNFL-TP-29953-046

Page 43 of 54

AN-107 EVAP B

Stir Start (time/date)_______Glass Formers:

_Stir Stop (time/date)__

Source Chemical	Manufacturer	Lot#	Target wt%	Amount (g)	Actual Added (g)
					<u> Yanania</u>
	4-1-500				
					+
y 4-5		Name of the state	Sept. No.	a beinvald	2000000
	a management				a field .
			1-30-		
		6.8	H .		
		5 ez 00	6/20/00		
9			17/2	 	
		-(0.90.000	3		+

AN-	107	TTT 7	1 1	
AIV-	/	HV	A P	•

Stir Start (time/date)	Stir Stop	(time/date)	
Glass Formers:			

Source Chemical	Manufacturer	Lot#	Target wt%	Amount (g)	Actual Added (g)
	1		The contract of the contract o		
					1
		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
	431				
	A CONTRACTOR			1 1 X X X X	
air l	7	Market Long		District	
4. 1. 1. 1. 1.	Y Su		and the state of the state of		
	1.25				
/				Tradition is	
/				1100	
/	- 1 1 12×1				
/					
300					1443

melter_feev_AN107.xls

LAW Melter Feed Rheological and Physical Properties

@ 3 - Sodium concentrations -- 6M -- Evap A, 6M -- Evap B1, 8M -- Evap B-2, and 5M -- Evap C (diluted from 10M)

	dded to AN-107 Melter Feed Barcode Tarnet (a) per liter of feed	4-107 Melter Feed	ilter Feed	Tool food	_		Evap	Evap A 6M Vol 81.0	Evap B Start Vol =	Evap B-1 6M ** lart Vol = 109.3	Evap Start Vol =	Evap B-2 8M 1 Vol = 86.5	Evap C d Start Vol =	Evap C diluted to 5M Start Vol = 168.0
Grade CMS # 4.8M 5M 6M	บ		g) per liter of fee	er or re-	\sim	8M	6 M		6 M	6 M (B-1)	8 M	8 M (B-2)	Farget William 5 M	Actual Wt 5M
Raw Kyanite, 325 Mesh 176127 109.07 113.61 136.34	176127 109.07 113.61	113.61	113.61	136.34		181.78	11.043	11.24	14.906	14.91	15.724	15.72	19.087	19.31
Technical Grade 176094 187.07 194.86 233.84	187.07 194.86	194.86	194.86	233.84		311.78	18.941	18,45	25.566	25.59	26.969	36.48	32.737	32.72
Powder untreated, NYAN 325 Mesh 179549 111.47 116.11 139.34	111.47 116.11	111.47 116.11	116.11	139.34		185.78	11.286	11.24	15.234	15,24	16.070	90.91	19.507	19.51
Red Iron Oxide. 325 Mesh (5001) 176095 51.87 54.03 64.84	51.87 54.03	54.03		64.84		86.45	5.252	5.27	7.089	7.08	7.478	7+7	9.077	9.09
Chemetal Foote	186880 64.75 67.45	67.45		80.94		107.92	6.556	6.516	8.849	8.85	9.335	9.34	11.331	11.35
325 Mesh (#180) 179563 32.92 34.29 41.15	32.92 34.29 41.15	34.29 41.15	41.15			54.87	3.333	3.32	4.499	4.50	4.746	7.1	5.761	5.76
Sil-co-Sil 75, 200 176091 349.7 364.27 437.13	349.7 364.27 437.13	364.27 437.13			71	582.83	35.407	35.48	47.792	47.78	50.415	50.40	61.198	61.19
Premium Grade, Airfloated 161516 12.39 12.91 15.49	12.39 12.91 15.49	12.91 15.49	15.49		1	20.65	1.254	کد.۱	1.693	1.69	1.786	1.78	2.168	3.18
KADOX-920 142046 31.81 33.14 39.76	31.81 33.14 39.76	33.14 39.76	39.76			53.02	3.221	3.23	4.347	4.33	4.586	4.54	5.567	5.58
Flour 325 Mesh 179548 48.54 50.56 60.68	48.54 50.56 60.68	50.56 60.68	89.09	-		80.90	4.915	15.4	6.634	6.9.3	866.9	7.01	8.495	8.49
Granular Sugar none 20.00 20.83 25.00	20.00 20.83	20.83		25.00		33.33	2.025	2.02	2.733	2.73	2.883	4.89	3.500	3.51
Total \	Total \	Total	Total \	Total \		Total Wt	103.23	0.00	139.34	0.00	146.99		178.43	00.00

P01

०२/०५/० स्ट्री

500.00 = 10.01 = 5.019

BALANCE MT&E# 11312 C467 Could Expires Haces

** B-1 orig. 8 M volume of 82 mL was diluted to 109.3 mL with water to make it 6 M

-date: 6-30-00

prepared by:

reviewed by:

Page 1 of 1

Pad

06/21/2000

Test Plan: BNFL-TP-29953-046 Page 44 of 54

82) Ca	p the graduated cylinder $\wp m$	s and rec	ord the mass an	id volume	e. → ★	5m	\star
	AN-107 EVAP A		AN-107 EVA	PB-2		AN-107 EVA	PС
Total Tare	<u>435.3</u> g	Total	532.4	_g	Total	651.9	_g
Slurry	234.0 g 201.3 g	Tare Slurry	272.4	g g	Tare Slurry	381.2	_g ≭ _g
Volume	= <u> 1 8</u> ml	Volume	2142	ml	Volume	240.0	_ml

83) Mobilize the material in each of the graduated cylinders using a magnetic stir plate. After ~2 minutes, turn off the stir plate and record the time and date for each of the three samples.

6m	AN-107 EVAP A	Time 10 Am	Date 6-21-00
8 M	AN-107 EVAP B	Time 2pn	Date 6-22-00
5 M	AN-107 EVAP C	Time Ipm	Date 6-22-00

* Tromferred to a 500ml Grad after diluting to (5m) conc. (by doubling volume from 84ml to 168ml)

EVAPC Before ARRING glace 204.3 = 1.22 J/al

500ml TARE = 269.7 q

Vol : 168 ml

We Evapc: 474.0 & before glace arriver 6/22/00 @ 12:45

grad to get Batter Mixing

500 mlTare = 2724 g Eury B-2 Vol = 86.5 ml

Final Wt = 388.7g -> before glass ARRITION 6/22/10@1145pm

6/22/00

Page 45 of 54

84) After turning off the stirrer, record the ambient temperature, volume of settled solids and liquids after 5 minutes, then every 10 minutes for the first hour, and then every half hour until the end of the work day. As well, record these volumes every 4 hours during the second and third day.

Target	Date	time	Total	ient temperati Solid	Liquid			
-			(ml)	(ml)	(ml)			
5 min	6-21-0	10:05	118	118	0			
15 min		15				ėli.		
25 min					9.41			
35 min								
45 min		45	V	14	11	1		
55 min			118	118	08			
1 hour		11:05			1/2			
1.5 hour					1			
2 hour ·		•						
2.5 hour								
3 hour		12:00						
3.5 hour		•				7		
4 hour								
4.5 hour								
5 hour								
5.5 hour								
6 hour	1	1400	V	1	1	1	5.	
6.5 hour				1	¥			
7 hour								
24 hour				116-11	7			
28 hour	6/22/00	1200	118	1234	d- 1-	anc	mazbe	at mo
32 hour	10.100		1	1	1	7	mazbe	
48 hour	6/23/00	1000	1/	1 1,		1		
52 hour	12.7			 				
56 hour								
	6/27/00	10:00	118	~116	2			
34								
		/	~ ~					
		(X	- wood	6	123/00		
		(J			-100		

118 L

Page 46 of 54

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)			
5 min	6/22/00	210	145	145	0,			
15 min			i naka	o remi aface				
25 min					Torran Te			
35 min					i and			
45 min		14-4-		7.0				
55 min			2136					
l hour								
1.5 hour								
2 hour		•	ia e					
2.5 hour		4:30	145	145	1			
3 hour	1				1			
3.5 hour					1			
4 hour								
4.5 hour								
5 hour								
5.5 hour								
6 hour								
6.5 hour								
7 hour	6/23/00	7 Am	145	145	8			
24 hour					1			
28 hour								
32 hour								
48 hour					3.77			
52 hour								
56 hour				e e e e e e e e e e e e e e e e e e e			ar 1.1.	0.614
	6/26/00	8:30AD	L145.	~145	\$		rgs \$/26/00	e sele
	, ,						. 8-3	
							\$/26/00	14
		\wedge			/			
		19		week	6/2	6/00		
			9					
					1.7901.			
				0.	179 -1	人		
			1 60	7 7	1. ' ' ' ' ' '			

-	NA.
3	1
_	

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)
5 min	6/22/00	lon	240	240	d
15 min	7,-,-		239	239	1
25 min			239	238	
35 min			239	237	
45 min			238	236	
55 min		Fi man	238	235	- A-14
l hour		211	238	234	
1.5 hour		2:30	238	233	10
2 hour		3 00	i Boder	230	C 30
2.5 hour				1	
3 hour		400		222	
3.5 hour		4:30		218	
4 hour					
4.5 hour					
5 hour					1 01
5.5 hour					
6 hour				1.146	the district
hour تحبيح		7 Am	2-37	206	
Hour	6/23/00	9 Am	237	205	
24 hour		122	237	205	
28 hour		40-	2-37	205	
32 hour			a no d		
18 hour					
52 hour			1/		
66 hour			w 237	¥	

6/26/co 8 362.22 = 1.6/g/m 8 7 237 m

Date 6-27-00

424.0@ 1.pm

Time 10:30

85) Place the graduated cylinders in an oven at 50°C for 1 day. Remove the samples and record the mass and volume.

		01/2		. *		Carlotte Company
	AN-107 EVAP A ,\.		AN-107 EVAP B	1-7	AN-107 EVAI	2 C
Total Tare Slurry Volume Soli&s		Total Tare Slurry Volume		Total Tare Slurry N Volum	2 69.7 382 e 246	_g _g _ml > 45mc
	bilize the material in each					After ~2 minutes,
	n off the stir plate and re					Weight **
	AN-107 EVAP A	Time	10:45	Date_	6-27-00	- 434.6
	AN-107 EVAP B -2	Time _	10:00	Date_	6-27-00	531.8

87) Return the graduated cylinders to the oven at 50°C.

AN-107 EVAP C

* B-2 sample appeared to have No more than Int of Liquid which should up at the top of this mulmix after I day in over @ 50°C

** - A Nother wt was Necessary here because slight houses occurred on the mixer rol & black that could not be recombined.

Les normalo,

88) After turning off the stirrer, record the volume of settled solids and liquids after 5 minutes, then every 10 minutes for the first hour, and then every half hour until the end of the work day. As well, record these volumes every 4 hours during the second and third day.

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)
5 min	1/27/00	10:50	118	118	0
15 min	1,0,7				1
25 min					
35 min				V	1
45 min		11:35	1	118	Jan Julian
55 min		1.		1	
l hour		12:00		117	
1.5 hour				I L	
2 hour	V	12:35	V	116	2
2.5 hour					
3 hour	6/27	1:30		115	3
3.5 hour	$\perp \Gamma$				
4 hour		2:30		114	4
4.5 hour					
5 hour		3:30		113	5
5.5 hour					
6 hour		4:30		112	6
6.5 hour					
7 hour					
24 hour	4/28/00	6.00 Am	Y	110	8
28 hour					
32 hour	J	10 Am		110	8
48 hour					
52 hour	g-6 3 2		No.		(
56 hour				450	

removed from over 193 1.70 g/al

7/5/00 118 109

measured prior to mixing & rheology

Test Plan: BNFL-TP-29953-046

Page 50 of 54

AN-107 EVAP B with glass formers at 50°C

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)	M-27
5 min	6/27/00	10 An	~145	145	Ø	
15 min					1	a service of
25 min					7	
35 min						
45 min					/	
55 min					1	
l hour				8		
1.5 hour				y	1.5	
2 hour			1	JK J		355
2.5 hour				V		1. 40
3 hour			1 8	de	THE WAY IN	6/28/01
3.5 hour				1	4 7	1
4 hour			Y P	1 CX	1 11	
4.5 hour			^	0	100	1
5 hour		17/	101	V	all	
5.5 hour		No	00	Y		
6 hour		6.	1			
6.5 hour		(0m			Section 1	To make
7 hour		/ 1				
24 hour						1
28 hour						
32 hour					HEDER WE	(A)
48 hour			-10			1
52 hour				134	The State of the Land	
56 hour						- Marie 1964

128/00

P= 259.82= 1.79

(5M)

AN-107 EVAP C with glass formers at 50°C

Target	Date	time	Total (ml)	Solid (ml)	Liquid (ml)	
5 min	6/27/00	10:35	240	235	5	
15 min		45		225	15	
25 min		11:00	1 195	215	25	
35 min		1 10	239	211		2.4
45 min	1. 7 10 -	20		208		
55 min		1 30		205		
1 hour		11:45		201		
1.5 hour		1200	-1	195		
2 hour	V	12:35		190		
2.5 hour		1:80		185	neuros ilita	
3 hour		1:30		182		6
3.5 hour			The second	C S nelse 15	and other	
4 hour		2:30		180		
4.5 hour	1 75		A. Her	. 14		
5 hour		3:30	V	178	man el j	
5.5 hour	V					
6 hour					100.5 C 10	
6.5 hour						
7 hour					mai si S	
24 hour	6/28/00	6 mm	235	177		
28 hour	1				norac Miles	
32 hour		IDAM	23	177		_
48 hour	K		Francia (1)		MALE AND A	
52 hour				,		
56 hour		i he				

removel from over

- 1/24/0°

P = 3829 = 1.59

7/5/00 12:00 237 175 mL

89) If not performed in the last 30 days, analyze one standard between 10 and 100 cP for shear stress as a function of shear rate at 25°C from 0 to approximately 1000 s⁻¹. Print out a copy of the rheogram and attach to this test plan.

Viscometer Boh Lin CS Location 325/506 Geometry CP 4/40 - OK Out.

Viscosity 95.5 CP Lot 111195 Manufacturer Brook Pield

File name 526 Fellows Pg's 52A, 6,4 C

Thin out a copy of the rheogram and

JN. Hod Geometry P-25 - disant work with the control of the con

- 90) Remove the graduated cylinders from the oven and allow to cool overnight.
- 91) While stirring the samples on a magnetic stir plate remove sumsamples from each of the graduated cylinders and analyze for shear stress as a function of shear rate in duplicate. Conduct the analysis at 25°C and 50°C from 0 to approximately 1000 s⁻¹. Print out a copy of the rheograms and attach to this test plan.

AN-107 EVAP A Duplicate File name Date analyzed

AN-107 EVAP B 2 File name Date analyzed

AN-107 EVAP B Duplicate File name Date analyzed

AN-107 EVAP B Duplicate File name Date analyzed

AN-107 EVAP C Duplicate File name Date analyzed

AN-107 EVAP C Duplicate File name Date analyzed

Date analyzed

- 92) If possible, return this material to the respective graduated cylinders.
- 93) Assemble a mixing vessel using the following parts or equivalent. Attach impeller to a stirring motor capable of maintaining a constant rotational rate from 100-1400 rpm.

Part	Vendor	Catalog number
500 ml O-ring Sealed Kettle, 3.75 inch OD, 5 3/8 inch flange	Labglass	LG-8071-100
Clamp	Labglass	LG-7316-106
O-ring	Labglass	LG-1022-476
Kettle top with three 24/40 necks	Labglass	LG-8072-100
2 3/8 diameter 4 blade impeller	Fisher Scientific	14-505-20G

ENGINEERING WORKSHEET

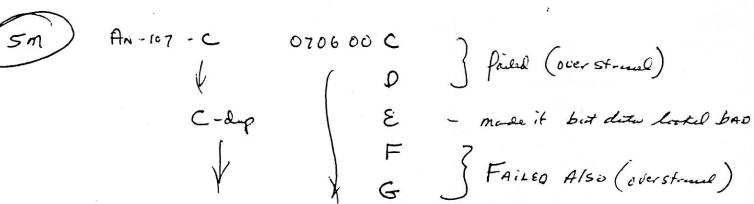
Title/Subject: Viscoutry DATA on AN-107 BenIN CS in 325/506 7-13-00 - Replaced P-25 Geometry with -Adjusted to - 2 mm distance & rAN 95.5 CP STR. Setting was @ 432 mm when touching Plate 95.5 cf sto Real 125 ± 5 cp 450 118 117 460 116 470 114 490 108 File NAME Alland Best 107-108 550 07 1300 A Optimum -> 600 103 CP 100,000 cp std 07 13 00 C ~ 105,000 97-48,000 Took ALITH offelge Lost this data because AN-107 I Redid O file on SAMPLE EVAP C (5M) 0713 pp D 70 1 35 as Needed to increme shear, EUAD & RR - SAME ABRAbove Incremed SR EVAP C Reyow Again 70± 30 Did Not Finish - partial Brakeon 68 ± 5 Good run EVAD C 40 ± 5 Good run on replaced son EVAP C Trip OK

7/13/00

Pacific Northwest Laboratories	ENGINEERING WORKS	HEET	1 2 2 2 2
Propered By:	Project: 7-14-00 Project: BAFL	neel	
Irtle/Subject:	1-19-00 BNFL	TP -29953 -046	
Analyzed on Bohlin CS in 30	VIS cometry DayA	@ 25°C	
Sample I O	File NAME	Conment	
AN-107 EVAP A	071400 A	DNF - Spun out same	rale 100-122
Re EVAP A -	chark Dup C chark Dup E	Drapped prate, to 276	120±10
\ . R.	week 0	Tours 60 - 276	- OK run ? 120
¥ T.	ie V E	INCREMENT SSI	
It was here I we	oticed that C	1 1 0 0	63
from Previous Da	y> Hence Above	O+ Al. C. O (c # 1522
	utry to CP 4/	- 0.00	
AN-107 EVAP A Trip	2 RR \$71488 F		300 + 20
Quar	, , , , , , , , , , , , , , , , , , ,	Incread SR -> 442	338+20
Quao	RR V H	Increase SR -> 443 OK - good.	380+2
AN-107 EVAP B-2	07 14 pg I	Good PATA	1100-71300
B-2R	R (J	INCreme SR > 560 (
V B-21	Dup K	DNF - overstressel	700-1700
Actual File B-2		Good Rud	1017/200
	- 07/17 00 L		
11500	rough Sample to de	s study a soc.	
With weed to Aqu	ive Additional Samp	de for 50°C run	

Project: BNFL Daje/19/00 TP-29953-046 Title/Subject: Scenetry DATE on AN-107 SAMFIE Date @ 50°C Viscemeter: Bohlin CS LCCATION 325/506 Geometry CP 4/40 BESTAC Highesi SR File NAme ~ cp 7/18/00 Upper 25.8C 95.5 cP STR 07 18 00 A CP4/40 Gec @ Setting of 600mm Temp @ 250 ~107 225.1°C 2/64 99, 200cPst& 25° 07 18 CO C 102,00 102,000 50° 92,200 cP sil · (w) 50° c 63-65, cci Date & Comment AN-107-EVAPC 071800 F C Dup RR C Dup RR Trip ANIOT - EVAP A 7/18/00 Looked OK ~20 Oder Street RR win OK ~ 22 OK 21 overstrasd (DNF) OVERSTYELLE @ V 190 OK ONLY 1 PASS CONF) 220 .7/19/00 - Started with more sample on ANICT EVAPA AN-107 - EVAP A 071900 A 7/14/00 Gec& 184 EVAP A Dup 175 AN 107 EVAPB-2 071900C 1800 1050 820 Even high SR(DNF) * Asses 1-2 drop Water to edge.

31/2	Battelle
30	Danche
	Parific Northwest Laboratories


ENGINEERING WORKSHEET

Page _____ of____

hared By:	(a/2
Title/Subject:	

\$/6/00	Project:	AN-107	Vi

ANalysis ID	File Name	Oute Trace	
95.5 cp stl	070600 A	7/6/10 1 pm	Excellet
V Dup	V B	1 / 30	
4		<u>.</u>	

Rerun issura Cone & Plate Conetag CP 4/40 1/12/00

D	longity Verities . Flask to	2 = 196.35g	
	PR Bredt 09/24/99 94) Transfer the sample specified by RI	27.3 ml water = 335.45	Test Plan: RNFI _TD_20053_0.16
	09/24/99	R. 11 : 134.60g	Page 53 of 54
		124 3 ML =	1 2779/00 543/00
	which sample was transferred as we	ell as the day and time transferred	below. + 6 lune Formers for 6-1
	Sample transferred AN 107 - B	Date 8-3-00 Time_	11;30
	95) Turn on the stirrer and adjust the ro and speed below.	tational speed to that specified by	BNFL. Record the time, date
	Speed 480 rpm	Date g-3-co Time_	11:45
	96) After 1 hour of stirring, remove a sa stress as a function of shear rate in a 1000 s ⁻¹ . Print out a copy of the rhe	duplicate. Conduct the analysis at	ind immediately analyze for shear t 25°C from 0 to approximately n. Removed Smayle 8/15/20@12:45
	Run 1 File name <u>D80300 fi</u>		
	Run 2 File name OF OSED &	Date analyzed (à)	1:45 pm
	97) After I day of stirring, remove a sai	mple through the sampling port ar	nd immediately analyze for shear
	stress as a function of shear rate in c	ograms and attach to this test plan	n. Renoval Sample 8/4/00 12:45
	Run 1 File name 080400 A	Date analyzed 08-04-00 @	21:100
	Run 2 File name 08 04 00 B	Date analyzed (a	1:25 pm
V	98) After 1 week of stirring, remove a sa	mple through the sampling port a	nd immediately analyze for shear
	CIFECC ACA DIRATION OF CHARLES AND A		
Viscosity	25°C ±:1°C Greenet	1 - 4/40	Piver outsel In ~ II.
287	Run 1 File name OX II DO A	Date analyzed 8-11-00 (31 pm Dan dienet appart H
140	Run 2 File name 081100 B	Date analyzed	25°C from 0 to approximately 1. Remarch sample 8/10/00 @ 1: Piver outage for lar at 3 pm 10 an did not appear H process Afversely, 145 1:40
340	99) After removing the last sample (after	Lyeek of stirring) transfer the	1:40
	cylinder. Record sample ID, volume	i week of stiffing), transfer the s	ample back to the graduated
	AN-107 EVAP B-1	-> only 100	IN L representive Not Sample was transferral it was too Difficult to more sample out of 250 ml bittom Plank 8/4/00
7	7/140 @ 112 Total <u>294.17 g</u> Total	45An Fraction	N of Sample was transferred
	Tare 122.45 g Solids	100 ml Stance	it was too difficult to
3	Slurryg Liquids	ml remail	betten flack grass
l	(100) Focus a video camera on the sol	ids-liquid interface of the sample	and collect video for one week 35
	cognizent assentiat	Report any observed gas retention	on and/or release behavior to the
	See 100) cont. comments on	100
			ry >. 8/15/00

Page 54 of 54

After the sample has remained undisturbed for 1 week, remove the standing liquid using a glass Removed Aqueau 8/22/00 @ 104m.

Gently collect a subsample of the settled solids and immediately analyze for shear stress as a function of shear rate in duplicate. Conduct the analysis at 25°C from 0 to approximately 1000 s⁻¹.

Print out a copy of the rheograms and attach to this test plan.

Run 1 File name 08 2200 A Date analyzed 8-22-00 @ 1Pm

Run 2 File name 082200 Date analyzed 082200C

100) Connents:

PR Bredt

09/24/99

The VCR for controlling the video tope up to 72h work unavailable from S'FO, therefore only 2 120min topes were made 1 started 8/11/00 @ 11:45 Am and the second started 8/12/00 @ 11 Am.

Settling measurements were checked as follows

AN 107 - B.1

3-361	Onte/T	ine	Total (ml)	Solia (ml)	Liquid (mL)
	8/11/00	11:45	100 ml	100	ø
	V	2 pm		98	2
SATURDAY	8/1400	11 Am		96	4
	8/14/00	8 Am	- b.F.V	93	7
	8/15/00	4 pm	\bigvee	93	7 miles
	8/22/00	10 Am		93	7 (00)

No gas bubbles appeared evident on ANy of the visual inspections rgs 8/15/00

PNNL Test Plan Addendum 2

Document No.: BNFL-TP-29953-46

Rev. No.: 0

Document Control: Only the original signed copy is controlled

Work Location: Radiochemical Processing Laboratory	Page 1 of 2
Author: Paul Bredt	Effective Date: Upon Final Approval
Use Category Identification: Reference	Supersedes Date: New
Identified Hazards: Radiological Hazardous Materials Physical Hazards Hazardous Environment Other:	Required Reviewers: X Technical Reviewer Building Manager Radiological Control ES&H Quality Engineer
Are One-Time Modifications Allowed to this Proc NOTE: If Yes, then modifications are not anticipated to i SBMS or the controlling Project QA Plan as appropriate.	cedure? X Yes No impact safety. For documentation requirements of a modification see
On-The Job Training Required? Yes or X_I FOR REVISIONS: Is retraining to this procedure required? Yes X_I Does the OJT package associated with this procedure required. Yes No X_N/A	_No
pproval Signature	Date
Author Pal B	5/25/02

LAW Melter Feed Rheological and Physical Properties Measurements

Instructions

Under Test Plan BNFL-29953-046, "LAW Melter Feed Rheological and Physical Properties Measurements", samples of the AN-107 feed were evaporated to 6, 8, and 10 M (molarity in this document is with respect to sodium). Duratek has provided BNFL with specifications for glass former addition to the initial feed (4.8 M). Simulant testing by Duratek suggests that following glass former addition, the 10M feed will be too viscous for processing. Therefore, half of the current 10M feed will be diluted to 5M prior to glass former addition. The current 10M feed contains roughly 70 vol% solids. If these solids do not dissolve, a new 5M feed will be prepared from the remaining initial 4.8M feed.

Table 1 provides the specifications provided by Duratek as well as the adjusted levels required for addition to the evaporated samples under step 81 of Test Plan 29953-46. Since the Duratek specifications were provided for a 4.8M feed, these were multiplied by 1.0417, 1.2500, and 1.6667 to arrive at the targets for the 5, 6, and 8 M feeds respectively.

Table 1. Glass formers to be Added to AW-107 PAB 5/31/00

Additive Vendo	Vendor	Grade	Target (g) per liter of feed			
		Orace	4.8 M	5 M	6 M	8 M
Kyanite (Al ₂ SiO ₅)	Kyanite Mining Corp.	Raw Kyanite, 325 Mesh	109.07	113.61	136.34	181.78
Orthoboric Acid (H ₃ BO ₃)	US Borax Inc.	Technical Granular	187.07	194.86	233.84	311.78
Wollanstonite (CaSiO ₃)	NYCO Minerals	Powder untreated, NYAD 325 Mesh	111.47	116.11	139.34	185.78
Red Iron Oxide (Fe ₂ O ₃)	The Prince Manufacturin g Co.	Red Iron Oxide, 325 mesh, (5001)	51.87	54.03	64.84	86.45
LiCO ₃	Chemetall Foote Co.	Technical Grade	64.75	67.45	80.94	107.92
Olivine (Mg₂SiO₄ with some Fe₂SiO₄)	UNIMIN Corp.	325 Mesh (#180)	32.92	34.29	41.15	54.87
Ground Silica Sand (SiO ₂)	US Silia Co.	Sil-co-Sil 75, 200 Mesh	349.70	364.27	437.13	582.83
Rutile (TiO ₂)	Chemalloy Co.	Premium Grade, Airfloated	12.39	12.91	15.49	20.65
Zinc Oxide (ZnO)	Zinc Corp. of America	KADOX-920	31.81	33.14	39.76	53.02
Zircon Sand (ZrSiO₄)	American Minerals Inc.	Flour 325 Mesh	48.54	50.56	60.68	80.90
Sugar	C&H	Granular Sugar	20.00	20.83	25.00	33.33

PNNL Test Plan Addendum

Document No.: BNFL-TP-29953-46

Rev. No.: 0

Document Control: Only the original signed copy is controlled

Title: LAW Melter Feed Rheological and Physical F	Properties Measurements
Work Location: Radiochemical Processing Laboratory	Page 1 of 2
Author: Paul Bredt	Effective Date: Upon Final Approval
Use Category Identification: Reference	Supersedes Date: New
Identified Hazards: Radiological Hazardous Materials Physical Hazards Hazardous Environment Other:	Required Reviewers: X Technical Reviewer Building Manager Radiological Control ES&H Quality Engineer
Are One-Time Modifications Allowed to this Pro NOTE: If Yes, then modifications are not anticipated to see SBMS or the controlling Project QA Plan as appropri On-The Job Training Required? Yes orX FOR REVISIONS: Is retraining to this procedure required? YesX	impact safety. For documentation requirements of a modification iate. No
Does the OJT package associated with this procedure required. YesNoN/A	
Approval Signature	Date
Author Pal 3 me	12/16/99
Technical Reviewer Hand	nice.ty 13/23/5
Project Manager J & Pureth for	12/29/99
BNFL Stuart Arm	1/21/00
ocace nam	

LAW Melter Feed Rheological and Physical Properties Measurements

Instructions

Under Test Plan BNFL-29953-046, "LAW Melter Feed Rheological and Physical Properties Measurements", samples of the AW-101 melter feed were evaporated to 6, 8, and 10 M with respect to sodium. Duratek has provided BNFL with specifications for glass former addition to the initial feed (4.59 M). This addendum to the test plan defines specifications for glass formers additions to the evaporated AW-101 melter feed.

Table 1 provides the specifications provided by Duratek as well as the adjusted levels required for addition to the evaporated samples under step 30 of Test Plan 29953-46. Since the Duratek specifications were provided for a 4.59M feed, these were multiplied by 1.31, 1.74, and 2.18 to Arrive at the targets for the 6, 8, and 10 M feeds respectively.

Table 1. Glass formers to be Added to AW-101 Melter Feed.

Additive	Vendor	Grade	Target (g) per liter of feed			
	Vendor		4.59 M	6 M	8 M	10 M
Kyanite (Al ₂ SiO ₅)	Kyanite Mining Corp.	Raw Kyanite, 325 Mesh	41.74	54.56	72.75	90.94
Orthoboric Acid (H ₃ BO ₃)	US Borax Inc.	Technical Granular	127.75	166.99	222.65	278.32
Wollanstonite (CaSiO ₃)	NYCO Minerals	Powder untreated, NYAD 325 Mesh	32.44	42.41	56.54	70.68
Red Iron Oxide (Fe ₂ O ₃)	The Prince Manufacturin g Co.	Red Iron Oxide, 325 mesh, (5001)	37.35	48.82	65.10	81.37
Olivine (Mg ₂ SiO ₄ with some Fe ₂ SiO ₄)	UNIMIN Corp.	325 Mesh (#180)	22.10	28.89	38.52	48.14
Ground Silica Sand (SiO ₂)	US Silia Co.	Sil-co-Sil 75, 200 Mesh	262.84	343.58	458.10	572.63
Rutile (TiO₂)	Chemalloy Co.	Premium Grade, Airfloated	14.32	18.72	24.96	31.20
Zinc Oxide (ZnO)	Zinc Corp. of America	KADOX-920	21.21	27.73	36.97	46.22
Zircon Sand (ZrSiO₄)	American Minerals Inc.	Flour 325 Mesh	31.94	41.75	55.67	69.58
Sugar	C&H	Granular Sugar	51.34	67.12	89.49	111.86

$$\frac{6m}{4.59m} = 1.307$$

$$\frac{8m}{4.59} = 1.713$$

$$\frac{10m}{4.59} = 2.179$$