Ion Exchange Studies for Removal of Sulfate from Hanford Tank Waste Envelope C (241-AN-107) Using SuperLig[®] 655 Resin

D. E. Kurath J. R. Bontha D. L. Blanchard Jr. S. K. Fiskum B. M. Rapko

August 2000

Prepared for BNFL, Inc. under Contract W375-LC-98-4168

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS

OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

PNWD-3053 BNFL-RPT-036, Rev. 0

Ion Exchange Studies for Removal of Sulfate from Hanford Tank Waste Envelope C (241-AN-107) Using SuperLig[®] 655 Resin

D. E. Kurath J. R. Bontha D. L. Blanchard Jr. S. K. Fiskum B. M. Rapko

August 2000

Prepared for BNFL, Inc. under Contract W375-LC-98-4168

Battelle, Pacific Northwest Division Richland, Washington 99352

Summary

BNFL Inc. is evaluating various pretreatment technologies to mitigate the impacts of sulfate on the LAW vitrification system. One pretreatment technology for separating sulfate from LAW solutions involves the use of SuperLig[®] 655 (SL-655), a proprietary ion exchange material developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. This report describes testing of SL-655 with diluted ([Na] 5 M) waste from Hanford Tank 241 -AN-107 at Battelle, Pacific Northwest Division.

Batch contact studies were conducted from 4 to 96 hours to determine the sulfate distribution coefficient and reaction kinetics. A small-scale ion exchange column test was conducted to evaluate sulfate removal, loading, breakthrough, and elution from the SL- 655. In all of these tests, an archived 241-AN-107 tank waste sample (pretreated to remove Cs, Sr, and transuranics elements) was used. The experimental details and results are described in this report.

Under the test conditions, SL- 655 was found to have no significant ion exchange affinity for sulfate in this matrix. The batch contact study resulted in no measurable difference in the aqueous sulfate concentration following resin contact (K_d 0). The column test also demonstrated SL - 655 had no practical affinity for sulfate in the tested matrix. Within experimental error, the sulfate concentration in the column effluent was equal to the concentration in the feed after passing 3 bed volumes of sample through the columns. Furthermore, some, if not all, of the decreased sulfate concentration in these first three column volumes of effluent can be ascribed to mixing and dilution of the 241-AN-107 feed with the interstitial liquid present in the column at the start of the loading cycle. Finally, ICP-AES measurements on the eluate solutions showed the presence of barium as soon as contact with the feed solution is completed. Barium is a metal not detected in the feed solution. Should the loss of barium be correlated with the resin's ability to selectively complex sulfate, then maintaining even the current limited resin characteristics for sulfate complexation over multiple cycles becomes questionable.

Terms, Symbols and Abbreviations

BNFL	BNFL, Inc; subsidiary of British Nuclear Fuels, Ltd
BV	bed volume
С	concentration
Co	initial concentration
GEA	gamma energy analysis
IC	ion chromatography
ICP	inductively-coupled plasma optical emission spectrometry
K _d	distribution coefficient
LAW	low-activity waste
L/D	length:diameter ratio
MRQ	minimum reportable quantity
NMRQ	no minimum reportable quantity
RPL	Radiochemical Processing Laboratory
SAL	Shielded Analytical Laboratory
SL-655	SuperLig [®] 655 resin
TOC	total organic carbon
TIC	total inorganic carbon
TRU	transuranic

Units

degrees celsius or centigrade
centimeter
molarity, moles per liter
milliequivalent
microCuries
micrograms
micrometer

Contents

1.0	INTRODUCTION	1.1
2.0	TEST CONDITIONS AND EXPERIMENTAL PROCEDURES	2.1
2.1	Preparation of the AN-107 Test Sample	2.1
2.2	SuperLig [®] 655	2.1
2.3	Batch Contacts	2.1
2.4	Small-scale Ion Exchange Column Testing	2.1
3.0	RESULTS AND DISCUSSION	
3.1	Batch Contact K _d Study	3.1
3.2	Ion Exchange Column Test	3.1
4.0	CONCLUSIONS	4.1
5.0	REFERENCES	5.1
Append	dix A: Test Instructions	A.1
Append	dix B: Analytical Data	B.1
Append	dix C: Sample Spreadsheets	C.1

Figures

Figure 2.1.	Schematic of the Sulfate Ion Exchange Column Setup	2.4
Figure 3.1.	Sulfate Concentration Changes During Loading of Superlig [®] 655 Resin with an	
e	Archived Waste Sample from Tank AN-107	3.2
Figure 3.2.	Sulfate Concentration Profiles in Eluates Relative to Feed Sulfate Concentration	3.3

Tables

Table 2.1.	241-AN-107 Feed Composition	2.2
Table 2.2.	SuperLig [®] 655 Batch Contact with 241-AN-107	2.3
Table 2.3.	Summary of Ion Exchange Column Processing Steps	2.3
Table 3.1.	Cation, Anion, and Radioisotope Measurements for SL-655 Ion Exchange	
	Column Wash and Elution Cycles	3.4
Table C.1.	Batch Contacts: Archive AN-107 Contacted with Superlig [®] -655 (SL-655)	.C.2
Table C.2.	Column Flow Testing of SL-655 for Sulfate Removal from Archive AN-107	C.3

1.0 INTRODUCTION

The presence of sulfate ion in the Hanford low-activity waste (LAW) solutions generates several potential processing difficulties. Preliminary testing of the LAW vitrification system at the Vitreous States Laboratory (VSL) indicates a separate molten sulfur layer will form in the melter (nominally at 1150°C) at sufficiently high sulfate concentrations. A molten sulfur layer in the LAW melter can lead to accelerated corrosion of the melter and unacceptable operating conditions (e.g., steam explosion).

BNFL Inc. (BNFL) has been evaluating several methods to mitigate the impacts of sulfate on the LAW vitrification system, including pretreatment technologies, blending of high and low sulfate LAW solutions, modification to the LAW glass formulations, and volatilization of sulfur in the LAW melter as SO_2 or SO_3 . BNFL is evaluating four pretreatment technologies for separating sulfate from LAW solutions:

- Ion Exchange (SuperLig[®] 655)
- Evaporation
- Precipitation
- Low-temperature crystallization

This report presents the results of a series of experiments conducted by Battelle, Pacific Northwest Division to evaluate the use of ion exchange with SuperLig[®] 655 (SL-655) for sulfate ion removal from the waste currently stored in tank 241-AN-107 (referred to hereafter as AN-107). SL-655 is a developmental material prepared by IBC Advanced Technologies Inc. The resin incorporates a divalent cation (proprietary) as an exchange site for sulfate ion as it replaces two nitrate ions in the loading stage. The theoretical capacity of SL-655 is 0.8 meq sulfate per gram of dry resin. The test matrix used was an archived sample of actual AN-107 tank waste pretreated to remove Sr, Cs, and transuranic elements (TRU). The AN-107 waste is categorized as LAW Envelope C waste. Batch contacts and small-scale column testing were conducted in order to evaluate K_ds , column loading and elution characteristics, and physical properties of the eluates and effluents as delineated in the BNFL test specification.¹ This report summarizes the results of these studies.

¹ Test Specification for Evaluating Sulfate Separation from LAW Solutions, Rev. 0, September 13, 1999, TSP-W375-99-00012. Rev. 0.

2.0 TEST CONDITIONS AND EXPERIMENTAL PROCEDURES

2.1 Preparation of the AN-107 Test Sample

Testing was conducted with a sample of 241-AN-107 tank waste archived after previous examination (Hendrickson et. al., 1997). This sample was originally obtained as a grab sample in January of 1997. It was diluted with 0.53 M NaOH to approximately 5 M Na and 0.24 M OH⁻. Cesium was removed using a crystalline silico-titanate ion exchanger. Following Cs removal, the free hydroxide measured 0.126 M. The cesium-decontaminated samples were transferred to the Radiochemical Processing Laboratory (RPL) and were archived in the Shielded Analytical Laboratory (SAL). A 1-L aliquot of this archived material was processed for Sr/TRU removal using 1 M Sr(NO₃)₂ and 1 M NaMnO₄ solutions (Hallen et al., 2000). After decontamination, the archive AN-107 could be contact-handled in a fume hood. The archive AN-107 feed composition is given in Table 2.1. The density of the AN-107 feed solution was determined to be 1.22 g/mL.

2.2 SuperLig[®] 655

Battelle received SuperLig[®] 655 (IBC Advanced Technologies, Inc. American Fork, Utah) material from batch 990805DHC-8-030 suspended in 0.25 M NaNO₃. An F-factor (the fraction of the resin's dry weight to the as-received material) of 0.454 was experimentally determined using duplicate aliquots of ca. 2.8-g resin that were weighed, dried at 95°C, and re-weighed.

2.3 Batch Contacts

The batch contact study was conducted according to the Test Plan BNFL-29953-056.² As-received SL- 655 was taken and the particles drained to a damp dryness. Nominally 0.33 g samples of the damp SL-655 (possessing an estimated ca. 0.12 meq. sulfate capacity per test sample) were weighed into tarred glass vials. To these resin aliquots, 5-mL aliquots (containing an estimated ca. 0.2 meq. sulfate) of archived AN-107 solution were added and the slurries were agitated for 4, 8, 16, 24, 72, and 96 hours. An archive AN-107 blank (no added resin) was similarly prepared and the test samples agitated for 96 hours. The temperature was not controlled but the temperatures at the beginning (nominally 22.7 °C) and the end (22.7 °C to 28.7 °C) of the agitation process were recorded. A summary of resin masses, AN-107 masses, contact times, and temperatures is provided in Table 2.2. After agitation was complete, the samples were filtered through 0.2-0.8-µm syringe filters and the filtrate submitted for sulfate analysis by ion chromatography.

2.4 Small-scale Ion Exchange Column Testing

The ion exchange study was conducted according to the Test Plan BNFL-29953-054.³ A slurry of the SL-655 resin in aqueous 0.25 M NaNO₃ was loaded into a column providing a resin bed 2.5-cm diameter by 5.75 cm high (L/D =2.3 with an approximate volume of 29 mL). A schematic of the ion exchange system is provided in Figure 2.1. The processing steps, solution matrices, volumes, and flow rates are summarized in Table 2.3. All processing was conducted at room temperature, 23.8 °C.

² BNFL-29953-056, Rev. 0, Batch Contact Test Instructions for SL-655 and Archive AN-107 Sample, 9/16/99.

³ BNFL-29953-054, Rev. 0, Test Instructions for Sulfate Removal Column Testing Using Envelope C (AN-107 Archive) Solution, 9/10/99.

	Concentration	MRQ		Concentration	MRQ
Analyte	µg/mL	µg/mL	Analyte	µCi/mL	µCi/mL
Cr	13	15	Cs-137	2.67E-02	9.00E+00
TOC	14,000	1500	Tc-99	5.61E-02	1.50E-03
TIC	6800	1500	A	ditional opportunistic	analytes
Cl	930	3000	Sr-90	6.87E-01	NMRQ
F ⁽¹⁾	3600	1500	Am-241	4.52E-03	NMRQ
PO ₄	1400	2500	Total alpha	5.13E-03	NMRQ
SO_4	3920 ⁽²⁾	2300	Co-60	5.72E-02	NMRQ
Addition	nal opportunistic	analytes	Sb-125	5.62E-04	NMRQ
Al	133	NMRQ	SnSb-126	2.87E-04	NMRQ
В	21	NMRQ	Cs-134	<2E-4	NMRQ
Ba	<1	NMRQ	Eu-154	1.10E-02	NMRQ
Ca	162	NMRQ	Eu-155	7.95E-03	NMRQ
Cd	26	NMRQ			
Со	[2.1]	NMRQ			
Fe	3	NMRQ			
K	723	NMRQ			
La	< 0.5	NMRQ			
Mg	<1	NMRQ			
Mn	[2.1]	NMRQ			
Mo	15	NMRQ			
Na	114,200	NMRQ			
Nd	[1.3]	NMRQ			
Ni	222	NMRQ			
Р	203	NMRQ			
Rh	[5]	NMRQ			
Ru	[15]	NMRQ			
Si	101	NMRQ			
Sn	<15	NMRQ			
Sr	91	NMRQ			
Ti	< 0.3	NMRQ			
U	[41]	NMRQ			
W	[73]	NMRQ			
Y	< 0.5	NMRQ			
Zn	6	NMRQ			
Zr	[1.2]	NMRQ			
NO ₂	28,000	NMRQ			
NO ₃	111,000	NMRQ			
Uncertainti	es tunically do no	t exceed + 14	$5\%(2-\sigma)$		

Table 2.1. 241-AN-107 Feed Composition

Uncertainties typically do not exceed +/-15% (2-σ).
Note: bracketed values indicate uncertainties greater than +/-15% (2-σ).
1) Fluoride concentration is suspect because of retention time shift and peak shape anomaly

2) Based on an average of 5 determinations.

	SuperLig [®] 655 mass	AN-107 mass	Contact time	Start temp.	End temp.
Vial ID	(g)	(g)	(h)	(°C)	(°C)
AAN-C	0.0	6.1655	96	NR	28.0
AAN55-04	0.3305	6.1933	4	22.7	23.9
AAN55-08	0.3300	6.2000	8	22.7	28.7
AAN55-16	0.3299	6.1733	16	NR	22.7
AAN55-24	0.3299	6.1725	24	NR	28.7
AAN55-72	0.3305	6.2380	72	24.0	28.0
AAN55	0.3304	6.1883	96	NR	28.0
AAN55-D	0.3287	6.1962	96	NR	28.0

Table 2.2. SuperLig[®] 655 Batch Contact with 241-AN-107

NR: not recorded

 Table 2.3.
 Summary of Ion Exchange Column Processing Steps

Process Step	Solution	Total V Column (n	Volume, Volumes nL)	Flow Rate Volumes per	in Column Hour (mL/hr)
		target	actual	target	actual
Column	0.1M NaOH +	3 (90)	3 (90)	3 (90)	3.1 (90)
Preparation	0.25M NaNO ₃				
Loading	AN-107 Feed	10 (300)	11.2 (327)	3 (90)	3.0 (88)
Feed	0.1M NaOH +	2 (60)	2.0 (59.5)	3 (90)	3.0 (88)
Displacement	0.25M NaNO ₃				
Column	0.25M NaNO ₃	2 (60)	2.1 (60)	3 (90)	3.1 (89)
Washing					
Elution	0.5M HNO ₃	10 (300)	10.7 (310)	1 (30)	1.1 (31)
Elution Rinse	0.25M NaNO ₃	2 (60)	2.1 (62)	1 (30)	1.1 (31)
Regeneration	0.1M NaOH +	2 (60)	2.1 (60)	3 (90)	3 (90)
	0.25M NaNO ₃				

NOTE: The column volume is based on a resin bed volume of 29.1 mL with a height 5.75 cm.

Figure 2.1. Schematic of the Sulfate Ion Exchange Column Setup

The column was initially conditioned with 90-mL (3 column volumes) of a solution consisting of 0.1 M in NaOH and 0.25 M in NaNO₃. Next, the resin was loaded with 327-mL of AN-107. Throughout the sample loading stage, 15-mL increments (0.5 column volumes) of the column effluent were collected. Some leakage around the top and bottom o-rings on the column was observed. The leakage at the bottom was collected while the leakage at the top was collected above the adjustable plunger. After sample loading was complete, the sample bed height measured 5.5-cm. The 15-mL column effluent samples were sub-sampled for sulfate analysis. The remaining fractions were combined and sub-sampled for GEA, ⁹⁰Sr, ⁹⁹Tc, TOC, TIC, IC and Cr. The TOC, TIC, ⁹⁹Tc, and several ⁹⁰Sr analyses were later cancelled per request by BNFL.

Following completion of the resin loading with AN-107, a column feed displacement solution 0.1 M in NaOH and 0.25 M in NaNO₃ was passed through the SL-655 resin bed and the effluent collected in two 15-mL fractions followed by two 30-mL fractions. Next, a column wash using 0.25 M NaNO₃ was collected in two 30-mL fractions. The first 15-mL feed displacement fraction was analyzed only by IC. The remaining feed displacement and column wash fractions were analyzed by GEA, IC and ICP.

To remove any remaining sulfate on the column the SL-655 resin next was eluted with ten, ≈ 30 -mL volumes of 0.5 M HNO₃. Each of these volumes was collected separately. During this initial elution process, the column plugged and went completely dry. The column plugging was attributed to the leakage of feed during the loading step around the adjustable plunger at the top. This feed appeared to drain back into the column where it was neutralized by the acid, resulting in precipitation of some of the dissolved metals which plugged the column. The plug was removed and the air bubbles in the resin bed were removed with a plastic Pasteur pipette causing some resin bed mixing. This incident most affected the first two elution fractions. Some leakage at the bottom of the column also occurred during this elution step and was repaired. Sub-samples of each elution fraction were analyzed by GEA, IC, and ICP. The remaining elution sample fractions, excluding the first and second, were combined and submitted for ICP, GEA, IC, and ⁹⁰Sr analyses. The TIC, TOC, total alpha, and ⁹⁹Tc analyses were cancelled per request by BNFL.

The column was finally rinsed with two, \approx 30-mL volumes 0.25 M NaNO₃, with the eluate being collected in two 30-mL increments. The two samples were analyzed by GEA, IC and ICP. Finally, the column was regenerated with two 30-mL volumes of a solution 0.1 M in NaOH and 0.25 M in NaNO₃. This effluent was collected in a single container.

3.0 RESULTS AND DISCUSSION

3.1 Batch Contact K_d Study

Within experimental error, the sulfate concentration did not change from the initial sulfate concentration of 3920 μ g/mL, even after a 96-hour contact time with SL-655 resin. For all contacts the average final sulfate concentration was 3900 ± 47 μ g/mL (1 standard deviation). The initial and final aqueous sulfate concentrations are essentially equal, and thus the measured sulfate K_ds become effectively 0, as described by the following formula:

$$K_{d} = \underline{(C_{o} - C)}_{C} \quad x \quad \underline{V}, \qquad (3.1)$$

where C_o = initial aqueous sulfate concentration, C = final aqueous sulfate concentration, V = solution volume, and m_r = dry resin mass.

From the uncertainty associated with the IC measurements, a maximum possible K_d can be estimated. The uncertainty associated with the IC analysis is claimed to be 15% or less. Assuming, then, that the final aqueous sulfate concentration is 15% less than the initial aqueous concentration and that this difference is bound up in the resin (which would correspond to only 25% of the resin's capacity), the application of equation 3.1 would lead to a maximum possible K_d of only about 6.

3.2 Ion Exchange Column Test

The sulfate concentration during the AN-107 loading phase was monitored for each half-column volume (15-mL). The sulfate loading/breakthrough curve, as determined by the concentration/initial concentration ratio (C/C_o) as a function of column volume, is given in Figure 3.1. The sulfate concentration changes only in the initial loading stages through the first 2 column volumes. This decrease in sulfate concentration is probably attributable to simple mixing of the sulfate containing AN-107 feed with the non sulfate containing column conditioning solution of 0.1 M NaOH/0.25 M NaNO₃. After the initial loading stages, the sulfate concentration remained consistent with the feed sulfate concentration (within the error of the analytical method), indicating that no exchange onto the column resin was taking place.

The subsequent feed displacement samples manifested reduced sulfate concentrations consistent with sample dilution in the effluent. The first column volume of 0.5 M HNO₃ elution resulted in a spike in sulfate concentration. This could indicate the stripping of a small amount of sulfate exchanged onto the resin during the loading phase. The amount of stripped sulfate is small, coming to only about 0.1 meq. of sulfate ion, which is only the amount of sulfate concentration of 3900 μ g/mL. The sulfate concentration changes during the various parts of this column test are illustrated in Figure 3.2, which shows the sulfate concentration found in solution relative to the feed sulfate concentration.

Other measured analytes displayed similar behavior relative to loading and recovery. Analyte concentrations (C) and C/C_o (where C_o is the AN-107 feed concentration) are shown in Table 3.1. The column effluent concentrations are virtually identical to the AN-107 feed concentrations (Table 3.1) and the C/C_o values are close to 1.0. The ICP analysis shows that a significant amount of Ba was eluted with the 0.5 M HNO₃, leveling off at a nominal concentration of ca. 200 μ g/g-eluate. Because Ba was not significantly present in the AN-107 load solution, the most likely source of the Ba must

be from the SL-655. During the load stage, Ba appears to have remained with the ion exchange resin. However, even during the feed displacement and column wash stages, detectable quantities of barium were observed in the eluate. Iron and manganese also eluted from the column in higher concentrations than the load solution. No evidence for any significant retention of the radionuclides ¹³⁷Cs, ⁹⁰Sr and ²⁴¹Am was observed. Not all column volume fractions are represented in the table, however analytical details of these samples can be found in Appendix B.

Figure 3.1. Sulfate Concentration Changes During Loading of Superlig[®] 655 Resin with an Archived Waste Sample from Tank AN-107

Eluent A represents Feed Displacement solution 0.25 NaNO₃-0.25M NaOH. Eluent B represents Column Wash solution 0.25M NaNO₃. Eluent C represents Elution solution 0.5M HNO₃. The first 10 column volumes consisted of the AN-107 loading.

Figure 3.2. Sulfate Concentration Profiles in Eluates Relative to Feed Sulfate Concentration

		MRQ	µg/mL	75	78	7.5	30	15	17	0CI 7	35	150	30 75	300	170	1500	600	16.5	1500 1500	3000	2500	200	µCi/mL	9.00E+0	7.75E-4 3.00E-1	1-100-0	µg/mL	NMRQ	NMRQ NMRQ	NMRQ	NMRQ	NMRQ	NMRU NMRO	NMRQ	NMRQ	3000 3000				
		1	C/Co	0.06	0.61	10.0				0.21		2	0.02		0.79			2.91					C/Co	0.04	0.01	200	C/Co				70.0		0.27							
		19.	µg/mL	[8.6]	459 08	60×	8	<0.5	9.0≥	[150]	6	[4.1]	2310 [2.3]	Ø	[80]	37	<50	16.8			0012	<100	µCi/mL	1.04E-3	6.20E-5 3.33E-2	4 1000	µg/mL			2	[4.6]		24.4							
ion A	\$	_	C/Co	0.22	050	0.12		0.16	0.12	c/ 7		20	0.13 0.12		0.95			0.33					C/Co	0.05	0.09	(T-0)	C/Co				0.18		1.03							
ulfate Elut 0.5M HNC	Volume	18.1	µg/mL	29.2	523 85	[3.2]	8	[2.1]	[2.1]	8.62 [190]	6	41.1	14600 27.4	Ŷ	[96]	29 Q	<50	[1.9]		<20	~100 ~100	100	μCi/mL	1.30E-3	4.05E-4 1 29E-1	1-1/2-1	µg/mL				50.9		93.6							
S	Column		C/Co	0.25	0.80	0.19		0.25	0.41	036		26	0.29 0.19	60.0	0.61			0.47					C/Co	0.06	0.33		C/Co				96.0		3.07							
		1.7.1	µg/mL	32.8	1280	5.07	8	[3.3]	7.34	8.77	6	54.4	32600 42.2	[0:7]	[62]	37	<50.02	[2.7]		0	<100 120	<001>	μCi/mL	1.67E-3	1.48E-3 3 97E-1	1-14/-0	µg/mL				109		280							
			C/Co	0.63	0.68	0.54		0.55	0.54	0/ 70		1.69	0.68 0.56	0.50	5.57			0.61					C/Co	0.05	0.05	1010	C/Co			0	0.49		0.39			01.0				
		16.2	µg/mL	83.7	478	14.2	4	7.21	9.76	[22]	6	[3.5]	77900 124	38.3	563	37	<50.02	[3.5]		90 007	001~	430	μCi/mL	1.38E-3	2.27E-4 5.04E-2	1-1-0-0	µg/mL				9.66		35.4		0000	2/00				
			C/Co		0.01	10.0			0.03	0.11		0.26	0.05		0.15			0.06					C/Co	0.09	0.002	10:0	C/Co	0.23		0000	0.00		0.01							
h aNO ₃	olume	15.3	µg/mL	<0.12	8.89 [1 0]	<0.03	<0.1	<0.04	0.58	<0.0 €.87	<0.1	[0.53]	5220 [0.2]	<0.2	15.6	90Q	60.0	[0.37]		57 52 57	98	20 20	μCi/mL	2.30E-3	1.10E-5 6 51E-3	2 - 11 - 20	µg/mL	4.84		50 02	0.9		0.844							
Was 0.25M N	Column 1		C/Co	0.01	0.01	10.0			0.01	0.15			0.05		0.63			0.02					C/Co	0.13	0.01	10:0	C/Co	0.44			10.0		0.01							
		14.3	μg/mL	1.8	8.37	0.03	<0.1	⊲0.04	[0.22]	c0.0>	<0.1	<0.1	6200 [0.26]	<0.2	64.1	\$0 { 90 {	cn.0∕ ₹	[0.12]		53 ç	(7) (2) (2)	< <u>50</u>	µCi/mL	3.42E-3	QE-5 5 60E-3	0-7001-0	μg/mL	9.37		5	[1.1]		0.726							
	<u>.</u>		C/Co	0.02	100	0.002			0.004	0.21			0.07 0.003		1.01			0.26					C/Co	0.18	0.01	10.0	C/Co	0.64			0.02		0.01							
		13.25	µg/mL	2.95	9.76 L1 /1	[0.05]	<0.1	<0.04	[0.08]	c0:0>	<0.1	⊲0.1	7790 [0.59]	<0.2	102	€005	cu.0∕	1.5		52 Y	(7) (2)	< <u>5</u> 0	µCi/mL	4.71E-3	<3E-5 7 38E-3	0-1021	µg/mL	13.6			5.0.C		1.05		e.	00				
nent M NaOH	me		C/Co	0.04	0.04	0.03		0.03	0.07	0.04			0.09 0.04	0.04	0.81			0.07		100	10.0	0.04	C/Co	0.22	0.03	0.0	C/Co													
eed Displace	Column Volu	12.25	µg/mL	5.8	26 6 0	0.00	<0.1	0.38	13	0.11	<0.1	<0.1	10485 8.8	2.7	81.7	€ 900	c0.0∕	0.38		<50	100	150	µCi/mL	5.93E-3	1.28E-4 4.85E-2	4-1001	µg/mL	12	0.42	-	40		5.8			1200 23000			I neak shane.	- Jours wood a
1 0.25N			C/Co	0.52	0 50	0.49		0.48	0.58	0.65 0.65			0.50 0.53	0.52	2.98			0.89		0.60	<i>cc.</i> 0	0.43	C/Co	0.61	0.41	10.0	C/Co				0./8					/5.0			k shift and	
		11.2	µg/mL	0.69	129.0 81.0	12.9	~1 21	6.3	10.5	1.1 [473]	_ ∖	<1.3	56652.5 117.2	39.6	301.0	9 €3 6	20.02	[5.2]		560 1000	<000	1700	uCi/mL	1.64E-2	1.87E-3 3 49F-1	1-17/1-0	µg/mL				861					16000		/-15% (2-α).	tion time nea	
			C/Co	0.94	0.04	0.93	0.99	0.92	0.85	0.84			0.84	0.83	1.30		1.13	1.00		1.01	t :0	0.89	C/Co	0.90	0.98 88 0	00.0	C/Co	1.19	0.93	5	0.8/	;	0.65		0.91	0.96	-0)	eater than +	use of reten	
	effluent	mposite	ug/mL	125	[12]	25	[2.]	12	15	[2:4] 606		$\overline{\vee}$	95600 211	64	131	30 9 2	[47]	[5.8]		940 2400	1300	3500	LCI/mL	2.39E-2	4.45E-3 5.02E-1	1-11-0-10	ug/mL	25	14		1//	4	60 [7]]	-	[1:1]	2/000	ed +/-15% (2	certainties gru	surspect heca	done
	SO4	1 cd	L				_					_	9						0 -			(2)	L L	-2	ς, -	analytes	L			_						- 2	o not exce	ndicate un	results are	
	AN-107	Feed	m/gn	133	[∨] [V]	26	[2.1]	13	18	5 723	<u>0.5</u>	[2.1]	11420 222	<i>LL</i>	101	9.5	[41]	9	1400 6800	930 3600	1400	3920	µCi/m	2.67E	4.52E 6.87E	opportunistic	m/g/m	21	15	[1.3]	203 [5]	[15]	91 [73]	0.5	[1.2]	11100	s tvnically d	sted values in	Fluoride r	
			Analyte	Ы	Ba	Cd	Co	Cr	Cu C	Fe F	La	Mn	Z Za	Чd	Si	n F	= D	Zn	TOC	0 ⁰	Dd	SO_4		¹³⁷ Cs	⁹⁰ Sr	Additional o		в	Mg Mo	PN 9	Р Rh	Ru	γSr	. Y	Zr	NO ²	Uncertaintie	Note: bracke	1	26

Table 3.1. Cation, Anion, and Radioisotope Measurements for SL-655 Ion Exchange Column Wash and Elution Cycles

3.4

4.0 CONCLUSIONS

The SL-655 resin was ineffective in removing sulfate from an archived sample of waste from tank AN-107. Both batch contact and small column tests indicate that insignificant quantities of sulfate from 241-AN-107 are bound by the SL-655. Taking into account the precision of the sulfate analyses, the sulfate batch K_d values for of SL-655 are determined to be between 0 and 6 and the column tests indicate that no more than 0.09 column volumes of sulfate of the 10 column volumes of AN-107 feed passed through the system were retained by the resin. In addition, the elution of significant quantities of barium from the SL-655 during the process is troubling. If the assumption is made that the presence of one equivalent of barium in the resin is required to bind one equivalent of sulfate, then the capacity equivalent of 0.25 grams of dry resin was lost in this one test cycle.

Finally, it should be noted that, if the performance of SL-655 is tied to the affinity of Ba for sulfate, the poor results shown in the batch and column tests are consistent with the results from concomitant studies examining selective precipitation of sulfate by barium from the same 241-AN-107 solution. In these precipitation tests, the presence of large amounts of carbonate in the AN-107 solution were shown to inhibit barium precipitation of sulfate, even when Ba:sulfate ratios were significantly greater than were employed in this study. However, a much more effective precipitation of sulfate from carbonate depleted AN-107 solutions was observed. Should there be any interest in trying to further apply SL-655 to sulfate removal of Hanford tank supernatants, an initial processing step to remove carbonate might enhance column performance.

5.0 REFERENCES

Hallen, R. T., K. P. Brooks, and L. Jagoda. 2000. *Demonstration of the Sr/TRU Removal Process with Archived AN-107 Waste*, BNFL-RPT-026, PNWD-3033, Battelle, Pacific Northwest Division, Richland, Washington.

Hendrickson, D.W. 1997. *Hanford Complexant Concentrate Cesium Removal Using Crystalline Silicotitanate*, SESC-EN-RPT-005, SGN Eurisys Services Corporation Richland, Washington.

APPENDIX A

Appendix A: Test Instructions

APPENDIX B

Appendix B: Analytical Data

APPENDIX C

Appendix C: Sample Spreadsheets

Table C.1. Batch Contacts: Archive AN-107 Contacted with Superlig[®]-655 (SL-655)

Performed 09/16/99 through 09/20/99, as per " Batch Contact Test Instructions for SL-655 and Archive AN-107 Sample", BNFL-TI-29953-056 Distribution coefficient calculation: Kd = [(C_0-C1) / C1] x [V / (M x F)]

ution solu iss (g) volume	sin sol s (g) ma
5.0	1933
5.0	6.2
5.0	1733
5.0	1725
5.1	.238
5.0	1883
5.0	1962

				b					
feed density =	1.22	g/mL							
Archive AN-107 sulfate cor	ncentrations	8							
AN-107 start	3632.7	Be	d volume =	29.1 n	nL Bed heig	ht changed	from 6 cm at s	start to 5.5 cm at end.	Average
AN-107 start	4244.2				bed volu	me used.			
AN-107 start	4024.4								
AAN-C-A	3949.1			9/15/99 - 9/18/99	per " l est instri 0 () l 102	uctions for S		a 	
99-2663 SO4 IX Feed	3763.9		Column les	sting Using Envelo	ope C (AN-107	Archive) So	olution", BNFL		
Average	3922.9		29953-054,	Rev 1.					
Standard Deviation	236.5								
							Sulfate		
	time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co		
	hr	6	mL	ng/mL	BV	ΒV	average		
99-2663 SO4 IX Feed)					3922.9	feed	
99-2664 AN-SO-L1A	0.20	18.1994	14.9	2100	0.51	0.51	53.5%		
99-2665 AN-SO-L2A	0.21	19.3336	15.8	2900	0.54	1.06	73.9%		
99-2666 AN-SO-L3A	0.14	18.0048	14.8	3200	0.51	1.56	81.6%		
99-2667 AN-SO-L4A	0.17	17.287	14.2	3500	0.49	2.05	89.2%		
99-2668 AN-SO-L5A	0.17	17.5912	14.4	3600	0.49	2.54	91.8%		
99-2669 AN-SO-L6A	0.18	17.7314	14.5	3700	0.50	3.04	94.3%		
99-2670 AN-SO-L7A	0.15	17.9241	14.7	3600	0.50	3.55	91.8%		
99-2671 AN-SO-L8A	0.17	17.7684	14.6	3600	0.50	4.05	91.8%		
99-2672 AN-SO-L9A	0.17	18.0581	14.8	3600	0.51	4.55	91.8%		
99-2673 AN-SO-L10A	0.17	18.5403	15.2	3800	0.52	5.08	96.9%		
99-2674 AN-SO-L11A	0.17	18.5183	15.2	3600	0.52	5.60	91.8%		
99-2675 AN-SO-L12A	0.17	17.2941	14.2	3500	0.49	6.08	89.2%		
99-2676 AN-SO-L13A	0.17	18.1606	14.9	3700	0.51	6.59	94.3%		
99-2677 AN-SO-L14A	0.17	17.9832	14.7	3600	0.51	7.10	91.8%		
99-2678 AN-SO-L15A	0.17	18.1539	14.9	3600	0.51	7.61	91.8%		
99-2679 AN-SO-L16A	0.17	18.4088	15.1	3700	0.52	8.13	94.3%		
99-2680 AN-SO-L17A	0.17	18.3436	15.0	3600	0.52	8.65	91.8%		
99-2681 AN-SO-L18A	0.18	19.8415	16.3	3600	0.56	9.20	91.8%		
99-2682 AN-SO-L19A	0.16	17.3692	14.2	3700	0.49	9.69	94.3%	Samples I 1-I 20 were	
99-2683 AN-SO-L20A	0.17	18.8238	15.4	3600	0.53	10.22	91.8%	composited 121 and	1 22
99-2684 AN-SO-L21A	0.17	18.032	14.8	3500	0.51	10.73	89.2%	were partially feed	
99-2685 AN-SO-L22A	0.17	17.063	14.0	1700	0.48	11.21	43.3%	displacement solution	
avaerage eff composite				3500			89.2%		
Total	3.72		326.6	ave flow rate =	3.01	BV/hr			

Table C.2. Column Flow Testing of SL-655 for Sulfate Removal from Archive AN-107

C.3

Table C.2. Column Flow Testing of SL-655 for SO4 Removal from Archive AN-107 (cont')

0.25 M NaNO3/0.25 M NaC	OH Feed D.	isplacemen	It					
approximate density of 0.25	5 M NaNO	3/0.25M NaC	= HC		1.024	g/mL	Sulfate	
	time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co	
	hr	σ	mL	ng/mL	BV	BV	average	
99-2687 AN-SO-FD1	0.33	31.0753	30.3	150	1.04	12.25	3.8%	
99-2688 AN-SO-FD2	0.34	29.8419	29.1	<50	1.00	13.25	<1.3%	
Total	0.7		59.5	ave flow rate =	3.02	BV/hr		
0.25 M NaNO3 wash								
approximate density of 0.25	5 M NaNO	=	1.012	g/mL			Sulfate	
	time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co	
	hr	0	mL	ng/mL	BV	BV	average	
99-2689 AN-SO-CW1 MS	0.34	31.0753	30.7	<50	1.05	14.30	<1.3%	
99-2690 AN-SO-CW2 MS	0.32	29.8419	29.5	<50	1.01	15.32	<1.3%	
Total	0.66		60.2	ave flow rate =	3.13	BV/hr		
Elution								
approximate density of 0.5	M nitric aci	= p	1.014	g/mL		Sulfate		
	time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co	
	hr	σ	шГ	ng/mL	BV	BV	average	
99-2692 AN-SO-E1-A	1.00	25.1152	24.8	427	0.85	0.85	10.9%	
99-2693 AN-SO-E2-A	0.88	26.3731	26.0	<100	0.89	1.74	<2.5	
99-2694 AN-SO-E3-A	1.00	30.1769	29.8	<100	1.02	2.76	<2.5	
99-2695 AN-SO-E4-A	1.00	35.0744	34.6	<100	1.19	3.95	<2.5	
99-2696 AN-SO-E5-A	1.00	29.9812	29.6	<100	1.01	4.97	<2.5	
99-2697 AN-SO-E6-A	1.00	29.0696	28.7	<100	0.98	5.95	<2.5	
99-2698 AN-SO-E7-A	1.06	34.4395	34.0	<100	1.17	7.12	<2.5	
99-2699 AN-SO-E8-A	0.96	34.0742	33.6	<100	1.15	8.27	<2.5	
99-2700 AN-SO-E9-A	1.02	36.1764	35.7	<100	1.22	9.49	<2.5	
99-2701 AN-SO-E10-A	1.00	33.6707	33.2	<100	1.14	10.63	<2.5	
99-2702 SO4 Eff Composit	te A			<100			<2.5	
					ave	flow rate =	1.07	BV/hr
Total	9.92	hr	309.8	mL				

C.4

Table C.2. Column Flow Testing of SL-655 for SO4 Removal from Archive AN-107 (cont')

Elution rinse							
approximate density of 0.2	5 M NaNO3	1.012	g/mL				
	time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co
	hr	0.	ц ш	ng/mL	BV	BV	average
99-2703 AN-SO-ER1	1.01	31.1126	30.7	<100	1.06	1.06	<2.5
99-2704 AN-SO-ER2	0.99	31.4171	31.0	<100	1.07	2.12	<2.5
Total	2.00		61.8	ave flow rate =	1.06	BV/hr	
Regeneration			Note: B	DL; below detect	tion limit		
approximate density of 0.2	5 M NaNO3	/0.25M NaC	H =	1.024			
	mass	volume	Sulfate	Bed volumes	C/Co		
	b	mL	ng/mL	BV			
99-2705 AN-SO-REGN	61.4488	60.0	<100	2.06	<2.5		
		Note: BDL	; below det	ection limit			

Distribution

No. of Copies

OFFSITE

No. of

Copies

ONSITE

- 2 DOE/Office of Scientific and Technical Information
- 1 R. Bruening IBC Technologies 856 E. Utah Valley Drive American Fork, UT 84003
- 1 P. McGinnis Oak Ridge National Laboratory PO Box 2008 Oak Ridge, TN 37831-6273
- 1 B. Moyer Oak Ridge National Laboratory PO Box 2008 Oak Ridge, TN 37831

5	British Nuclear Fuels, Limited		
	M. E. Jonnson (4) E. Higginbotham	BIN-FL DN FI	
	E. mggmootnam	DIN-I'L	
1	<u>CHG</u>		
	D. J. Washenfelder	H6-18	
11	Pacific Northwest Natio	nal Laborator	

1Pacific Northwest National Laboratory
J. R. BonthaK6-24D. L. Blanchard Jr.P7-22S. K. FiskumP7-22D. E. KurathP7-28E. V. MorreyP7-28B. M. RapkoP7-25Technical Report Files (5)K1-06

APPENDIX A

Appendix A: Test Instructions

Batch Contact Test Instructions for SL-655 and Archive AN-107 Sample

BNFL Project Document Number: 29953-056, rev 0

Effective Date: September 16, 1998

Controlling Test Plan: 29953-03

CONTROLLED COPY

Author Approval:

D.E. Kurath.

<u>2/16/</u>29 Date

 $\frac{1}{2} \frac{1}{2} \frac{1}$

Technical Reviewer: David ? But

D.L. Blanchard

<u>9/16/99</u> Date

BNFL-29953-056, Rev. 0: Batch Contact Test Instructions for SL-655 and Archive AN-107 Sample

tested at a later date.

To perform the batch contact tests with SL-655 and archive AN-107 sample that has been **Objective:** treated for Sr/TRU removal. CAUTION: FOLLOW THE INSTRUCTIONS LISTED BELOW. Materials: Distilled de-ionized water Waste samples (archive AN-107 filtrate composite) Superlig 655 for SO₄ removal (abbrev. SL-655) Standard laboratory glassware and plasticware Equipment: Syringe filters, 0.2-0.8 um (10-12) Thermometer to record temperature in lab 410 and 507 Splash shield for separation of equipment for radiological work in fume hoods 20 mL scintillation vials Shaker table A sample of archive AN-107 (envelope C) will be used. The actual AN-107 will be Wastes:

Location: Solution and materials preparations will be done in labs in Pacific Northwest National Laboratory's Radiochemical Processing Laboratory (RPL). Actual waste sample preparations and batch

contact tests will be performed in the lab 410 and 507 of the RPL.

 Starting Date:

 Balance No.:
 Location:
 Next Calibration Date:

Section A: Feed Characterization

A1. Locate the actual waste bottle in lab 410 fume hood. Record the actual labels and the appearance (color, cloudiness, precipitates, etc.).

Envelope C (AN-107) Label(s):

Appearance:

Dose rate if given:

A2.____ If data are available, determine the SO_4 concentration using the feed analytical characterization data collected for these samples. Record the data report used and show the calculations here.

Report(s) Used:

A3.____ If data are available, determine the CrO_4 concentration using the feed analytical characterization data collected for these samples. Record the data report used and show the calculations here.

Report(s) Used:

BNFL-29953-056, Rev. 0: Batch Contact Test Instructions for SL-655 and Archive AN-107 Sample

Sulfate Batch Contacts

The SL-655 material is untested. BNFL has directed PNNL to use a V/M of approximately 15 mL per gram, so 5mL/0.33 g will be used. The resin is stored in 1 M NaNO3 and is not to be dried or washed with water but will be weighed damp. Three unspiked samples will be run with one control.

Section B: Vial Preparation

Note: For each resin, the samples for the contacts should all be weighed in one session.

-

- B1.____ Label, tare and weigh materials into 20 mL scintillation vials using Tables B.1. The SL-655 should be damp but not saturated with the solution it is currently stored in.
- B2.___Label, tare and weigh materials into 20 mL scintillation vials using the following table for the SO₄ batch contacts.

Vial ID	IX	Vial Mass	Vial + cap +	Resin	Required Resin	Date
	Material	(incl. Cap)	resin mass	Mass (g)	Mass (g)	
		(g)	(g)			
AAN-C	None	16.8750	 1 		-	9/16/99
AAN55	SL-655	16.8697	17.2030	0.3304	Q330±0.002	9/14
AAN55-D	SL-655	16.8604	(7.1891)	0.3287	0.330±0.002	
AAN55-04	SL-655	17.0890	17.4128	0.3305	0.330±0.002	
AAN55-08	SL-655	16.8669	17,1969	0,3300	0.330±0.002	
AAN55-16	SL-655	16.9226	17.2525	0.3299	0.330±0.002	
AAN55-24	SL-655	16.8330	17.162	0.3299	0.330±0.002	
AAN55-48	SL-655	17.0436	17.3747	0.3311	0.330±0.002	
AAN55-72	SL-655	16.9354	17.2659	0.3305	0.330±0.002	N

Table B.1: Material Contact Vial Weights - SO₄ Batch Contacts.

t , ,	+9771	wien	dry a 95°c	wetrus	angua
F. factors	40.97)6	19.8206	18.26568	2.8483	1.293
55552	16.9821	19.8518	18.29339	2.8727	1.3042
(see	f barton				•
SEPT	0.454				
555FZ	0.454				

BNFL 29953-056, Rev. 0 Batch contact test instructions for SL-655 and Archive AN-107 Sample

Section C: Batch Contacts

The contacts will be performed in Room 507 using a shaker on the bench.

- C1.____ Pipette 5 mL of the archive AN-107 sample into the vials as shown in Table C.1 below. <u>Note</u> <u>that the sample will be pipeted into the vials at different times, and that this experiment</u> <u>requires 4 days to complete</u>. Make sure to start this experiment on a Monday, or Thursday and make sure that you will be here to start and to collect samples at the appropriate times (see Table C.1), and that you have RCT coverage as appropriate.
- C2. Check the masses of each capped vial with solution when the solution is added, and record in Table C.1 below. Also record the actual date and time for each.
- C3.____ Place the capped vial in the shaker table on the bench top immediately. Follow all appropriate radiological procedures. Shaker set on low ~ 180 rpm
- C4.____ Record the room temperature (rm 507) in Table C.1 each time you start a contact. Also transfer the figure for the mass of each vial from Table B.1, column "Vial Mass" to Table C.1, column "Mass," and determine the mass of solution added to the vial.
- C5.____ Prepare for collection of the samples by assembling 9 syringe filter setups, and erecting a clear splash shield in the hood. Keep some extra syringe filter stuff handy in case you need more.
- C6. Remove the vials from the shaker after the target contact time specified in Table C.1. Record the actual date and time that they were removed, and check the mass of each vial.
- C7. ____ Immediately separate the solution from the SL655 resin by filtering the solution through a clean syringe filter into the appropriate "-A" vial (i.e., AAN-C into AAN-C-A, etc.). Perform the filtration behind the splash shield, and cap vials immediately.
- C8. ____ Record the room temperature in Table C.1 each time you stop one of the contacts. Also transfer the figure for the mass of each vial from Table D.1, column "Vial Mass" to Table C.1, column "Mass," and determine the mass of solution in the vial.
- C9. ____ The filtered samples should be submitted for IC anion analysis on Monday, Sept 20. These samples will be batched with other samples requiring IC to determine sulfate.

BNFL-29953-056, Rev. 0: Batch Contact Test Instructions for SL-655 and Archive AN-107 Sample Table C.1: Material Contact Weights and Start Times for SO₄ Kd versus Time Batch Contacts.

<u> </u>					<u> </u>						-	-6	-	\leq			T			
Temp at	stop	(c)		5		29.0		990		23.9	0	1.97		22.7		18.7	0		0	0.00
Temp at	start	(°C)						7		22.7		22,7								24.0
Sltn Net		(g)	(40,1655	NOG	(.12.0)		6,1962		6.1933		6.2000	1	6.1733		6.1725				6,2380
Vial + cap +	resin + Sltn	(g)	12 01105	2010.12	72 22 QIL.	4003.64		2 588 38		23.6128		23.3969		23.4258		23.3354				23,5039
Vial +cap	resin	(g)		16.8750		1002121		17.18-91		17,4195		17, 1969		17.29 63		17.1629		17. 277 1	8	17.265%
End date,	time		66/02/6	11:54	66/02/6	11:51	9/20/99	11:57	66721/6	01:10	9/17/29	19:35	9/11/99	08:00	6612116	16:00			66/02/6	11:45
Start Date,	Time		66/91/B	11:50	2/16/99	11:50	2017112	11:50	66/21/6	07:40	66/11/6	07:35	9/16/99	16:00	Are/99	16:00			61/149	11:30
Target stop	time		9/20/99	11:00	9/20/99	11:00	9/20/99	11:00	66/11/6	12:30	9/11/6	15 3:45	66/11/6	8:00	9/11/99	15:30	6672746	-8:00	9/20/99	11:00
Target start	time		9/16/99	11:00	9/16/99	11:00	9/16/99	11:00	66/11/6	8:30	66/11/6	7:45	9/16/99	16:00,	9/16/99	15:30	66/02/6	-8:00	66/11/6	11:00
Target	contact time,	(hrs)	none		96		96		4		8		16		24				72	
Vial ID			AAN-C		AAN55		AAN55-D		AAN55-04		AAN55-08		AAN55-16		AAN55-24		AAN55-48	Velete	AAN55-72	

6 of 6

7

July Howwall

Vorking

TEST INSTRUCTIONS FOR SULFATE REMOVAL COLUMN TESTING USING ENVELOPE C (AN-107 ARCHIVE) SOLUTION

BNFL Project Document Number: 29953-054, Rev. 0 Effective Date: 09/10/1999 Controlling Procedure/Test Plan Number: 29953-003

Proj 29953 Table 2-12,3-1 12 92.12.3.1

Author:

33

195 Kurath for JR Bontha dail L. Marchael

Technical reviewer:

DE Kurat

DL BLANCHARD

9-14-99

CONTROLLED COPY

SYSTEM DESCRIPTION

The ion exchange column system is diagramed in Figure A.1. It consists of a small column containing SL-655 ion exchanger, a small metering pump and two valves. Valve 1 is placed at the outlet of the pump and may be used to eliminate air from the system or isolate the columns from the pump. Valve 2 is primarily used for obtaining samples or redirecting the effluent to the collecting vessel.

The term "sample position" will be used to denote directing flow into a sample bottle. Closed denotes no flow. Valve 1 and 2 are closed when the handles point away from the sample port or the flow line.

NOTE: Valve 1 should always be in the flow position throughout the entire experiment unless otherwise specified.

Process Step	Solution	Total Volume, mL (Column Volumes)	Flow Rate in Column Volumes per Hour (mL/hr)	Est. Time in Hours
Column	0.1M NaOH +	90 (3)	3 (90 mL/hr)	l hr
Preparation	0.25M NaNO3			
Loading	AN-107 Feed	300 (10)	3 (90 mL/hr)	3.33 hrs
Feed	0.1M NaOH +	60 (2)	3 (90 mL/hr)	0.67 hrs
Displacement	0.25M NaNO3			
Column	0.25M NaNO3	60 (2)	3 (90 mL/hr)	0.67 hr
Washing				
Elution	0.5M HNO3	300 (10)	1 (30 mL/hr)	10 hrs
Elution Rinse	0.25M NaNO3	60 (2)	1 (30 mL/hr)	1 hr
Regeneration	0.1M NaOH +	60 (2)	3 (90 mL/hr)	0.67 hrs
	0.25M NaNO3			

The process testing steps are:

NOTE: The column volume is based on a volume of 30 mL with a height ~ 5.9-cm or 2.33-inches.

CAUTION: Water or chelating compounds (e.g., EDTA) that are not associated with metals should not contact with SuperLig® 655 because the divalent cation may be extracted and precipitate in the contacting solution.

CAUTION: Carefully monitor the pressure during all column operations to ensure the pressure remains below 40-45 psi. Normal operating pressure is less than 5 psig.

CAUTION: It is difficult to remove air from the system, especially from the ion exchange bed. Valve 2 should be closed prior to turning off the pump and opening or loosening of the plunger so that the system doesn't drain and draw air into the beds. It is possible to recover from air in the beds up to the point at which the experiment has been started. Once the experiment is started, air in the resin beds can not be removed with out disrupting the resin bed, which will invalidate the experiment and about \$200k worth of work.

USEFUL INFORMATION

Density of feed = $1.2281 \text{ g/mL} @24 ^{\circ}C(\text{determined with a 25 mL volumetric flask})$ Density of 0.1 M NaOH + $0.25M \text{ NaNO}_3@25 ^{\circ}C = 1.008 \text{ g/mL}.$ Density of 0.25 M NaNO₃ @ 25 ^{\circ}C = 1.001 g/mL. Density of 0.5 M nitric acid @ 25 ^{\circ}C = 1.014 g/mL

PRE TEST PREPARATIONS

- 1. Label and tare the 20 and 40-mL collection vials shown in Tables A.1 to A9.
- 2. Record the information about the balances to be used

(A) Balance - 040	Location lab 410
(B) Balance	Location
(C) Balance	Location

Calibration	8/17	91	due	2/2000
Calibration	1			
Calibration	n		2	

- 3. Obtain an initial tare weight of a 500-mL Bottle and Cap labeled "AN-107 SO4 IX Effluent Composite": _______g.
- 4. Obtain the initial tare weight of a 500-mL Bottle and Cap labeled "AN-107 IX Acid Eluant Composite":

NOTES:

Sample dose - Hur fler at me] " 1.5 mrlber at lood face

COLUMN PREPARATION

NOTE: The Superlig 655 resin is provided in a solution containing 0.25M NaNO₃. Water or chelating compounds (e.g., EDTA) that are not associated with metals should not contact with SuperLig 655 because the divalent cation may be extracted and precipitate in the contacting solution.

NOTE: The pump calibration curve is shown in Figure A2.

5.	Record the height of the bed: -6 cm.
6.	Record the Room Temperature: 24,8
7.	Obtain the tare weight of the Waste Bottle:g.
8.	Obtain the tare weight of the Waste Bottle with the Cap:g.
9.	Insert the effluent line from the Column into the Waste Bottle.
10.	Insert the pump inlet line into the 0.1M NaOH and 0.25M NaNO ₃ solution.
11.	Set the pump controller to 5 (90 mL/hr).
12.	Turn Valve 2 to the flow position to direct flow to the waste bottle.
13.	Immediately turn the Pump ON and pump for 1 hour. Start Time & Date: 5:30 [9]15 [99 End Time & Date: 6:30 [9]15 [99
14.	Close Valve 2 and immediately turn Pump OFF. I Valve closed, the douding
15.	Obtain mass of Waste Bottle + 0.1M NaOH and 0.25M NaNO3:
	Mass of 0.1M NaOH and 0.25M NaNO ₃ pumped = g .
16.	Record the height of the bed: $-6 \alpha_{m}$ cm.

NOTES:

COLUMN LOADING

NOTE: Prior to the start of the loading cycle, ensure that the tare weight of the Vial's + Cap's listed in Table A1 and A2 is determined and recorded.

- 17. Using a pipette, transfer 20-mL sample of the starting feed material into the 20-mL vial labeled AN-SO-L0. Record the weight of the Vial + Cap + Sample in Table A1.
 SO4 1X FEEP
- 18. Record the following information:

Resin Bed Volume:	(6 cm)
Resin Bed Color:	Yellow brown
Room Temperature:	23,8°C
Other Observations:	-

19. Insert the pump inlet line into the AN-107 Feed solution.

20. Ensure that Valve 2 is in the no flow position

21. Ensure the pump controller is set to 78 (90 mL/hr) and initiate pumping.

Start Time & Date: 7:42 AM, 9-16-99

22. Immediately open Valve 2 to allow solution to flow into the waste bottle

- 23. After 40 minutes, close Valve 2 and turn the Pump OFF.
- 24. Place Vial AN-SO-L1 under Valve 2, turn the pump ON and immediately turn Valve 2 to the sampling position
- 25. Record time of sampling in Table A1
- 26. After approximately 15-mL of the feed (takes ~ 10 min) is collected in the sample vial, turn the Pump OFF, quickly replace the vial AN-SO-L(n) with AN-SO-L(n+1), and turn the Pump ON.
- Record stop time of collecting sample AN-SO-L(n) and start time of collecting AN-SO-L(n+1) sample in Table A1.

28. Record the weight of the Vial + Cap + Sample in Table A1.

29. Repeat Steps 26 to 28 until 10 CV (or 300-mL) of feed has been pumped through the column.

NOTE: Samples should be taken in the order given in Table A1. In all, 20 samples of the ion exchange effluent will be collected.

30. After the loading is completed, close Valve 2 and turn the pump OFF.

~

31. Record the Time and Date the pump is stopped and loading is complete: ~ 11: 30 Am, 9-16-99
32. Record the height of the bed: <u>5.5</u> cm.
NOTES:

8:00A Some feed want to waste bottle.

8:15 AM MUST HAVE BEEN SOME CHANNELENG, ON AT LEAST BOUNDARY BETNEEN RESEDUAL NOOH AND FEED WAS NOT DISTINCT, BECAUSE THE LAST DROPS OF SO-LI WERE A DIFFERENT DENSITY THAN THE REST OF THE LIQUID IN THE VIAL - OBVIOUS AS THE DROP FELL INTO THE LIQ IN THE VIAL - OBVIOUS AS THE IN W/ THE REST OF THE LIQUID. THIS IS NOT THE CASE W/ SO-LZ. ALL DROPS LOOK TO BE THE ALL THE SAME DENSITY. WHEN SD-LI WAS STANTED, THE EFFLUENT WAS BROWN, SO STARE FEED WAS CETTING THEORY OF THE SAME DROWN, SO

10:55 NITTLE THAT BET MILLET

11:15:00 AM PUMP OFF, FEED TUBE SWITCH TO FEED DIBPLACEMENT SOLUTION (0.11 No04, 0.25 M NaND3)

11:16:20 AM PUMP BACK ON, SAMPLE SO-LZO STARTED

11:45 LOOKED LIKE FEED DISPLACE NEWT SOLUTION WAS MORE DENSE THAN FEED. DROPS SAME TO BOTTOM OF VIAL AS VIAL NEARED FULL.

> COLUMN STARTED LEAKING AT N9:30 AM. LOST KINL, THEN PLACED VEAR "LEAK" IN PLACE TO CATCH. FEED LEAKED AROUND BOTH TOP + BOTTOM O.RINGS of COLUMN. NS THREADS ON TOP (LICE LEWEL). BOTTOM VOL UNKNOWN.

Preparation of the Loading Samples for Analysis

NOTE: All loading samples will be sub-sampled for analysis and the remaining samples will be mixed to prepare a composite of the feed effluent.

NOTE: Analytical vials need to be loaded out of the fume hood and therefore, need to be uncontaminated.

NOTE: Analytical sample preparation can be done at the completion of the experiment.

- 33. Prepare the analytical samples as indicated in Table A2.
- 34. After the analytical sample preparation is complete, transfer the remaining solution from each vial into the 500 mL bottle labeled "AN-107 SO4 IX Effluent Composite" Tare = 52. 168999 (w/cap)

g

g

35. Cap and determine the weight of the effluent bottle: _____

Mass of the processed waste stream =

- 36. Gently shake the effluent bottle to mix the contents.
- 37. Determine the tare weight of a 20-mL sample vial labeled "SO4 Effluent Composite" and record in Table A2.
- 38. Carefully pipette 20-mL of the composite into the vial.
- 39. Determine the weight of the Vial + Cap + Composite Sample and enter in Table A2.

NOTES:

FEED DISPLACEMENT

NOTE: After the loading cycle is completed, the column must be washed to displace feed. This is accomplished by pumping 2 CV (60 mL) of 0.1 M NaOH + 0.25M NaNO₃ solution through the column at a flow rate of 3 CV/hr and collecting the effluent in 1 CV increments (i.e. two samples of approximately 30 mL each will be collected).

NOTE: Feed displacement with a 0.25M NaNO3 solution containing 0.1M NaOH removes any aluminate that might precipitate on the column during the column washing or acid elution steps.

NOTE: The feed displacement samples will be directly loaded out of the fume hood for analysis and therefore, care must be taken to ensure that the samples are uncontaminated.

- 40. Using a clean pipette, collect 20-mL of the 0.1 M NaOH + 0.25M NaNO₃ in a tared vial labeled the same and record the weight in Table A9.
- 41. Place the pump inlet line into the 0.1M NaOH + 0.25M NaNO₃solution.

A

- 42. Adjust the pump controller to 3.9 (90 mL/hr).
- 43. Record the tare weight of the Sample Vials + Caps in Table A3.
- 23.4°C @ 11:49:52 44. Record the Room Temperature:

45. Place the vial labeled "AN-SO-FD-1" under the Valve 2.

11:46:20 Am LISt Feed Disp. Vial 46. Start the pump and immediately turn Valve 2 to the sampling position.

47. Record the Start Time and Date of the feed displacement:

- 48. After one column volume (~ 30 mL) of sample is collected in the vial, turn the Pump OFF, quickly replace vial "AN-SO-FD-1" with "AN-SO-FD-2", and turn the Pump ON.
- 49. After one CV (~ 30 mL) of sample is collected in the vial, close Valve 2, and turn Pump OFF.

12:27:00 50. Record Finish Time and Date of feed displacement:

5.5 cm. 51. Record the height of the bed:

NOTES:

12:08:00 INLET TUBE SWITCHED TO FEED DISPLACEMENT SOLUTION

NOTE: SAMPLES COLLECTED IN TABLES A3, A4, A5, and A7 HAVE A VOLUME OF 30-mL. FOR THIS REASON THE SAMPLE VIALS FOR ALL OF THESE SAMPLES SHOULD HAVE A VOLUME OF 40-mL.

Table A3. Data Log Sheet for Feed Displacement Samples using 0.1M NaOH + 0.25M NaNO₃ Solution.

				Ç	
ICION.	Mass of Sample +	Vial + Cap, g	56.4568	55.7580	ASU CO. TEC.
1H + 0.25M NaNU ₃ 501	Time Sampling	Ended	12:06:30	12:27:00	S . CTATATA
ampies using 0.11M Nac	Time Sampling	Started	Luf CE: 94:11	12:06:30 AT	
tor reed Displacement S	Mass of Vial + Cap	(tare), g	25.6542	25.5798	
anie A.J. Data Log Sneet	Target Volume	mL	30	30	
1 66-71-6	Sample ID		AN-SO-FD1	AN-SO-FD2	

Table A4. Data Log Sheet for Column Rinse Samples using 0.25M NaNO₃ Solution.

nple +	p, g	10	4
Mass of San	Vial + Ca	56.812	592.55
Time Sampling	Ended	12:48640	00: 60: 1.00
Time Sampling	Started	12:28:20	12549:40
Mass of Vial + Cap	(tare), g	25.7375	25.9240
Target Volume,	ML	30	30
Sample ID		AN-SO-CW1	AN-SO-CW2

66-t1-6

Table A.5. Data Log Sheet for Elution Samples.

	Sample #	Target Volume ML	Mass of Vial + Cap, g	Time Started	Time Ended	Mass of Sample + Vial + Cap, g	
	AN-SO-EI	30	25.7358	66-t1-6 LWSS:H	81-41-6 MYS:5	20. 251.00	
	AN-SO-E2	30	25.9101	Sissan	6:4844	52.2832	Pump 1
	AN-SO-E3	30	25.6276	8:32:0041	9:32:00 AM	55. 8045	Pump on
	AN-SO-E4	30	25.6779	9:32:00 At	19:32:00 AM	1 6256.09	Pup 50d 7 to 30
5	AN-SO-E5	30	25.8912	10:38:00 cm	11:38:20 AM	55.8724	and for the stand
	AN-SO-E6	30	25.5841	11:38:20 AM	12:38:00 14	±85725	~ 2. 2. t30
	AN-SO-E7	30	25.8081	1:3014	2:33:30 PM	92420 60.24702	
	AN-SO-E8	30	25.8829	2:33: 30 PM	3:31:00 PM	1256:25	2
	AN-SO-E9	30	25.6793	3:31:00 PM	4:32:00 PM	t 558'19	
	AN-SO-E10	30	25.6507	4:34:00 PM	4:534.00 PM	59.3214	SUTTCH TO
	7 E AKI		16.7146				ELWITEN
	5 out Eludo long	7200m	52.2322			251.3	北/0、
	Here -		6.8376		(30.9760	
	Visero Vol.		~				
, ,	Flow all An 6	unner to	tremore un	from dop "	est & ensure a	all reduce up	
¥	power up you	The week.	Luquie davel	bur very	uear top of hed	- henrohno	

COLUMN WASHING

NOTE: After the feed is flushed through the column, the column is washed with 2CV of 0.25M NaNO₃ solution at a flow rate of 3CV/hr and collecting the effluent in 1 CV increments (i.e. two samples of approximately 30 mL each will be collected).

NOTE: Flushing with 0.25M NaNO₃ solution removes any hydroxide might have been left behind on the column during the feel displacement step.

NOTE: The column washing samples will be directly loaded out of the fume hood for analysis and therefore, care must be taken to ensure that the samples are uncontaminated.

52. Record the tare weight of the sample bottles in Table A4.

53. Record the Room Temperature:

- 54. Using a clean pipette, collect 20-mL of the 0.25M NaNO₃ solution in a tared vial labeled the same and record the weight in Table A9.
- 55. Place the pump inlet line in the 0.25M NaNO₃ bottle.

56. Place the sample vial AN-SO-CW1 under Valve 2 in a sample holder.

57. Ensure that the pump controller is set at 3.% (90 mL/hr).

58. Start the pump and immediately turn Valve 2 to the sampling position.

59. Record the Start Time and Date of the column washing:

- 60. After one column volume (~ 30 mL) of sample is collected in the vial, turn the Pump OFF, quickly replace vial "AN-SO-CW-1" with "AN-SO-CW-2", and turn the Pump ON.
- 61. After one CV (~ 30 mL) of sample is collected in the vial, close Valve 2 and turn Pump OFF.

62. Record Finish Time and Date of column washing:

63. Record the height of the bed: ______cm.

NOTES:

COLUMN ELUTION

NOTE: After the feed is flushed through the column and the column is washed, it will be eluted with 10CV of 0.5M HNO₃. The eluant flow rate is 1CV/hr and will be collected in increments of 1CV (i.e. a total of 10 samples will be collected).

- 64. Using a clean pipette, collect 20-mL of the 0.5M HNO₃ acid eluant into the vial labeled "0.5M HNO₃", and record weight in Table A9.
- 65. Record the Room Temperature: 22.0°C @ 4:51 An, 9-17-99
- 66. Record the tare weight of the Vials + Caps in Table A5.
- 67. Place the vial number AN-SO-E1 under Valve 2 in a sample holder.

68. Set the pump controller at 1.7 (1 CV/hr or 30 mL/hr).

69. Turn the Pump ON and turn Valve 2 to the sampling position.

- 70. Record the Time and Date the elution is initiated: 4:5 SAM, 9-17-99.
- 71. Collect 1 CV (30 mL) in each of the vials listed in the Table A5. Each vial should take 1 hour to collect. Record the mass of each Vial + Cap after the sample is obtained.

NOTE: During switching of the sample collecting vials, turn the Pump OFF, replace the vial, and turn the Pump ON.

72. When the elution is complete, close Valve 2 and turn the Pump OFF.

73. Record the time and date the elution is finished:

NOTES:

9-17-99

4:50 AM FEED THAT LEAKED ANOWND TOP D-RING HAS THUN BACK DOWN ONTO BED. 1 St ELUTION SAMPLE MAY NOT BE VELY REPRESENTATIVE.

- 5:50 AM FLOW RATE TOO SLOW TURN PUMP SPEED UP TO 30.
- 6:50 AM BED IS DAY! ELLANT FILLED UP ABOVE D-AING. MUST BE BAD
- 6:50 AM BED IS DRY! LOUISTABLE ? LUNGER. PHAP OFF AT 6:48 AM. CONNECTION IN ADJUSTABLE ? LUNGER. PHAP OFF AT 6:48 AM. SAMPLE VIAL ONLY 1/2 FILLED. PROBLEM BROBABLY BELAN W/ 15 UTAL.

8:32 AM PUMP BACKON. THIRD SAMPLE COLLECTION STARTED.

Sulfate Column Plugging Incident 9-17-99

All times are AM.

- 4:50 Start elution. Pump set at 26, liquid dripping from valve into sample vial (E1). Feed (brown liquid) clearly still above O-ring of top plunger.
- 5:50 Switch to second sample vial (E2). Flow rate appears too slow sample not up to the 30 mL mark on vial.Still clearly feed above O-ring of top plunger. Increase pump speed to 30.
- 6:48 Pump turned off. Sample vial only half full. No drips into column. Bed completely dry. Top level of liquid above O-ring has now risen out of sight behind connectors at top of column. Also lighter color – guess that the feed initially present mixed with the eluant. Guess that the top plunger frit is plugged. Apparently liquid is leaking out above frit and O-ring.

Loosen top plunger O-ring so liquid will flow down around it onto top of bed, and remove plunger. Air bubbles in bed removed using long plastic Pastuer pipet. Bed somewhat mixed during this procedure. While fooling with top plunger, force liquid into vial E2. Cloudy. Some solids settle to bottom of vial. Almost a full BV in E2 now.

Frit and screen removed from top plunger and then flow tested – looks good. Remove liquid on top of column (very cloudy - placed in vial "Precip volume") and re-insert plunger. Air between top plunger plastic-to-metal connection and bottom end of top plunger (where frit was).

- 8:32 Pump restarted. New sample vial (E3). Pump speed still at 30. Liquid dripping into vial.
- 9:32 Full (30 mL) sample collected in E3. Switch to E4.
- 12:38 Pump obb because of high lead wall at bottom of column, Fittings tightened. Restart at 12:46. black not fixed -
- 1:49 Purp back on. Tightered up littings on bottom plunger, + added some testion tapeto Atting threads on rod. Continue collecting in E7
- 4:34 INLET TUBE SWITCHED TO ELUTION RINSE SOLUTION AT STALL OF #10 ELUTION SAMPLE COLLECTION.

Sidden T=25°C

9-18-99 12:01 PM NO PRESSURE BUTIDUP on 645 GENERATION APPARENT.

Preparation of the Elution Samples for Analysis

NOTE: Each Elution sample will be sub-sampled for analysis and the remaining samples will be mixed to prepare a composite of the eluant.

NOTE: Elution samples for analysis will be samples will be directly loaded out of the fume hood and therefore, care must be taken to ensure that the samples are uncontaminated.

- 74. Prepare the analytical samples as indicated in Table A6.
- 75. After the analytical sample preparation is complete, transfer the remaining solution from each vial into the 500 mL bottle labeled "AN-107 IX ACID Eluant Composite"

76. Cap and determine the weight of the eluant bottle: ______g

Mass of the eluant = ______g

- 77. Gently shake the eluant bottle to mix the contents.
- 78. Determine the tare weight of a 20-mL sample vial labeled "SO4 Eluant Composite" and record in Table A6.
- 79. Carefully pipette 20-mL of the composite into the vial.
- 80. Determine the weight of the Vial + Cap + Composite Eluant Sample and enter in Table A6.

NOTES:

Outre competite \$ 2 - 10. Not 1,2.

ELUTION RINSE

NOTE: After the column is eluted, it is washed with 2CV of 0.25M NaNO₃ solution at a flow rate of 1CV/hr and collecting the effluent in 1 CV increments (i.e. two samples of approximately 30 mL each will be collected).

NOTE: The elution rinse samples will be directly loaded out of the fume hood for analysis and therefore, care must be taken to ensure that the samples are uncontaminated.

81. Place the pump inlet line in the 0.25M NaNO₃ solution.

- 82. Record the Room Temperature: 24.0°C 9-18-99 Bed height a 6 cm
- 83. Record the tare weight of the vials in Table A7.
- 84. Place the vial labeled AN-SO-ER1 in the sample collection position under Valve 2 in a sample holder.
- 85. Set the pump controller to 3.9 (1 CV/hr, 30 mL/hr).
- 86. Turn the Pump ON and immediately turn Valve 2 to the sampling position.

87. Record Start Time and Date of Eluant Rinse:

1:26 PM 9-18-99

 Collect 1 CV volume (~30 mL or sampling for 1 hr) in vial AN-SO-ER1, then turn the pump OFF, replace the vial "AN-SO-ER-1" with vial "AN-SO-ER2", and then turn the Pump ON.

89. Collect 1 CV volume (~30 mL or sampling for 1 hr) in vial AN-SO-E1-R2.

90. Close Valve 2 and turn the Pump OFF.

91. Record End Time and Date of Eluant Rinse:

92. Record the height of the bed: _____cm.

NOTES:

2:46:00 INLET TUBE SWITCHED TO REGN SOLTON (0.10 NO.04/0.25H NONO3

COLUMN REGENERATION

NOTE: After the elution solution is displaced, the column is washed with 2CV of 0.1M NaOH + 0.25M NaNO₃ solution at a flow rate of 3CV/hr and collecting the effluent in a single bottle.

93. Place the pump inlet line in the 0.25M NaOH + 0.25M NaNO₃ solution bottle.

- 94. Record the Room Temperature: 24.8°C @ 3:30 PM 9-18-99
- 95. Record the tare weight of a 100-mL sample bottle labeled "SO IX Column REGN": 24. 5-45-7

96. Place the "SO IX Column REGN" bottle under Valve 2.

97. Set the pump controller to 24° (90 mL/hr, 3 CV/hr).

98. Turn on the pump and turn Valve 2 to the sample position.

99. Record the Start Time and Date: 3:29:0014 9-18-99

100. Run the system for 0.67 hours (40 min).

101. Turn the pump OFF and close Valve 2.

102. Record the Finish Time and Date: 4:09:00Pm 9-18-99

103. Record the mass of the regeneration effluent bottle + contents: \$5.9945.

104. Pipette 20-mL of the regeneration effluent solution into a tared vial labeled "AN-SO-REGN"

105. Determine and record weight of Vial + Cap + Sample in Table A8.

106. Record the height of the bed: ~ 6.0 cm.

NOTES:

POTENTIAL PROBLEMS AND SOLUTIONS

PRESSURE RISE: If the pressure as indicated on the pressure gauge starts to rise a block in the flow is indicated. Inspect the valves to ensure that they are not closed. If the valves are all open a plug in the system is indicated. Attempt to isolate the location of the plug. The most likely place is the screen in the bottom of the columns. Contact the task leader before taking action to unplug the system.

AIR ABOVE THE RESIN BED AND BELOW THE PLUNGER: Air above the resin bed and below the plunger may be removed as follows. Close the valve after the column. Loosen the plunger by turning the white disk at the top of the column assembly. If you look at the disk from below, it is loosened by turned in the clockwise direction. Pump some fluid into the system with the valve closed. The pressure may rise slightly. The plunger may have to be forced down to expel air. Do not disrupt the bed. It is best to wait until you see liquid above the bed before forcing the plunger down. Once air is expelled retighten plunger by turning disk in the same way.

Figure A1. Schematic of the Sulfate Ion Exchange Column Setup

Figure A2. Pump Calibration

Page 1

21

Calibration of FMI Cs IX solution pump Stroke length controlling dial set at 270 Calibrated with DI water at 25 °C

	. ₁ 384	34	-		4.7	1.00		1				DIA CLARC								Surtet to	FEED PRY.	C HANGE			
7	Flow Rate and Notes																			SWITCH TO FLED DIS		ASTART TO SEG DEWEET	Ì		
	Mass Of Sample g												2												
ing Samples.	Mass Of Sample + Vial + Cap	24 905.	36.0282	34,5910	34.0739	34 5122	665278	34,6451	34,8340	35.4373 *	35.4323	34.0619	34.9476	34.8577	34.9828	35.1937	35.1207	34.7340	34.1406	35.LFOr		34.9671 -	33,9433		
r Column Load	Time Sampling Ended		8.26:30 AM	F: 35:00 ANY	8:45:40 41	8:53:00 AM	9:15:00 Am	9:25:00 ANY	9-35:00 ANY	1:45:00 Art	9.55:00 Arry	10:05:00 441	10:16:00 AM	10:25:00 Am	10:35: ~ Am	10:22 Att with the	10:55:00 AM	11:05:30 AN	11:15:00 44	11: 26:30 An	•	11:36:30 M	11:46:30AM		
a Log Sheet for	Time Sampling Started		8:14:00 AH	8.26:30 Arry	8; 35. co And	HY00:55.0	9:06:00 44	Int an: 11:5	9:25:00 Art	9:35: vo Art	4:45:00Am	Pres 444	10:05:20 Arry	10:15:00 AM	10:25:00 AN	10:35:00 AN	WW an: 55:01	10:55:00 44	11:05:30 AM	11:16:20 AM	I	11:26:30 AM	11:36:30 AM		
Table A-1. Dat	Mass Of Vial + Cap (Tare), g ころ・劣コ 2子	16.9872	16.7456	16.9862	16.7869	16.7958	16.8358	16.8767	16.7759	16.9592	16.9140	16.7678	0281.91	16.8745	16-8289	67849	1444.91	16.8925	4144.91	16-8464	16.9159	19351	16.8803	16.2514	40
	Target Volume mL	7:4	<u>دا</u> 15	15	15	51	15	15	15	15	15	15	15	15	15	. 15	15	15	15	15					1 = 35.4975
	Time from Start of Feed (min)	0	20	30	40	00	70	80	90	100	110	120	130	140	150	160	170	180	190	200		17		- 1	Tot hes
3-16-99	Sample ID Sod-1X-FEED	AN-SO-E0	AN-SO-L1 AN-SO-L2	AN-SO-L3	AN-SO-L4	AN-SO-L6	AN-SO-L7	AN-SO-L8	AN-SO-L9	AN-SO-L10	AN-SO-LII	AN-SO-L12	AN-SO-L13	AN-SO-L14	AN-SO-L15	AN-SO-L16	AN-SO-L17	AN-SO-L18	AN-SO-L19	AN-SO-L20	I FAIC	1-02-1VH	AN-Jo-422	AN- 50 L21	* AN-50- 410
			16. tY78 -			-				*]	•

Page 17 of 21

TI-29953-054 Rev 0

Table A-2. Column Loading Samples Diluted for Analysis

9-16-99

Sample ID	Target Transfer Volume	Mass of Vial + Cap	Mass of Vial + Cap + Sample
	mL	<u>හ</u>	80
AN-SO-LIA	7.5	16.7403	25.2687
AN-SO-L2A	7.5	16.8947	25.7839
AN-SO-L3A	7.5	16.9463	25.9554
AN-SO-L4A	7.5	16.9458	26,0312
AN-SO-L5A	7.5	16.9226	26.0395
AN-SO-L6A	7.5	16.8520	25,9579
AN-SO-L7A	7.5	16.7669	25: 8856
AN-SO-L8A	7.5	16.8616	25.9789
AN-SO-L9A	7.5	16.7651	25.8837 9. 16
AN-SO-LI0A	7.5	16.9020	26.0385 7.25
AN-SO-LIIA	7.5	16.7728	25.9100 9, 1226
AN-SO-LI2A	7.5	16.7354	25.8601
AN-SO-LI3A	7.5	16.9198	26.0400
AN-SO-LI4A	7.5	17.0130	26.1421
AN-SO-LI5A	7.5	16.9947	26.1255 7
AN-SO-L16A	7.5	16.8594	25.9904
AN-SO-LI7A	7.5	16.914	25.8720
AN-SO-LI8A	7.5	16.8359	25:9769
AN-SO-LI9A	7.5	16.8624	25.9954
AN-SO-L20A	7.5	16.8194	25.9584
SO4-Effulent-Composite	20.0	25.8407	£1.4312
41-2-1-2-NA	7.5	46-935-4 66.8362	25,9795
4887-05-NA	7.5	16.8829	2 5,2733

Page 18 11

22,1358

199,000 0570

Leak

S cy Efferent botte

/SiS.	Mass of vial + Cap + Sample,	50	24.6403	24.4408	24.5815	24.4342	24.6388	24.5131	234701 24452	24.2381	24.6218	24.3949	46.2034	
ttion of Elution Samples for Analy	Mass of Vial + Cap	20	16.9139	16.8484	16.9556	16.8356	16.9857	16.9245	16.7974	16.6233	17.0238	16.7933	25.8640	
Table A.6. Data Log Sheet for Prepara	Target Transfer Volume, mL		7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	20.0	
66-21-3	Sample ID		AN-SO-EIA	AN-SO-E2A	AN-SO-E3A	AN-SO-E4A	AN-SO-E5A	AN-SO-E6A	AN-SO-E7A	AN-SO-E8A	AN-SO-E9A	AN-SO-E10A	SO4-Eluant-Composite	

Table A.6. Data Log Sheet for Preparation of Elution Samples for Analysis.

66-81-6

Table A.7. Data Log Sheet for Elution Rinse Samples (0.25M NaNO₃)

and a second sec					
Sample ID	Target Volume	Mass of Vial + Cap	Time Started	Time Ended	Mass of Vial + Cap +
	mL	(Tare), g			Sample, g
AN-SO-ERI	30	25.6043	1:26:00 77	2:26:30 PM	56.7169
AN-SO-ER2	30	25.5047	2:26:30 PM	3:26:00 PM	56.92/8
	a to the state of the state	and a line b			

INLET THEE SWERTHED TO FO, IM MACH 10. LIMMAN'S @ 2:46.00

Table A.8. Data Log Sheet for Column Regeneration Sample (0.1M NaOH + 0.25M NaNO₃)

Sample ID	Target volume mL	Mass of vial + cap	Mass of Sample + Vial + Cap, g
AN-SO-REGN	20.0	16.8240	32.0069
SO IX COL PREAN	J m c g	tshs hr	85.9945
(125 mc plas bottle)			

Page 20 of 21

Table A.9. Chemical Supply Samples - Archive Vials

Mass of Sample + Vial + Cap, g			
Mass of vial + cap g			
Target volume mL	20	20	20
Sample ID	0.1 M NaOH + 0.25 M NaNO ₃	0.25 M NaNO ₃	0.5 M HNO.

~

Page 27 71

APPENDIX B

Appendix B: Analytical Data

Selfate IX/Archive AN-107

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Tassiz T2.12.3.3

WO/Project: Client: W48416 and W48418 / 29953 D. Kurath

ACL Numbers: 99-02655 through 99-02708 ASR Number 5520

Procedure:PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography"Analyst:MJ SteeleAnalysis Date:September 21-23, 1999

M&TE: IC system (WD25214); Mettler AT400 Balance (360-06-01-031) See Chemical Measurement Center 98620 RIDS for IC File for Calibration, Standards Preparations, and Maintenance Records.

Analyst: Date 10-25-Approval:

Notes:

- "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
 The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- 3) Routine precision and bias is typically ± 15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

Final Results:

The liquid samples were analyzed by ion chromatography (IC) for inorganic anions as specified in ASR 5520, with sample 99-2655 through 99-2684 for sulfate only. The samples were diluted at the IC workstation up to 2,000-fold to ensure that all anions were within the calibration range. The anion results are presented in the Table 1 and Table 2 below.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Q.C. Comments:

Besides the matrix spike QC, the following are results of analytical quality control checks performed during IC analyses. In general, quality control checks met the requirements of the governing QA Plan. No duplicates were analyzed with these samples; however, similar samples from other samples submitted under the same ASR produced precision and accuracy results within acceptance criteria.

<u>System Blank/Processing Blanks:</u> Over 20 system blanks were process during the analysis of the samples. With the exception of only four nitrate values, no anions were detected above reportable concentrations in the system blanks. The four nitrate blanks measured about two times the instrument detection limit and were due primarily to the high nitrate samples analyzed.

<u>Quality Control Calibration Verification Check Standards:</u> Over 20 mid-range verification standards were analyzed throughout the analysis runs. Except for a few values, the reported results for all analytes of interest were recovered within the acceptance criteria of $\pm 10\%$ for the verification standard. For most of the values exceeding the acceptance criteria, no recoveries exceeded $\pm 15\%$ of the standard values; however, some nitrate values exceeded 125% recovery. These nitrate values were obtained for samples requiring only sulfate results, and are considered for information only.

		SO4
Lab ID	SAMPLE ID.	ug/ml
99-2655	AAN-C-A	3,900
99-2656	AAN55-A	3,900
99-2657	AAN55-D-A	3,900
99-2658	AAN55-4A	3,900
99-2659	AAN55-08-A	4,000
99-2660	AAN55-16A	3,800
99-2661	AAN55-24-A	3,900
99-2662	AAN55-72-A	4,000
99-2663	SO4 IX Feed	3,800
99-2664	AN-SO-L1A	2,100
99-2665	AN-SO-L2A	2,900
99-2666	AN-SO-L3A	3,200
99-2667	AN-SO-L4A	3,500
99-2668	AN-SO-L5A	3,600
99-2669	AN-SO-L6A	3,700

		304			
Lab ID	SAMPLE ID.	ug/ml			
99-2670	AN-SO-L7A	3,600			
99-2671	AN-SO-L8A	3,600			
99-2672	AN-SO-L9A	3,600			
99-2673	AN-SO-L10A	3,800			
99-2674	AN-SO-L11A	3,600			
99-2675	AN-SO-L12A	3,500			
99-2676	AN-SO-L13A	3,700			
99-2677	AN-SO-L14A	3,600			
99-2678	AN-SO-L15A	3,600			
99-2679	AN-SO-L16A	3,700			
99-2680	AN-SO-L17A	3,600			
99-2681	AN-SO-L18A	3,600			
99-2682	AN-SO-L19A	3,700			
99-2683	AN-SO-L20A	3,600			
99-2684	AN-SO-L21A	3,500			

CO.

Table 1: Samples for Sulfate Only

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

		F	Cl	NO ₂	$NO_3(2)$	PO ₄	SO
Lab ID	SAMPLE ID.	ug/ml	ug/ml	ug/ml	ug/ml	ug/ml	ug/ml
99-2685	AN-SO-L22A	1,900 (1)	560	16,000	OvrRng	< 200	1,700
99-2686	SO4 Eff Composite	3,400 (1)	940	27,000	OvrRng	1,300	3,500
99-2687	AN-SO-FD1	140 (1)	< 50	1,200	23,000	< 100	150
99-2688	AN-SO-FD2	< 25	< 25	< 50	OvrRng	< 50	< 50
99-2689	AN-SO-CW1	< 25	< 25	< 50	OvrRng	< 50	< 50
	AN-SO-CW1 MS Recovery	108%	97%	117%	n/a	101%	105%
99-2690	AN-SO-CW2	< 25	< 25	< 50.0	OvrRng	< 50	< 50
99-2692	AN-SO-E1-A	400 (1)	90	2,700	OvrRng	< 100	430
99-2693	AN-SO-E2-A	120 (1)	< 50	< 100	OvrRng	< 100	< 100
99-2694	AN-SO-E3-A	100 (1)	< 50	< 100	OvrRng	< 100	< 100
99-2695	AN-SO-E4-A	< 50	< 50	< 100	OvrRng	< 100	< 100
99-2696	AN-SO-E5-A	< 50	< 50	< 100	OvrRng	< 100	< 100
99-2697	AN-SO-E6-A	< 50	< 50	< 100	OvrRng	< 100	< 100
99-2698	AN-SO-E7-A	< 50	< 50	< 100	OvrRng	< 100	< 100
99-2699	AN-SO-E8-A	< 50	< 50	< 100	OvrRng	< 100	< 100
99-2700	AN-SO-E9-A	< 50	< 50	< 100	OvrRng	< 100	< 100
99-2701	AN-SO-E10-A	< 50	< 50	< 100	OvrRng	< 100	< 100
99-2702	SO4 Eff Composite A	< 50	< 50	< 100	32,000	< 100	< 100
99-2703	AN-SO-ER1	< 50	< 50	< 100	OvrRng	< 100	< 100
99-2704	AN-SO-ER2	< 50	< 50	< 100	OvrRng	< 100	< 100
99-2705	AN-SO-REGN	< 50	< 50	< 100	16,000	< 100	< 100
99-2706	Leak	120 (1)	< 50	< 100	OvrRng	< 100	150
99-2707	Leak 2	1,600 (1)	490	13,000	OvrRng	< 200	1,600
99-2708	Precip Volume	1,200 (1)	320	8,800	OvrRng	< 200	1,200

Table 2: Samples for Fluoride, Chloride, Nitrite, Nitrate, Phosphate, and Sulfate

(1) Quantified by IC system as fluoride; however, slight retention time peak shift and peak shape suggest significant organic anion interference. High probability that little or no fluoride is actually present in the samples.

(2) For samples not requiring nitrate analysis, samples were not diluted sufficiently to obtain a nitrate results; however, all nitrate values exceeded the calibration upper limit, indicated high nitrate concentrations.

Battelle PNNL/325 Bldg/RPG/Inorganic Analysis ... ICPAES Data Report

Project: Client: 29953 G. Lumetta, and D. Kurath

ACL Number(s): 99-2650 through 99-2705

Client ID: "AAN107-Start" through "AN-SO-REGN"

ASR Number: 5520

Total Samples: 25

Procedure: PNL-ALO-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICP-AES).

Analyst: D.R. Sanders

Analysis Date (Filename): 11-05-99 (A0551) & 11-24-99 (A0559)

See Chemical Measurement Center 98620: ICP-325-405-1 File for Calibration and Maintenance Records.

M&TE Number:

ICPAES instrument -- WB73520 Mettler AT400 Balance -- Ser.No. 360-06-01-029

01-10-00 Reviewed by

71-10.00

Concur

1/10/00

• --

Page 1
Twenty-five radioactive liquid or precipitate samples, AN107-Start through AN-SO-REGN (ACL# 99-2650 through 99-2705), were analyzed by ICPAES after preparation by the Sample Receiving and Processing Lab (SRPL). Samples were prepared by SRPL using PNL-ALO-128 acid digestion procedure. Approximately 1 to 12 gram sample aliquots (weighed) were processed and diluted to a final volume of 10ml or 20ml. Concentrations reported for liquids and precipitates have been corrected for process and final volumes. Both are reported in $\mu g/g$ except the process blank, which is reported in $\mu g/ml$.

An equivalent blank estimate may be calculated by multiplying the concentration listed for the blank by the "multiplier" listed at the top of each sample data column divided by the anlytical dilution factor (ADF). The ADF value is the number following the "@" symbol associated with the ACL-sample number. If the "@" symbol is not present, the ADF value is equal to one (1). Volumes and weights have been recorded on bench sheets and included with this report.

Specific analytes of interest requested are listed in table 2-1. "Analytical Requirements for AN-107 Solution, Concentrate, Wash Solution, and Solids Separated from Archive AN-07 Sample" and Table 1-2 "Analytical Requirements for SO4 Column Eluate Solution" included with the ASR-5520. Analytes include: Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mn, Mo, Na, Ni, Pb, Si, Sn, Ti, U, and Zn.

Samples contained mostly high concentrations of sodium. Other analytes measured were generally much lower in concentration.

Quality control check-standard results met tolerance requirements for analytes of interest except as noted below. Following is a list of quality control measurement results relative to ICPAES analysis tolerance requirements under MCS-033.

Five fold serial dilution:

Analytes of interest were within tolerance limit of $\leq 10\%$ after correcting for dilution.

Duplicate RPD (Relative Percent Difference):

All analytes of interest were recovered within tolerance limit of $\leq 20\%$ relative percent difference (RPD) except silicon in sample AN-SO-CW2 (ACL# 99-2690). The RPD for Silicon was about 39% which is above the tolerance limit of 20%. All other analyte concentrations above EQL in the sample were less than about 7% except boron which was about 90% (not an analyte of interest).

1/10/00

Post-Spiked Samples (Group A):

All analytes of interest were recovered within tolerance of 75% to 125%.

Post-Spiked Samples (Group B):

All analytes of interest were recovered within tolerance of 75% to 125%.

Blank Spike:

None.

Matrix Spiked Sample:

None.

Quality Control Check Standards:

Concentration of all analytes of interest was within tolerance limit of \pm 10% accuracy in the standards: QC_MCVA, QC_MCVB, and QC_SSTMCV except as follows.

Potassium was slightly high (<14%) in two of seven QC_MCVA check standard measurements. Single element reagent standards of potassium at 100 ppm measured at the beginning and end of the run were well within the tolerance limit.

One of seven sodium measurements of QC_MCVA was somewhat high (+17%) and also one of two measurements in QC_SSTMCV (+13%). Sodium measurement of SRM-1643d, a NIST reference solution, was within tolerance limits at a concentration similar to that in QC_MCVA.

One of three tin measurements of QC_MCVB was low by about 14%. Measurement of a single element reagent standard of tin at 2 ppm was well within tolerance limit.

High Calibration Standard Check:

Verification of the high-end calibration concentration in QC_SST for all analytes of interest was within tolerance of \pm 5% accuracy except sodium in one of two measurements (+7%).

A single element sodium standard of 1000 ppm measured at the beginning and at the very end of the run was within tolerance limits.

1/10/00

.--

Page 3

Process Blank:

All analytes of interest were within tolerance limit of \leq EQL or < 5% of sample concentration. Calcium, nickel and zinc were detected in the process blank but were below EQL.

Laboratory Control Standard (LCS): None prepared.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically $\pm 15\%$ or better for samples in dilute, acidified water (e.g. $2\% \text{ v/v} \text{ HNO}_3$ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight).
- Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

1/10/00

Page 1 of 4

Det. Limit	Multiplier= ALO#= Client ID= Run Date=	1.0 99-2650-PB <u>Process Blant</u> 11/5/99	k	8.2 99-2650 @5 <u>AN107 START</u> 11/5/99	1007 10	36.4 99-2651 @10 <u>AN107-1</u> 11/5/99		37.8 99-2652 @10 <u>AN107-2</u> 11/5/99		2.0 99-2653 <u>AN107-PPT1</u> 11/5/99	
(ug/mL)	(Analyte)	ug/mL		ug/g		ug/g		ug/g		ug/g	
0.025	Ag			-		-				-	
0.060	AI	-		109		288		218		2.22	
0.250	As	_				-		-			
0.050	В	-		17.3		51.4	and the state	35.2		5.51	
0.010	Ba	-		-		-		-			
0.010	Be	-		-		-	********	-			
0.100	Bi	-		-				-	224 1.11	- <u>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -</u>	
0.250	Ca	[0.27]		133		355		235		[4.3]	
0.015	Cd	-		21.7		56.7		48.1		0.457	
0.200	Ce	-		-		-		-		-	
0.050	Co	-		[1.7]		[4.6]		[3.8]		-	
0.020	Cr			10.8		29.0		24.2		[0.22]	
0.025	Cu	-		14.7		37.3		30.0	- 12	[0.30]	
0.050	Dy	-		-		-		-		-	6
0.100	Eu			-		-		-			
0.025	Fe	-		2.57		[6.5]		[4.5]			
2.000	к	-		593		1,560		1,350		[11]	
0.050	La	-		-		-		-		-	
0.030	LI	-		-		-		-		-	
0.100	Mg	-		-		-			87 - A	-	
0.050	Mn	-		[1.7]		[2.0]		-		-	
0.050	Мо	-		12.4		33.3		27.6		[0.25]	
0.150	Na	-		93,600		179,000		87,800		2,990	
0.100 .	Nd	299 Q 1973		[1.1]		-					
0.030	Ni	[0.044]	1.00	182		491	100.01	414		4.09	
0.100	Р	-		166		423	314.615	235		3.14	1
0.100	Pb	-		62.9		168		143		[1.4]	
0.750	Pd		n sie	-		-					
0.300	Rh	-		[3.9]		-		-			
1.100	Ru	-		[12]		-					
0.500	Sb	-		-			exall di				
0.250	Se	-		-		-		-		10.4	
0.500	Si	-		82.9		238		[120]		10.4	
1.500	Sn	-				-				1.64	-
0.015	Sr	-		74.8		191		107		1.04	
1.500	Te					-					
-1.000	Th	-		-							
0.025	Ti	-		-							
0.500	TI					-				·	
2.000	U	-		[34]		[86]					
0.050	v	-									
2.000	W			[60]		[160]		[140]			
0.050	Y	-	1	<u> </u>						10.541	
0.050	Zn	[0.068]		4.73		[16]	4	[11]		[0.54]	
0.050	Zr	-		[1.0]		[3.8]		[[2.8]	L	-	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

12/29/99 @ 3:36 PM

1

Page 2 of 4

Det. Limit	Multiplier= ALO#= Client ID= Run Date= (Analyte)	2.0 99-2654 <u>AN107-PPT2</u> 11/5/99 ug/g	99 <u>A</u>	23.3 9-2685 @5 <u>N-20-L22A</u> 11/5/99 ug/g	16.6 99-2686 @10 <u>SO4-Effluent-C</u> 11/5/99 ug/g	<u>Somp.</u>	2.0 99-2687 <u>AN-SO-FD1</u> 11/5/99 ug/g	2.0 99-2688 <u>AN-SO-FD2</u> 11/5/99 ug/g	
0.025	Ag Al	- 2.68		- 64.2	- 104		- 5.73 -		
0.250 0.050 0.010	As B Ba	5.09 [0.034]		49.2 120	20.8 [0.98]		11.8 25.1	13.6 9.76 -	
0.010 0.100 0.250	Be Bi Ca			76.2	 - 126 20.5		- 6.81 0.882	_ [1.4] [0.050]	
0.015 0.200 0.050	Cd Ce Co			-	 - [1.7]				
0.020 0.025 0.050	Cr Cu Dy	[0.30] [0.35] 		9.75	 12.6		1.26	[0.080]	
0.100 0.025 2.000	Eu Fe K	[0.057] [15]		[1.0] [440]	 [2.0] 503		[0.11] 159	 152 	
0.050 0.030 0.100	La Li Mg				 				
0.050 0.050 0.150	Mn Mo Na	[0.34] 3,580			 11.7 79,300		[0.41] 10,300	- 7,790 -	
0.100	<u>Nd</u> Ni P	5.21 5.47		109 147	 175 147		8.64 39.2 2.64	[0.59] 5.03 -	
0.100 0.750 0.300	Pb Pd Rh	[1.8] 		- -	 			-	
1.100 0.500 0.250	Ru Sb Se			-	 		80.3	 102	
0.500 1.500 0.015	Si Sn Sr	18.7 			 49.5		5.70	- 1.05 -	-
1.500 -1.000 0.025	Te Th Ti	-		-	 				
0.500 2.000 0.050	TI U V	-		-	 [39]	-		-	-
2.000 0.050 0.050	W Y Zn	- [0.24]		 [4.3]	 [4.8] [0.92]		 [0.37] 	 1.50 	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

12/29/99 @ 3:36 PM

Page 3 of 4

0.026 Ag - </th <th>et. Limit (ug/mL)</th> <th>Multiplier= ALO#= Client ID= Run Date= (Analyte)</th> <th>2.0 99-2689 <u>AN-SO-CW1</u> 11/5/99 ug/g</th> <th></th> <th>2.0 99-2690 <u>AN-SO-CW2</u> 11/5/99 ug/g</th> <th></th> <th>2.0 99-2690-DUP <u>AN-SO-CW2</u> 11/5/99 ug/g</th> <th></th> <th>2.0 99-2703 <u>AN-SO-ER1</u> 11/5/99 ug/g</th> <th></th> <th>2.0 99-2704 <u>AN-SO-ER2</u> 11/5/99 ug/g</th> <th></th>	et. Limit (ug/mL)	Multiplier= ALO#= Client ID= Run Date= (Analyte)	2.0 99-2689 <u>AN-SO-CW1</u> 11/5/99 ug/g		2.0 99-2690 <u>AN-SO-CW2</u> 11/5/99 ug/g		2.0 99-2690-DUP <u>AN-SO-CW2</u> 11/5/99 ug/g		2.0 99-2703 <u>AN-SO-ER1</u> 11/5/99 ug/g		2.0 99-2704 <u>AN-SO-ER2</u> 11/5/99 ug/g	
0.060 AI 1.80 - - 2.00 $[0.48]$ 0.250 As - <td>0.025</td> <td>Ag</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	0.025	Ag	-		-		-		-			
0.250 As - </td <td>0.060</td> <td>AI</td> <td>1.80</td> <td></td> <td>-</td> <td>_</td> <td>-000</td> <td></td> <td>2.09</td> <td></td> <td>[0.48]</td> <td></td>	0.060	AI	1.80		-	_	-000		2.09		[0.48]	
0.000 B 9.37 4.84 1.80 6.57 6.30 0.010 Ba 8.37 8.89 9.00 152 196 0.100 Bi - - - - - - 0.100 Bi - - - - - - 0.100 Bi - - - - - - 0.200 Ca (1.1) (1.8) (1.4) 9.82 (0.641) - 0.200 Ca - - - (0.041) - - 0.202 C.1 - - - - - - - 0.202 C.202 0.582 0.578 -	0.250	As	-		-		-		-			·
0.010 Ba 8.37 8.99 9.90 152 196 0.010 Bi - <td>0.050</td> <td>В</td> <td>9.37</td> <td></td> <td>4.84</td> <td></td> <td>1.80</td> <td></td> <td>6.57</td> <td>7</td> <td>6.30</td> <td></td>	0.050	В	9.37		4.84		1.80		6.57	7	6.30	
0.10 Ba - <td>0.010</td> <td>Ba</td> <td>8.37</td> <td></td> <td>8.89</td> <td></td> <td>8.90</td> <td></td> <td>152</td> <td></td> <td>196</td> <td></td>	0.010	Ba	8.37		8.89		8.90		152		196	
0.100 BI 0.200 Ca [1.1] [1.9] [1.4] 9.62 [3.6] 0.200 Ce 0.200 Ce 0.200 Cr 0.202 C.22 0.582 0.578 0.025 Cu [0.22] 0.582 0.578 0.025 Fe - - 0.629 [0.46] 2.000 K 107 78.3 76.7 0.430 D 0.629 [0.46] 0.050 Mo - 0.100 Mg - 0.500 Mo	0.010	Be							-			
0.250 Ca [1.1] [1.9] [1.4] 9.82 [3.6] 0.015 Cd - <t< td=""><td>0 100</td><td>Bi</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td></t<>	0 100	Bi			-		-		-			
0.015 Cd - - - - 0.200 Ce - - - - - 0.050 Co - - - - - 0.020 Gr - - - 10.0411 - 0.020 Gr - - - 10.0411 - 0.020 Gr - - - - - 0.050 Dy - - - - - 0.021 Fe - - - 0.829 (0.46] 0.025 Fe - - - - - - 0.025 K 107 78.3 78.7 -	0.250	Ca	[1,1]		[1.9]		[1.4]		9.62		[3.6]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.015	Cd			-		100		-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.015	Ce			-				-			
0.030 Cr - - (0.041) - 0.020 Cr - - - - 0.050 Dy - - - - 0.050 Eu - - - - 0.050 Eu - - - - 0.025 Fe - - - - 0.025 K 107 78.3 78.7 - - 0.050 La - - - - - 0.050 Mo - - - - - 0.050 Mo - - - - - 0.100 Mg - - - - - - 0.100 Na 6.200 5.220 5.500 4.070 5.340 0.100 Pb - - - - - 0.100 Ni	0.200	00			-		-		-		-	
$\begin{array}{c ccccc} 0.025 & Cu & [0.22] & 0.582 & 0.578 & - & - & - & - & - & - & - & - & - & $	0.030	Cr			-		- 0		[0.041]		-	
0.050 Dy - </td <td>0.020</td> <td>Cu</td> <td>10.221</td> <td></td> <td>0.582</td> <td></td> <td>0.578</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td>	0.020	Cu	10.221		0.582		0.578		-		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.025	Dv			-		-		-		-	
0.025 Fe - - 0.829 (0.46) 2.000 K 107 78.3 76.7 - - 0.050 La - - - - - 0.030 Li - - - - - 0.030 Mi - (0.53) - (0.41) - 0.050 Mo - - (0.43) - - 0.050 Mo - - (0.43) - - 0.050 Mo - - - - - - 0.150 Na 6.200 5.220 5.600 4.070 5.340 0.100 Ni (0.26) (0.20) (0.26) (0.27) - 0.100 Pb - - - - - - 0.100 Pb - - - - - - 0.500 S	0.100 -	E.			-		-		-			
0.000 K 107 78.3 76.7 - - 0.950 La - - - - - 0.030 Li - - - - - 0.030 Li - - - - - 0.050 Mg - - - (0.43) - 0.050 Mo - - - - - 0.050 Mo - - - - - 0.100 Nd - - - - - 0.100 Nd - - - - - 0.100 Pb - - - - - 0.100 Pb - - - - - 0.100 Pb - - - - - - 0.100 Ru - - - -	0.025	Fe	-				-		0.829		[0.46]	
Loso La - - - - 0.030 Li - - - - - 0.030 Li - - - - - - 0.030 Mage - - - - - - - 0.050 Mo - - - - 0.431 - 0.050 Mo - - - - 0.0431 - 0.050 Mo - - - - - - 0.160 Na 6.200 5.220 5.500 4,070 5.340 0.100 Ni (0.26] (0.20) (0.28) (0.27) - 0.100 Pb - - - - - - 0.750 Pd - - - - - - - - - - - - - <t< td=""><td>2.000</td><td>ĸ</td><td>107</td><td>1</td><td>78.3</td><td></td><td>76.7</td><td></td><td>-</td><td></td><td></td><td></td></t<>	2.000	ĸ	107	1	78.3		76.7		-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.050				-		· -		-	1	_	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.020	La		*******************	-				-		-	
	0.000	Ma			-		-		[0.43]			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.100	Mp	_		[0.53]		-	10	[0.11]		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.050	Mo			-		-		-		-	
0.100 Nd 0.100 NI [0.26] [0.20] [0.20] [0.26] [0.23] 0.100 P [1.1] [0.90] [0.93] (0.38] (0.27] 0.100 Pb - - - - - 0.750 Pd - - - - - 0.300 Rh - - - - - 0.300 Rh - - - - - 0.300 Rh - - - - - - 0.500 Sb - - - - - - - 0.500 Si 64.1 15.6 10.3 [3.0] [1.5] - 1.500 Sn - - - - - - - 1.500 Te - - - - - - - - - - - - - - -	0.050	Na	6 200		5.220		5,500		4,070		5,340	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.150	Nd			-		-		-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.100	Ni	10 261		[0,20]		[0.20]		[0.26]		[0.23]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.030	P	[1,1]		[0.90]		[0.93]		[0.38]		[0.27]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.100	Ph			-				-	1	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.750	Pd			-		-		-		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.750	Rb			-		-		-		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 100	Bu	_		-		-		-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.500	Sh					-		-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.300	Se			-	1			-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.200	Si	64.1	· · · · · · · · · · · · · · · · · · ·	15.6		10.3	1	[3.0]]	[1.5]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 500	<u>5</u> ,			-		-		-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.015	Sr	0.726		0.844	1	0.840	1	[0.053]		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 500	To	0.720	1	-	1	-		-	1	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.500				-		-	1	-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.000	TI			-	1	-	1	-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.025	TI		1	_	1	-	1	-		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 000					1	-	T	-			1.
2.000 W - - - - 0.050 Y - - - - 0.050 Zn [0.12] [0.37] [0.23] [0.26] [0.16] 0.050 Zr - - - - -	2.000	v		1	-	1	-		-		-	
2.000 Y - - - - 0.050 Zn [0.12] [0.37] [0.23] [0.26] [0.16] 0.050 Zr - - - - -	0.050	w	_	1	-	1	-		-	1	-	
0.050 Zn [0.12] [0.37] [0.23] [0.26] [0.16]	2.000					1	-	1	-]		
	0.050	70	[0 12]	1	[0.37]		[0.23]	1	[0.26]		[0.16]	
	0.050	71	-	No.	-	1	-		-			

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Data (1) from `A0551 G Lumetta-D Kurath ASR-5520 ALO-128 AN107 ICP98 hi.XLS

12/29/99 @ 3:36 PM

Det. Limit (ug/mL)

Multiplier= ALO#=	2.0 99-2705	1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				
Client ID=	AN-SO-REGN					
Run Date=	11/5/99	- A.23-1	1. The second	Colorador 1 m		
(Analyte)	ug/g	Estern		in the second		
Ag	-	-	-	-	-	
AI	[1.0]	-	-	-	-	
Ac			_	-		

0.025	Ag			-		-		· -	1 C	<u> </u>	1. 1. 1. N. 1.
0.060	AI	[1.0]		-		-		-		-	
0.250	As	-		-		-		-		-	
0.050	В	7.17		-		ł		-		-	
0.010	Ва	217		-		-		-		-	
0.010	Be	-		-	· · · · · ·	-				-	
0.100	Bi	-				-		-		-	
0.250	Ca	[1.8]	4 v 1 5 - 13	-		-				-	
0.015	Cd	-				4		-		-	
0.200	Ce	_				-				-	
0.050	Co	_				-		-		1	
0.020	Cr	-				-		-		1	
0.025	Cu	- 1		-		-				-	
0.050	Dv	-		-		-		-		-	
0.100	Eu			-		-		-		-	
0.025	Fe	-		-		-		-	1	-	
2.000	к	_				-				-	
0.050	La	-		_		-		-		-	
0.030	LI	-		-		-		-		-	
0.100	Ma	-		-		-		-		-	-
0.050	Mn	-		-		-				-	
0.050	Mo			-		-		-	1	-	
0.150	Na	7,180		-		-		-	1	-	
0.100	Nd	-				-		-		-	
	Ni	[0.064]		- ·		-				-	
	P	[0.20]		-				-		-	
0.100	Pb	[1.1]		-		-	1	-	1	-	•
0.750	Pd			-				-	I	-	
0.300	Bh	-		-			1	-	1	-	
1.100	Bu	-	1	-		-	1	-	1	-	
0.500	Sb	-		-		-		-		-	
0.250	Se	-		-		-		-]	-	
0.500	SI	34.5		-		-	1	-	1	-	
1.500	Sn	-	1	-		-		-		-	-
0.015	Sr	-		-	-	-		-		-	
1.500	Те	-		-		-	1	-	1	I	
1.000	Th	-		-		-	1	-		-	107
0.025	Ti	-	1	-		-	1]	-	
0.500	TI	-	1	-		-	1	-		-	
2.000	U	-	1	_		-	1	-]	-	
0.050	v	-		_		-		-		-	
2.000	w	-		-		-	1	-		-	
0.050	Y			-		-	1	-	1	-	
0.050	Zn	[0.53]				-		-]	-	
0.050	Zr	-	1	_		-		-	1	-	
		11.1.10.11		without 10 time	a detection lim	it is estimated	to be within 1	15%			

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Data (1) from `A0551 G Lumetta-D Kurath ASR-5520 ALO-128 AN107 ICP98 hi.XLS

. 12/29/99 @ 3:36 PM

1

Page 1 of 3

	Multiplier-	24.2		24.7	1	24.7		24.8		24.7	
	Mulupilei≃ ALO#=	99-2692 @5		99-2693 @5		99-2694 @5		99-2695 @5		99-2696 @5	
	~										
	Client ID=	AN-SO-E1-A		AN-SO-E2-A		AN-SO-E3-A		AN-SO-E4-A		AN-SO-ES-A	
Det. Limit	Run Date=	11/24/99		11/24/99		11/24/99		11/24/99		11/24/99	
(ug/mL)	(Analyte)	uq/q		ug/g		ug/g		ug/g		ug/g	
0.025	Aq	-		-		-		-		-	
0.060	AI	83.7		32.8		29.2		[8.6]		[7.7]	
0.250	As	[11]		-		-		-		-	
0.050	В	108		84.2		89.4		82.1		82.7	
0.010	Ва	478		1,280		523		459		435	
0.010	Be	-		-		-		-		-	
0.100	Bi	-		-		-		-		-	110
0.250	Ca	110		144		85.1		98.3		[51]	
0.015	Cd	14.2		5.07		[3.2]		-		-	
0.200	Ce	-		-		-		-		-	
0.050	Co	-		-		-		-		-	
0.020	Cr	7.21		[3.3]		[2.1]		-		-	
0.025	Cu	9.76		7.34		[2.1]		-		-	
0.050	Dy			-		-		-		-	
0.100	Eu	-		-		-		-		-	
0.025	Fe	[2.2]		8.77		8.62		[2.0]		[1.1]	
2.000	к	[77]	1	[260]		[190]		[150]		[110]	
0.050	La	-		-		-		-		-	
0.030	LI	-				-					
0.100	Mg	-		-			and the second second				
0.050	Mn	[3.5]		54.4		41.1		[4.1]			
0.050	Mo	[8.1]		[1.6]		-				-	
0.150	Na	77,900		32,600		14,600		2,310		245	
0.100	Nd							-			
0.030	NI	124	-	42.2		27.4		[2.3]			•
0.100	P	99.6	4	109		36.9	1	[4.0]			
0.100	Pb	38.3		[[1.0]				·· []			
0.750	Pd		-	-				<u></u>		-	
0.300	Rn		-							-	
1.100	Ru					<u> </u>				-	
0.500	SD		-							-	
0.250	Se			1621		1961		[80]	1	[66]	
1 500	51			-		-	1	-	1	-	
0.015	511	35.4		280		93.6		24.4	1	4.60	
1 500	31		1			-		-	1	-	
1.000	Th					-		-	1	-	
0.025	TI		1	-		-	1	-	1	-	
0.025	TI		1	-		-		-	1	-	
2 000				-		-	1	-	1	-	
0.050	v		1	-	1	_	1	-	1	-	
2 000	w		1	-		-	1	-	1	-	
0.050	Y	-		-		-		-	1	-	
0.050	Zn	[3.5]		[2.7]		[1.9]		16.8		[4.7]	
0.050	Zr	-		[1.7]		-		- 1		-	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

· 12/29/99 @ 2:34 PM

Page 2 of 3

					r		e		r		
	Multiplier=	. 24.6		24.5		24.6	New York	24.6		24.8	
	ALO#=	99-2097 05		99-2698 @5		99-2699 @5		99-2700 @5		99-2701 @5	
	Client ID	44 60 50 4									
Det Limit	Chent ID=	110400		AN-SU-ET-A	- 11	AN-SU-E8-A		AN-SO-E9-A		AN-SU-ETU-A	
Sec. Linit	(Apolito)	11/24/99		11/24/99		11/24/99		11/24/99		11/24/99	24.
(ug/mL)	(Analyte)	ug/g	*****	ug/g	••••••	ug/g		ug/g		ug/g	
0.025	Ag	-				-		-		-	
0.000	A	[7.4]		[14]		[8.7]		[8.7]		[8.5]	
0.250	AS P	-	•••••	-		-	****************	-		-	
0.050	B	88.0		90.2		94.4	e	91.5		92.8	
0.010	Da	411		4/2		435		408		408	
0.010	Be	-		-	••••••	-		-		-	
0.100	В										
0.250	Ca	87.5		128		82.1	a	[59]		83.1	
0.015	Cd	-		[0.87]		-		-		-	
0.200	Ce					-		-		-	
0.050	Co			-		-		-		-	
0.020	Cr	-		[0.53]		-		-		-	
0.025	Cu	-		-		-		-		-	
0.050	Dy		•	-		-		-		-	
0.100	Eu			-		-		-		-	
0.025	Fe	[0.96]		[2.3]		[2.2]		[1.3]		[1.9]	
2.000	к	[71]		-		-		-			
0.050	La	-		-		-		-			
0.030	LI	-		-		-		-		-	
0.100	Mg			-		-		-		-	
0.050	Mn	-		-		-		-		-	
0.050	Мо	-		-		-		-		-	
0.150	Na	215		2,960		272		305		861	
	Nd	-		-		-		-		-	
1	Ni	-		9.29		-		[0.95]		-	:
0.100	P	-		[6.3]		-		-		-	
0.100	Pb	-		-		-		-		-	
0.750	Pd			-		-		-		-	
0.300	Rh	-		-		-		-		-	
1.100	Ru	-		-		-	,	-		-	
0.500	Sb	-		-		-		-	•	-	
0.250	Se	-		-		-		-		-	
0.500	Si	[75]		[87]		[81]		[85]		[89]	
1.500	Sn	-		-		-		-		-	
0.015	Sr	[1.6]		[3.5]		[0.41]		-		-	
1.500	Те	-		-		-		-		-	
1.000	Th	-		-		-		-		-	
0.025	Ti	-		-		-		-		-	
0.500	TI	-		-		-		- ·		-	
2.000	U	-		-		-		-		-	
0.050	v	-		-		-		-		-	
2.000	w	-		-		-		-		-	
0.050	Y	-		-		-		-		-	
0.050	Zn	[7.6]		[2.9]		[5.4]		[4.3]		16.8	
0.050	Zr	-		-		-		-		-	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

12/29/99 @ 2:34 PM

					r r						
	Multiplier=	24.7		2				5 8 6 L			
	ALO#=	99-2702 @5		10.01		1.110		1.2		1.44 1.34	
	Client ID=	SO4-ELUANT-	÷	Lange -				1			
et. Limit	Run Date=	11/24/99	3	1 martin							
ua/mL)	(Analyte)	ua/a		and there is			1.1.1	Course of the			
0.025	Aq	_		-		-				-	
0.060	AL	[7,1]		-		-		_		-	
0.250	As					_					
0.050	B	31.0	•••••	-				_		-	
0.010	Ba	464		-		_		-	1	-	
0.010	Ba					_					
0.010	Bi		••••••								
0.100	Di Ca	(50)									
0.250	Ca	[39]			-						
0.015	Ca	[0.54]	•••••								
0.200	Ce							-		-	
0.050	6			-		-				-	
0.020	Cr					-		-			
0.025	Cu			-		-		-			
0.050	Dy	· -				-		-		-	
0.100	Eu	-		-		-				-	
0.025	Fe	[2.3]		-		-		-		-	
2.000	к	[73]		-		-		-			
0.050	La			-		-					
0.030	LI	-		-		-				-	
0.100	Mg			-		-		-		-	
0.050	Mn	[5.7]		-		-		-			
0.050	Mo	-		-	I LOZEN	-		-			
0.150	Na	2,540		-		-	J.C. 14	-		-	
0.100	Nd	-		-		-		-		-	
0.030	Ni	[5.1]				-		-			
0.100	P	[6.5]		-		-		-		-	
0.100	Pb	-		-		-		-			
0.750	Pd	-		-		-		-			
0.300	Rh	-		-		-	÷	-		-	
1.100	Ru	-		-		-		-			
0.500	Sb	-		-		-	2	-		-	
0.250	Se	-	1	-		-	1 1 1	-			
0.500	Si	[33]		-		-		-		-	
1.500	Sn	-		-		-		-		-	
0.015	Sr	15.3		-		-		·		-	
1.500	Те	-		-		-		-		-	
1.000	Th	-		-		-				-	
0.025	ті	-		-		-		-		-	
0.500	ті	-		- 2		-		-		-	
2.000	U	-		-		-		-		-	
0.050	v	-		-				-		-	
2.000	w	-		-		-				-	
0.050	Y	-		-		-		-		-	
0.050	Zn	[3.5]		-		-		-		-	
0.050	Zr	-	S	-				-		-	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

- 12/29/99 @ 2:34 PM

Page 3 of 3

mber client ID description vial mmple + sample + sample w. mL of AN107 START AN107 SUPERNATE - 20ML 8.1198 10 420.2734 12.1536 1.1 AN107 START AN107 SUPERNATE - 20ML 8.1198 10 420.2734 12.1536 1.1 AN107 SUPERNATE - 20ML 8.1071 2 3.4910.8547 2.7476 0.5 AN107-PPT1 AN107 SUPERNATE - 20ML 8.10633 2.1,5 10.7068 2.6435 0.6 AN107-PPT1 AN107 SUPERNATE - 20ML 8.0633 2.1,5 10.7068 2.6435 0.6 AN107-PPT1 Precipitate - redissolved - 20 ml 8.0633 2.1,5 10.7068 2.6435 0.6 AN107-PPT1 Precipitate - redissolved - 20 ml 8.1355 10 18.1172 9.9817 1.0 AN-SO-L22A AN-107 supernate 8.1188 2 10.2693 2.1505 0.5 AN-SO-F221 AN-107 supernate 8.0159 10 18.1172 9.99756 1.0	- 10								
ANIO7 START ANIO7 SUPERNATE -20ML 8.1198 10 420.2734 12.1536 1.1 ANIO7-1 ANIO7 SUPERNATE - 10ML 8.1198 10 420.2734 12.1536 1.1 ANIO7-1 ANIO7 SUPERNATE - 10ML 8.1071 2 9.9453 2.7476 0.5 ANI07-2 ANI07 SUPERNATE - 20ML 8.1053 2 1.0 7.5 9.9453 1.1 ANI07-2 ANI07 SUPERNATE - 20ML 8.0533 2 1.0 7.5 9.9453 1.1 ANI07-PPT1 Precipitate - redissolved - 20 ml 8.0533 2 1.0 18.0253 9.9453 1.1 AN-SO-L22A AN-107 supernate 8.1188 2 10.2693 2.1505 0.5 AN-SO-FD1 Precipitate - redissolved - 20 ml 8.138 2 10.2693 2.1505 0.5 AN-SO-FD1 PN-107 supernate 8.1188 2 10.2693 2.1505 0.5 AN-SO-FD1 0.1 M NaOH/0.25 M NaNO3 8.0159 10 18.2572 10.18838 1.0 </td <td></td> <td>client ID</td> <td>description</td> <td>• vial</td> <td>aliquot (ml)</td> <td>sample + vial</td> <td>sample wt. (g)</td> <td>mL of each acid</td> <td>final volume</td>		client ID	description	• vial	aliquot (ml)	sample + vial	sample wt. (g)	mL of each acid	final volume
ANIO7 START ANIO7 SUPERNATE - 20ML 8.1198 10 4.20.2734 12.1536 1.1 AN107-1 AN107 SUPERNATE - 10ML 8.1071 2 9.9453 2.7476 0.5 AN107-1 AN107 SUPERNATE - 20ML 8.1071 2 9.9453 1.1 AN107-2 AN107 SUPERNATE - 20ML 8.0633 2.10.7068 2.6435 0.6 AN107-2 AN107 SUPERNATE - 20ML 8.0533 2.10.7068 2.6435 0.6 AN107-PPT1 Precipitate - redissolved - 20 ml 8.0533 2.1,5 10.7068 2.6435 0.6 AN-SO-L22A AN-107 supernate 8.1188 2 10.2693 2.1505 0.5 AN-SO-L22A AN-107 supernate 8.1188 2 10.2693 2.1505 0.5 AN-SO-L22A AN-107 supernate 8.1188 2 10.2693 1.0 1.0 AN-SO-FD1 0.1 M NaOH/0.25 M NaNO3 8.0734 10 18.1472 9.9376 1.0 AN-SO-FD2 0.1 M NaoH/MO25 M NANO3 8.0734 10<		•							
AN107-1 AN107 SUPERNATE - 10ML *8.1071 2 2.7476 0.5 AN107-2 AN107 SUPERNATE - 2ML 8.0633 2 1.5 10.7068 2.6435 0.6 AN107-2 AN107 SUPERNATE - 2ML 8.0633 2 1.5 10.7068 2.6435 0.6 AN107-PPT1 Precipitate - redissolved - 20 ml 8.0533 2 1.5 9.9817 1.0 AN107-PPT2 Precipitate - redissolved - 20 ml 8.1355 10 18.053 9.9453 1.1 AN-SO-L22A AN-107 supernate 8.1188 2 10.26693 2.1505 0.5 AN-SO-L22A AN-107 supernate 8.0159 10 18.0172 9.9817 1.0 AN-SO-L22A AN-107 supernate 8.1188 2 10.26693 2.1505 0.5 AN-SO-FD1 0.1 M NaOH/0.25 M NaNO3 8.1228 10 18.1402 10.05956 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NANO3 8.1228 10 18.1402 10.05505 1.0 AN-SO-C	1	AN107 START	AN107 SUPERNATE -20ML	8.1198	10	£20.2734	12.1536	1.1	20
AN107-2 AN107 SUPERNATE - 2ML 8.0633 2 ⁻¹ (5) 10.7068 2.6435 0.6 AN107-PPT1 Precipitate - redissolved - 20 ml 8.0800 10 18.0253 9.9453 1.1 AN107-PPT1 Precipitate - redissolved - 20 ml 8.1355 10 18.0253 9.9453 1.1 AN107-PPT2 Precipitate - redissolved 0- 20 ml 8.1355 10 18.02593 9.9453 1.0 AN-SO-L22A AN-107 supernate 8.1188 2 10.2693 2.1505 0.5 SO4-Effulent- AN-107 supernate 8.0159 10 20.0696 12.0537 1.1 AN-SO-FD1 0.1 M NaOH/0.25 M NaNO3 8.1228 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NaNO3 8.1228 10 18.2572 10.0505 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NaNO3 8.1228 10 18.1402 10.0505 1.0 AN-SO-CW1 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.99556 1.0	1	AN107-1	AN107 SUPERNATE - 10ML	· 8.1071	2 W	(10.8547	2.7476	0.5	10
AN107-PPT1 Precipitate - redissolved - 20 ml 8.0800 10 18.0253 9.9453 1.1 AN107-PPT2 Precipitate - redissolved 0- 20 ml 8.1355 10 18.073 9.9817 1.0 AN-SO-L22A AN-107 supernate 8.1188 2 10.2693 2.1505 0.5 AN-SO-L22A AN-107 supernate 8.0159 10 18.1172 9.9376 1.0 AN-SO-L22A AN-107 supernate 8.0159 10 20.0696 12.0537 1.1 AN-SO-FD1 0.1 M NaOH/0.25 M NaNO3 8.0159 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NaNO3 8.0734 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NANO3 8.0734 10 18.1402 9.9376 1.0 AN-SO-CW1 Water/dilute caustic/NaNO3 8.0697 10 18.1402 10.0555 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.90566 1.0 <td< td=""><td></td><td>AN107-2</td><td>AN107 SUPERNATE - 2ML</td><td>8.0633</td><td>2-27</td><td>10.7068</td><td>2.6435</td><td>0.6</td><td>10</td></td<>		AN107-2	AN107 SUPERNATE - 2ML	8.0633	2-27	10.7068	2.6435	0.6	10
AN107 - PPT2 Precipitate - redissolved 0- 20 ml 8.1355 10 18.1172 9.9817 1.0 AN-SO-L22A AN-107 supernate 8.1188 2 10.2693 2.1505 0.5 AN-SO-L22A AN-107 supernate 8.0159 10 18.1172 9.9817 1.0 AN-SO-L22A AN-107 supernate 8.0159 10 20.0696 12.0537 1.1 AN-SO-FD1 0.1 M NaOH/0.25 M NaNO3 8.0154 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NaNO3 8.0734 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NaNO3 8.0734 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NANO3 8.0897 10 18.1402 10.0505 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.9056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0862 10 17.9753 9.9115 1.0 AN-SO-C		AN107-PPT1	Precipitate - redissolved - 20 ml	8.0800	10	18.0253	9.9453	1.1	20
AN-SO-L22A AN-107 supernate 8.1188 2 10.2693 2.1505 0.5 SO4-Effulent- AN-107 supernate 8.0159 10 20.0696 12.0537 1.1 AN-SO-FD1 0.1 M NaOH/0.25 M NaNO3 8.0734 10 18.2572 10.1838 1.0 AN-SO-FD1 0.1 M NaOH/0.25 M NaNO3 8.1228 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NaNO3 8.1228 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOH/0.25 M NaNO3 8.1228 10 18.1402 10.0505 1.0 AN-SO-CW1 Water/dilute caustic/NaNO3 8.0697 10 18.1402 10.05056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.90566 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0667 10 17.9753 9.9115 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0862 10 17.9753 9.9115 1.0 AN-	-	AN107 -PPT2	Precipitate - redissolved 0- 20 ml	8.1355	10	18.1172	9.9817	1.0	20
SO4-Effulent-AN-107 supernate8.01591020.069612.05371.1AN-SO-FD10.1 M NaOH/0.25 M NaNO38.07341018.257210.18381.0AN-SO-FD20.1 M NaOH/0.25 M NaNO38.12281018.06049.93761.0AN-SO-FD20.1 M NaOH/0.25 M NaNO38.12281018.06049.93761.0AN-SO-FD20.1 M NaOH/0.25 M NaNO38.12281018.140210.05051.0AN-SO-CW1Water/dilute caustic/NaNO38.06971017.97539.90561.0AN-SO-CW2Water/dilute caustic/NaNO38.05671017.97539.90561.0AN-SO-CW2Water/dilute caustic/NaNO38.08621017.99779.91151.0AN-SO-CW2Water/dilute caustic/NaNO38.05671017.99779.91151.0AN-SO-ER10.25 M NaNO38.05671018.088410.03171.0AN-SO-ER20.1 M NaOH/0.25 M NANO38.08151018.153610.07211.0		AN-SO-L22A	AN-107 supernate	8.1188	2	10.2693	2.1505	0.5	10
AN-SO-FD1 0.1 M NaOF/0.25 M NaNO3 8.0734 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOF/0.25 M NaNO3 8.0734 10 18.2572 10.1838 1.0 AN-SO-FD2 0.1 M NaOF/0.25 M NaNO3 8.1228 10 18.0604 9.9376 1.0 AN-SO-FD2 0.1 M NaOF/0.25 M NaNO3 8.1228 10 18.1402 10.0505 1.0 AN-SO-CW1 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.9056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.9056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.3154 10 17.9753 9.9115 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0862 10 17.9977 9.9115 1.0 AN-SO-ER1 0.25 M NaNO3 8.0862 10 17.9977 9.9115 1.0 AN-SO-ER2 0.1 M NaOH/0.25 M NaNO3 8.0815 10 18.18364 10.03177 1.0		SO4-Effulent-	AN-107 supernate	8.0159	10	20.0696	12.0537	1.1	20
AN-SO-FD2 0.1 M NaOH/0.25 M NaNO3 8.1228 10 18.0604 9.9376 1.0 AN-SO-CW1 Water/dilute caustic/NaNO3 8.0897 10 18.1402 10.0505 1.0 AN-SO-CW1 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.9056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.9056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0567 10 17.9753 9.9056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0862 10 17.977 9.9115 1.0 AN-SO-ER1 0.25 M NaNO3 8.0862 10 17.9977 9.9115 1.0 AN-SO-ER2 0.25 M NaNO3 8.0867 10 18.0884 10.0317 1.0 AN-SO-ER2 0.1 M NaOH/0.25 M NaNO3 8.0815 10 18.1536 1.0 1.0		AN-SO-FD1	0.1 M NaOH/0.25 M NaNO3	8.0734	10	18.2572	10.1838	1.0	20
AN-SO-CW1 Water/dilute caustic/NaNO3 8.0897 10 18.1402 10.0505 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.9056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.9056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.3154 10 18.4109 10.0955 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.3154 10 18.4109 10.0955 1.0 AN-SO-ER1 0.25 M NaNO3 8.0862 10 17.9977 9.9115 1.0 AN-SO-ER2 0.25 M NaNO3 8.0865 10 18.0884 10.0317 1.0 AN-SO-ER2 0.1 M NaOH/0.25 M NaNO3 8.0815 10 18.1536 1.0 1.0		AN-SO-FD2	0.1 M NaOH/0.25 M NaNO3	8.1228	10	18.0604	9.9376	1.0	20
AN-SO-CW2 Water/dilute caustic/NaNO3 8.0697 10 17.9753 9.9056 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.3154 10 18.4109 10.0955 1.0 AN-SO-CW2 Water/dilute caustic/NaNO3 8.3154 10 18.4109 10.0955 1.0 AN-SO-ER1 0.25 M NaNO3 8.0862 10 17.9977 9.9115 1.0 AN-SO-ER2 0.25 M NaNO3 8.0567 10 17.9977 9.9115 1.0 AN-SO-ER2 0.25 M NaNO3 8.0567 10 18.0884 10.0317 1.0 AN-SO-ER2 0.1 M NaOH/0.25 M NaNO3 8.0815 10 18.1536 10.0721 1.0		AN-SO-CWI	Water/dilute caustic/NaNO3	8.0897	10	18.1402	10.0505	1.0	20
AN-SO-CW2 Water/dilute caustic/NaNO3 8.3154 10 18.4109 10.0955 1.0 AN-SO-ER1 0.25 M NaNO3 8.0862 10 17.9977 9.9115 1.0 AN-SO-ER1 0.25 M NaNO3 8.0862 10 17.9977 9.9115 1.0 AN-SO-ER2 0.25 M NaNO3 8.0567 10 18.0884 10.0317 1.0 AN-SO-REGN 0.1 M NaOH/0.25 M NaNO3 8.0815 10 18.1536 10.0721 1.0	_	AN-SO-CW2	Water/dilute caustic/NaNO3	8.0697	10	17.9753	9.9056	1.0	20
AN-SO-ER1 0.25 M NaNO3 8.0862 10 17.9977 9.9115 1.0 AN-SO-ER2 0.25 M NaNO3 8.0567 10 18.0884 10.0317 1.0 AN-SO-ER2 0.1 M NaOH/0.25 M NaNO3 8.0815 10 18.1536 10.0721 1.0		AN-SO-CW2	Water/dilute caustic/NaNO3	8.3154	10	18.4109	10.0955	1.0	20
AN-SO-ER2 0.25 M NaNO3 8.0567 10 18.0884 10.0317 1.0 AN-SO-REGN 0.1 M NaOH/0.25 M NaNO3 8.0815 10 18.1536 10.0721 1.0		AN-SO-ERI	0.25 M NaNO3	8.0862	10	17.9977	9.9115	1.0	20
AN-SO-REGN 0.1 M NaOH/0.25 M NaNO3 8.0815 10 18.1536 10.0721 1.0		AN-SO-ER2	0.25 M NaNO3	8.0567	10	18.0884	10.0317	1.0	20
		AN-SO-REGN	0.1 M NaOH/0.25 M NaNO3	8.0815	10	18.1536	10.0721	1.0	20

1550¥

.

56-50-11

Burette

í

page 1 of 1

file: asr5500,5520.xls

•.--

\$

/ / 1/-----Tallon - 175 - 12 - Por blat to a timin

עינות הואכפו או חרבתחוב #ולח

date Y. reviewer -PANANCA 012 , rmrr Could COMMENTS (FC. Cernen 22 5 ~ Leele. date 12/29/99 ? Lattelle Radiochemical Processing Group .Radioanalytical Applications Team 995-365 - KJ C C CLYNE 5521 analyst 0 CLIENT ASR# 6

.

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

Client : Kurath/Lumetta

Cognizant Scientist:

Concur: Kang-le

Date :

<u>10/22/99</u> 10/22/99

Date :

99-2650

10/22/99

Procedure: PNL-ALO-420, 421

Measured Activities (µCi/ml) and 1-sigma error

ALO ID Client ID	Alpha Error %	Sr-90 Error %	
99-2650 AN107 Start	5.12E-3 3%	6.87E-1 3%	
99-2650 REP AN107 Start	5.27E-3 3%	7.46E-1 3%	
RPD	3%	8%	
99-2651 AN107-1	8.70E-3 3%	1.88E+0 4%	
99-2652 AN107-2	1.66E-2 2%	2.16E+0 3%	
99-2653 AN107-PPT1	1.11E-4 24%	1.19E-2 3%	
99-2654 AN107-PPT2	1.81E-4 19%	2.68E-2 3%	
99-2685 AN-SO-L22A		3.49E-1 3%	
99-2686 SO4-Effulent Composite		6.02E-1 3%	
99-2687 AN-SO-FD1		4.85E-2 3%	
99-2688 AN-SO-FD2		7.38E-3 3%	
99-2689 AN-SO-CW1		5.60E-3 3%	
99-2690 AN-SO-CW2		6.51E-3 3%	
99-2692 AN-SO-E1-A		5.04E-2 3%	
99-2693 AN-SO-E2-A		3.92E-1 3%	
99-2694 AN-SO-E3-A		1.29E-1 3%	

.

Measured Activities (µCi/ml) and 1-sigma error

٠.

ALO ID Client ID	Alpha Error %	Sr-90 Error %
99-2695 AN-SO-E4-A		3.33E-2 3%
99-2695 Rep AN-SO-E4-A	*	3.37E-2 3%
RPD		1%
99-2696 AN-SO-E5-A		6.15E-3 3%
99-2697 AN-SO-E6-A		· 2.21E-3 3%
99-2698 AN-SO-E7-À		4.76E-3 3%
99-2699 AN-SO-E8-A		4.76E-4 5%
99-2700 AN-SO-E9-A		1.34E-4 14%
99-2701 AN-SO-E10-A		7.72E-5 23%
99-2702 SO4-Eluant-Composite A		2.19E-2 3%
99-2703 AN-SO-ER1		1.14E-4 16%
99-2704 AN-SO-ER2		7.76E-5 23%
99-2705 AN-SO-REGN		<4.E-5
Spike	100%	106% 101%
Matrix Spike*	43%	89% 111%
Blank	<3.E-5	<5.E-6 <8.E-6

• •

*Note: The total alpha matrix spike recovery was low due to high mass absorption, indicating a potential low bial for the total alpha results.

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

Client : Kurath/Lumetta

•--

299-2650 10/12/1999 Tash 12

+2.12.3.3

Cognizant Scientist:	N.K. fisker	- 370.330	Date :	10/12/99
Concur :	T Trang-le	- 1937	Date :	10/12/99
Procedure: PNL-ALO-	450			

Measured Activities (µCi/ml) and 1-sigma error

ALO ID Client ID	Co-60 Error %	Sb-125 Error %	SnSb-126 Error %	Cs-134 Error %	Cs-137 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
99-2650 AN107 Start	5.72E-2 1%	5.62E-4 19%	2.87E-4 7%	<2.E-4	2.67E-2 2%	1.10E-2 2%	7.95E-3 3%	4.52E-3 5%
99-2651 - AN107-1	1.63E-1 1%	9.54E-4 30%	6.56E-4 9%	<4.E-4	7.74E-2 2%	2.42E-2 2%	1.75E-2 3%	1.11E-2 6%
99-2652 AN107-2	3.07E-1 1%	1.32E-3 27%	1.51E-3 6%	<6.E-4	1.49E-1 2%	3.62E-2 2%	2.66E-2 3%	1.92E-2 5%
99-2653 AN107-PPT1	1.02E-3 2%	<3.E-5	<9.E-6	<2.E-5	4.56E-4 3%	2.70E-4 3%	2.10E-4 7%	9.71E-5 22%
99-2654 AN107-PPT2	1.31E-3 2%	<2.E-5	7.32E-6 17%	<8.E-6	6.07E-4 2%	2.83E-4 2%	2.06E-4 5%	1.18E-4 15%
99-2685 AN-SO-L22A	2.90E-2 2%	<3.E-4	1.35E-4 16%	9.69E-5 49%	1.64E-2 2%	4.50E-3 3%	3.19E-3 5%	1.87E-3 15%
99-2686 SO4-Effulent Composite	5.53E-2 1%	3.65E-4 22%	2.41E-4 7%	<2.E-4	2.39E-2 2%	1.06E-2 2%	7.58E-3 3%	4.45E-3 5%
99-2687 AN-SO-FD1	2.64E-3 2%	<5.E-5	<2.E-5	<2.E-5	5.93E-3 2%	2.61E-4 '4%	2.03E-4 8%	1.28E-4 22%
99-2688 AN-SO-FD2	2.24E-4 2%	<3.E-5	<9.E-6	<4.E-6	4.71E-3 2%	1.07E-5 18%	<2.E-5	<3.E-5
99-2689 AN-SO-CW1	1.04E-4 2%	<3.E-5	<8.E-6	<3.E-6	3.42E-3 2%	8.50E-6 21%	<2.E-5	<2.E-5
99-2690 AN-SO-CW2	6.73E-5 2%	<2.E-5	<3.E-6	<2.E-6	2.30E-3 2%	1.38E-5 11%	<1.E-5	1.10E-5 42%
99-2692 AN-SO-E1-A	6.48E-3 2%	3.82E-5 36%	2.49E-5 12%	<2.E-5	1.38E-3 2%	5.91E-4 3%	4.14E-4 5%	2.27E-4 16%
99-2693 AN-SO-E2-A	2.02E-3 2%	<5.E-5	<2.E-5	<2.E-5	1.67E-3 2%	4.29E-3 1%	3.09E-3 3%	1.48E-3 6%
99-2694 AN-SO-E3-A	1.36E-3 2%	<3.E-5	8.81E-6 27%	<2.E-5	1.30E-3 2%	1.08E-3 2%	8.06E-4 3%	4.05E-4 7%
99-2695 AN-SO-E4-A	3.25E-4 2%	<3.E-5	<6.E-6	<7.E-6	1.04E-3 2%	9.65E-5 5%	6.81E-5 13%	6.20E-5 26%
99-2696 AN-SO-E5-A	9.28E-5 3%	<2.E-5	<7.E-6	<6.E-6	7.94E-4 2%	1.51E-5 17%	1.21E-5 33%	1.68E-5 35%
99-2697 AN-SO-E6-A	5.21E-5 5%	<2.E-5	<5.E-6	<6.E-6	6.04E-4 2%	1.28E-5 27%	<2.E-5	2.06E-5 36%

Page 1

ALO ID Client ID	Co-60 Error %	Sb-125 Error %	SnSb-126 Error %	Cs-134 Error %	Cs-137 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
99-2698 AN-SO-E7-A	3.75E-4 2%	<2.E-5	<7.E-6	<7.E-6	5.44E-4 2%	8.18E-5 5%	5.11E-5 10%	4.03E-5 19%
99-2699 AN-SO-E8-A	4.66E-5 7%	<2.E-5	<7.E-6	<7.E-6	2.87E-4 3%	<2.E-5	<2.E-5	<2.E-5
99-2700 AN-SO-E9-A	2.40E-5 8%	<2.E-5	<5.E-6	<5.E-6	1.66E-4 3%	<2.E-5	<2.E-5	<2.E-5
99-2701 AN-SO-E10-A	1.98E-5 14%	<3.E-5	<7.E-6	<7.E-6	9.56E-5 6%	<2.E-5	<2.E-5	<2.E-5
99-2702 SO4-Eluant-Composite A	2.75E-4 2%	<8.E-6	<4.E-6	<3.E-6	5.82E-4 2%	1.55E-4 2%	1.16E-4 4%	5.41E-5 9%
99-2703 AN-SO-ER1	3.21E-5 4%	<6.E-6	<3.E-6	<3.E-6	8.09E-5 4%	6.73E-6 17%	<7.E-6	<9.E-6
99-2704 AN-SO-ER2	1.19E-5 5%	<4.E-6	<2.E-6	<2.E-6	5.71E-5 3%	<3.E-6	<4.E-6	<5.E-6
99-2705 AN-SO-REGN	2.70E-5 3%	<3.E-6	<1E-6	<2.E-6	2.53E-5 4%	<3.E-6	<3.E-6	<3.E-6

Measured Activities (µCi/ml) and 1-sigma error

•--

•

.

.

-

APPENDIX C

Appendix C: Sample Spreadsheets

Table C.1. Batch Contacts: Archive AN-107 Contacted with Superlig[®]-655 (SL-655)

Performed 09/16/99 through 09/20/99, as per " Batch Contact Test Instructions for SL-655 and Archive AN-107 Sample", BNFL-TI-29953-056 Distribution coefficient calculation: $Kd = [(C_0-C1)/C1] \times [V/(M \times F)]$

Archive AN-10 SL-655 F facto)7 density = r =		1.22 g/mL 0.454		
Sample ID	resin mass (g)	solution mass (g)	solution volume (mL)	sulfate conc., M	Kd (mL/g)
AAN-C	0	6.1655	5.054	3949.1	
AAN55-04	0.3305	6.1933	5.076	3886.7	0.543
AAN55-08	0.33	6.2	5.082	3953.7	-0.039
AAN55-16	0.3299	6.1733	5.060	3843.6	0.927
AAN55-24	0.3299	6.1725	5.059	3905	0.381
AAN55-72	0.3305	6.238	5.113	3979.1	-0.257
AAN-55	0.3304	6.1883	5.072	3891	0.505
AAN55D	0.3287	6.1962	5.079	3873.9	0.661

C.2

faad daneity =	1 22	a/ml	LIOW LCSU	וחו הרח-יוה וח אוו	Sullate Nelliov		INI-NIV SAL		Г
Archive AN-107 sulfate co	ncentrations	1							
AN-107 start	3632.7	ä	ed volume =	29.1	mL Bed heig	tht changed f	rom 6 cm at start to	o 5.5 cm at end. Average	-
AN-107 start	4244.2				bed volu	me used.			1
AN-107 start	4024.4			0145100 0140100		0-3		-	5
AAN-C-A	3949.1		Performed	9/10/99 - 9/10/98	per lest instri	Uctions for SI			
99-2663 SO4 IX Feed	3763.9		COLUMN 16	Sting Using Enve	Iope C (AN-10/	Archive) 50	Intion", BNFL-11-		
Average	3922.9		78800-00687	Kev I.					
Standard Deviation	236.5	100			2 C C C C C C C C C C C C C C C C C C C				
							Sulfate		1
	time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co		1
	ł	σ	F	ng/mL	BV	BV	iverage		1
99-2663 SO4 IX Feed							3922.9 feed		
99-2664 AN-SO-L1A	0.20	18.1994	14.9	2100	0.51	0.51	53.5%		
99-2665 AN-SO-L2A	0.21	19.3336	15.8	2900	0.54	1.06	73.9%		
99-2666 AN-SO-L3A	0.14	18.0048	14.8	3200	0.51	1.56	81.6%		T
99-2667 AN-SO-L4A	0.17	17.287	14.2	3500	0.49	2.05	89.2%		1
99-2668 AN-SO-L5A	0.17	17.5912	14.4	3600	0.49	2.54	91.8%		1
99-2669 AN-SO-L6A	0.18	17.7314	14.5	3700	0.50	3.04	94.3%		T
99-2670 AN-SO-L7A	0.15	17.9241	14.7	3600	0.50	3.55	91.8%		1
99-2671 AN-SO-L8A	0.17	17.7684	14.6	3600	0.50	4.05	91.8%		1
99-2672 AN-SO-L9A	0.17	18.0581	14.8	3600	0.51	4.55	91.8%		
99-2673 AN-SO-L10A	0.17	18.5403	15.2	3800	0.52	5.08	96.9%		T
99-2674 AN-SO-L11A	0.17	18.5183	15.2	3600	0.52	5.60	91.8%		T
99-2675 AN-SO-L12A	0.17	17.2941	14.2	3500	0.49	6.08	89.2%		T
99-2676 AN-SO-L13A	0.17	18.1606	14.9	3700	0.51	6.59	94.3%		1
99-2677 AN-SO-L14A	0.17	17.9832	14.7	3600	0.51	7.10	91.8%		1
99-2678 AN-SO-L15A	0.17	18.1539	14.9	3600	0.51	7.61	91.8%		1
99-2679 AN-SO-L16A	0.17	18.4088	15.1	3700	0.52	8.13	94.3%		-
99-2680 AN-SO-L17A	0.17	18.3436	15.0	3600	0.52	8.65	91.8%		1
99-2681 AN-SO-L18A	0.18	19.8415	16.3	3600	0.56	9.20	91.8%		T
99-2682 AN-SO-L19A	0.16	17.3692	14.2	3700	0.49	9.69	94.3% Sam	oles I 1-I 20 were	1
99-2683 AN-SO-L20A	0.17	18.8238	15.4	3600	0.53	10.22	91.8% comp	posited 121 and 122	1
99-2684 AN-SO-L21A	0.17	18.032	14.8	3500	0.51	10.73	89.2% were	partially feed	1
99-2685 AN-SO-L22A	0.17	17.063	14.0	1700	0.48	11.21	43.3% displa	acement solution.	1
avaerage eff composite				3500			89.2%		
Total	3.72		326.6	ave flow rate =	3.01	BV/hr			

C.3

Table C.2. Column Flow Testing of SL-655 for SO4 Removal from Archive AN-107 (cont')

•

approximate density of 0.25 M NaNO3/0.25M NaOH = 1.024 g/mL Sulfate 99-2687 AN-SO-FD1 time mass volume Sulfate Bed volumes cumulative C/Co 99-2687 AN-SO-FD1 0.33 31,0753 30.3 160 1.04 BV BV BV BV average 99-2687 AN-SO-FD2 0.34 39.23 31,0753 30.3 31,0753 30.3 160 1.04 11.255 3.38% 052 0.34 59.25 average 3.03 BV/m BV BV average 0.101 time mass volume Sulfate Bed volumes cumulative C/Co 0.2569 AN-SO-CW1 MS 0.34 31,0753 30.7 < 400 101 11.325 < 41.36 0.266 mass volume Sulfate Bed volumes cumulative C/Co 0.2580 AN-SO-CW1 MS 0.34 31,0753 30.7 < 400 101 105 < 41.37 0.258 AN-SO-EV1 MS <th>JEN M CZ.U/SON M CZ.I</th> <th>I DAAL UC</th> <th>Ishiacemen</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	JEN M CZ.U/SON M CZ.I	I DAAL UC	Ishiacemen						
image image mass volume Sulfate Bed volumes cumulative C/Co $99-2687$ AN-SO-FD1 0.33 31.0753 30.3 160 104 12.25 38% $99-2687$ AN-SO-FD1 0.33 31.0753 30.3 50.5 $welnow welnow $	approximate density of 0.25	5 M NaNO	3/0.25M NaC	H = H		1.024	g/mL	Sulfate	
Processes mc gg/mL BV BV BV average 0-2687 AN-SO-FD1 0.33 31.0753 30.3 150 1.04 12.25 3.8% 0-2688 AN-SO-FD1 0.31 29.8419 29.91 59.5 ave flow rate = 3.02 BV/n average 0.71 2.55 NANO3 wash .1.012 g/mL 1.04 12.25 3.8% 0.75 2.84 flow rate = 3.02 BV/n BV BV Sulfate 0.75 3.07 <60 1.05 9.01 9.05 average 0.75 0.34 31.0753 3.07 <60 1.05 14.30 <1.3% 0.75 0.34 31.0753 3.07 <60 1.05 Art 3.0 <1.3% 0.75 0.34 31.0753 3.07 <60 1.05 Art 3.0 <1.3% 0.75 0.34 31.0753 3.07 <60 1.05 Art 3.0 <1.3% 0.75 0.34<		time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co	
0.2687 AN-SO-FD1 0.33 31.0753 30.3 150 1.04 12.25 3.8% 0.100 0.7 59.5 ave flow rate = 3.02 BV/hr 1.325 <1.3%		hr	σ	шĻ	ng/mL	BV	BV	average	
0.2868 AN-SO-FD2 0.34 29 8419 29.1 <50 1.00 13.25 <1.3% 0 old 0.1 59.5 ave flow rate = 3.02 BV/hr Sulfate PProximate density of 0.25 M NaNO3 .1.012 y/mL Sulfate Bed volumes $umulative$ C/Co 0.11 mass volume Sulfate Bed volumes $umulative$ C/Co 9.2689 AN SO-CW1 MS 0.32 29.8419 29.5 <60	19-2687 AN-SO-FD1	0.33	31.0753	30.3	150	1.04	12.25	3.8%	
otal 0.7 59.5 ave flow rate = 3.02 BV/hr .25 M NaNO3 wash	9-2688 AN-SO-FD2	0.34	29.8419	29.1	<50	1.00	13.25	<1.3%	
125 M NaNO3 wash 1012 g/mL g/mL g/mL Sulfate pproximate density of 0.25 M NaNO3 = 1.012 g/mL BV BV Sulfate pproximate density of 0.25 M NaNO3 = 1.012 g/mL BV BV BV Sulfate 60.2690 AN-SO-CW1 MS 0.34 31.0753 30.7 <60	otal	0.7		59.5	ave flow rate =	3.02	BV/hr		
opproximate density of 0.25 M NaNO3 = .1.012 g/mL g mL ug/mL BV Suffate fime mass volume Sulfate Bed volumes cumulative C/Co 9-2699 AN-SO-CW1 MS 0.34 31.0753 30.7 <60	1.25 M NaNO3 wash								
Itme mass volume Sulfate Bed volumes cumulative C/Co 9-2689 AN-SO-CW1 MS 0.34 10 m ug/mL BV BV average 9-2680 AN-SO-CW1 MS 0.34 31.0753 30.7 <50	pproximate density of 0.25	5 M NaNO	3"	.1.012	g/mL			Sulfate	
9-2689 AN-SO-CW1 MS 0.34 31.0753 30.7 <50 1.05 14.30 $<1.3\%$ 9-2689 AN-SO-CW1 MS 0.34 31.0753 30.7 <50 1.05 14.30 $<1.3\%$ 9-2689 AN-SO-CW1 MS 0.32 29.8419 29.5 <50 1.06 1.01 15.32 $<1.3\%$ 9-2690 AN-SO-CW2 MS 0.32 29.8419 29.5 $<<50$ 1.01 15.32 $<1.3\%$ 0tal 0.66 1.01 9.26 1.01 15.32 $<1.3\%$ pproximate density of 0.5 M intic acid = 1.014 g/mL g/mL BV/m BV/m $< pproximate density of 0.5 M intic acid = 1.014 g/mL B/mL B/m < filtion mass volume Sulfate Bed volumes < 0.569 m 0.56 0.88 <0.85 < < 9.2693 AN-SO-E2-A 0.88 26.3731 26.0 < < <$	MONTON -	time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co	
9-2689 AN-SO-CW1 MS 0.34 31.0753 30.7 <50 1.05 14.30 <1.3% 9-2690 AN-SO-CW2 MS 0.32 29.8419 29.5 <50 1.01 15.32 <1.3% 9-2690 AN-SO-CW2 MS 0.32 29.8419 29.5 ave flow rate = 3.13 BV/hr 15.32 <1.3% Iution 0.66 = 1.014 g/mL mode rate = 3.13 BV/hr 5.13% Intion = = 1.014 g/mL BV BV BV BV proximate density of 0.5 M intic acid = 1.014 g/mL BV/mL BV BV BV proximate density of 0.5 M intic acid = 1.014 g/mL BV/mL BV/mL BV/mL Sulfate proximate density of 0.5 M intic acid = 1.014 g/mL BV/mL BV/mL BV/mL Sulfate C/co proximate density of 0.5 M intic acid = 1.014 g/mL BV/mL BV/mL BV/mL Sulfate C/co fm g		F	D	ц	ng/mL	BV	BV	average	
9-2690 AN-SO-CWZ MS 0.32 29.8419 29.5 <50 1.01 15.32 <1.3% otal 0.66 ave flow rate = 3.13 BV/hr 15.32 <1.3%	9-2689 AN-SO-CW1 MS	0.34	31.0753	30.7	<50	1.05	14.30	<1.3%	
otal 0.66 60.2 ave flow rate = 3.13 BV/Ihr Iution Iution 60.2 ave flow rate = 3.13 BV/Ihr Sulfate pproximate density of 0.5 M nitric acid = 1.014 g/mL Sulfate Sulfate Sulfate 92692 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 92693 AN-SO-E2-A 0.88 26.3731 26.0 <100	9-2690 AN-SO-CW2 MS	0.32	29.8419	29.5	<50	1.01	15.32	<1.3%	
Intion Internation Internation Internation Sulfate Sulfate pproximate density of 0.5 M nitric acid = 1.014 g/mL Sulfate Sulfate Sulfate 9-2692 AN-SO-E1-A time mass volume Sulfate Bed volumes cumulative C/Co 9-2693 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 9-2693 AN-SO-E2-A 0.88 26.3731 26.0 <100	otal	0.66		60.2	ave flow rate =	3.13	BV/hr		
pproximate density of 0.5 M nitric acid = 1.014 g/mL Sulfate Sulfate fime mass volume Sulfate Bed volumes cumulative C/Co 9.2692 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 9.2693 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 9.2693 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 9.2693 AN-SO-E3-A 0.88 26.3731 26.0 <100	lution								
time mass volume Sulfate Bed volumes cumulative C/Co 9-2692 AN-SO-E1-A hr g mL ug/mL BV BV BV average 9-2693 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 9-2693 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 9-2693 AN-SO-E2-A 0.88 26.3731 26.0 <100	pproximate density of 0.5	M nitric ac	id =	1.014	g/mL		Sulfate		
hr g mL ug/mL BV BV BV average 9.2692 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 9.2693 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 9.2693 AN-SO-E1-A 1.00 30.1769 29.8 <100		time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co	
9-2692 AN-SO-E1-A 1.00 25.1152 24.8 427 0.85 0.85 10.9% 9-2693 AN-SO-E2-A 0.88 26.3731 26.0 <100		h	σ	шГ	ng/mL	BV	BV	average	
9-2693 AN-SO-E2-A 0.88 26.3731 26.0 <100	9-2692 AN-SO-E1-A	1.00	25.1152	24.8	427	0.85	0.85	10.9%	
9-2694 AN-SO-E3-A 1.00 30.1769 29.8 <100	9-2693 AN-SO-E2-A	0.88	26.3731	26.0	<100	0.89	1.74	<2.5	
9-2695 AN-SO-E4-A 1.00 35.0744 34.6 <100	9-2694 AN-SO-E3-A	1.00	30.1769	29.8	<100	1.02	2.76	<2.5	
9-2696 AN-SO-E5-A 1.00 29.9812 29.6 <100	9-2695 AN-SO-E4-A	1.00	35.0744	34.6	<100	1.19	3.95	<2.5	
9-2697 AN-SO-E6-A 1.00 29.0696 28.7 <100	9-2696 AN-SO-E5-A	1.00	29.9812	29.6	<100	1.01	4.97	<2.5	
9-2698 AN-SO-E7-A 1.06 34.4395 34.0 <100 1.17 7.12 <2.5 9-2699 AN-SO-E8-A 0.96 34.0742 33.6 <100	9-2697 AN-SO-E6-A	1.00	29.0696	28.7	<100	0.98	5.95	<2.5	
9-2699 AN-SO-E8-A 0.96 34.0742 33.6 <100 1.15 8.27 <2.5 9-2700 AN-SO-E9-A 1.02 36.1764 35.7 <100	9-2698 AN-SO-E7-A	1.06	34.4395	34.0	<100	1.17	7.12	<2.5	
9-2700 AN-SO-E9-A 1.02 36.1764 35.7 <100	9-2699 AN-SO-E8-A	0.96	34.0742	33.6	<100	1.15	8.27	<2.5	
9-2701 AN-SO-E10-A 1.00 33.6707 33.2 <100 1.14 10.63 <2.5 9-2702 SO4 Eff Composite A </td <td>9-2700 AN-SO-E9-A</td> <td>1.02</td> <td>36.1764</td> <td>35.7</td> <td><100</td> <td>1.22</td> <td>9.49</td> <td><2.5</td> <td></td>	9-2700 AN-SO-E9-A	1.02	36.1764	35.7	<100	1.22	9.49	<2.5	
9-2702 SO4 Eff Composite A < <	9-2701 AN-SO-E10-A	1.00	33.6707	33.2	<100	1.14	10.63	<2.5	
otal 9.92 hr 309.8 mL ave flow rate = 1.07	9-2702 SO4 Eff Compositu	еA			<100			<2.5	
otal 9.92 hr 309.8 mL						ave	e flow rate =	1.07	BV/hr
	otal	9.92	F	309.8	шĻ				

C.4

Table C.2. Column Flow Testing of SL-655 for SO4 Removal from Archive AN-107 (cont')

÷

Elution rinse							
approximate density of 0.2	25 M NaNO	1.012	g/mL				
	time	mass	volume	Sulfate	Bed volumes	cumulative	C/Co
	P	D	шĻ	ng/mL	BV	BV	average
99-2703 AN-SO-ER1	1.01	31.1126	30.7	<100	1.06	1.06	<2.5
99-2704 AN-SO-ER2	0.99	31.4171	31.0	<100	1.07	2.12	<2.5
Total	2.00		61.8	ave flow rate =	1.06	BV/hr	
Regeneration			Note: B	DL; below detect	tion limit		
approximate density of 0.2	25 M NaNO3	3/0.25M NaC	H=	1.024			
	mass	volume	Sulfate	Bed volumes	C/Co		
	Б	۳Ľ	ng/mL	BV			
99-2705 AN-SO-REGN	61.4488	60.0	<100	2.06	<2.5		
		Note: BDL	; below det	ection limit			

Distribution

No. of Copies

OFFSITE

No. of Copies

ONSITE

- 2 DOE/Office of Scientific and Technical Information
- 1 R. Bruening IBC Technologies 856 E. Utah Valley Drive American Fork, UT 84003
- 1 P. McGinnis Oak Ridge National Laboratory PO Box 2008 Oak Ridge, TN 37831-6273
- 1 B. Moyer Oak Ridge National Laboratory PO Box 2008 Oak Ridge, TN 37831

5	British Nuclear Fuels, I	Limited
	M. E. Johnson (4)	BN-FL
	E. Higginbotham	BN-FL
1	<u>CHG</u>	
	D. J. Washenfelder	H6-18

11Pacific Northwest National Laboratory
J. R. BonthaK6-24D. L. Blanchard Jr.P7-22S. K. FiskumP7-22D. E. KurathP7-28E. V. MorreyP7-28B. M. RapkoP7-25Technical Report Files (5)K1-06

