LETTER REPORT

Washing of the AW-101 Entrained Solids

Gregg J. Lumetta Ralph C. Lettau

August 1999

Prepared for BNFL, Inc. under Project 29952/29953 Battelle, Richland, Washington, 99352

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR

IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Contents

1.0	Introduction	1
2.0	Personnel	1
	Experimental	
	Results	
5.0	Conclusions and Recommendations	5

Appendix A. Test Plan Appendix B. Raw Data Appendix C. Calculations

1.0 Introduction

BNFL Inc. (BNFL) is under contract with the U.S. Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: 1) primarily liquid low-activity waste (LAW) consisting of less than 2 wt% entrained solids and 2) high-level waste (HLW) consisting of 10 to 200 g/L solids slurry.

The RPP contract includes three options for disposition of the entrained solids contained in low-activity waste feed solutions: 1) washing to remove sodium, cesium, and technetium then returning *via* pipeline to DOE-RPP, 2) vitrification along with pretreated LAW solutions, or 3) vitrification along with pretreated high-level waste (HLW).

BNFL requested Battelle test inhibited water (0.01 \underline{M} NaOH) and caustic leaching (3 \underline{M} NaOH) as methods for pretreating the solids entrained in the AW-101 sample. These methods are meant to remove certain nonradioactive components (e.g., Na, Al, Cr, P, and S) from the HLW fraction so as to reduce the volume of immobilized HLW.

This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW-101 entrained solids in 0.01 <u>M</u> NaOH, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, *LAW Entrained Solids Water Wash and Caustic Leach Testing.* The test went according to plan, with no deviations from the test plan. Based on the results of the 0.01 <u>M</u> NaOH washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume.

2.0 Personnel

Staff Member	Responsibilities
G.J. Lumetta	Cognizant scientist. Prepared test plan and designed experiment. Supervised performance of the test. Prepared analytical service request. Interpreted data and reported results.
R.C. Lettau	Hot cell technician. Performed test.
M.W. Urie	Managed chemical and radiochemical analytical work.
B.M. Rapko	Technical reviewer.
K.P. Brooks	Task Leader.

The Battelle personnel and their responsibilities in performing this test are given below.

3.0 Experimental

<u>Sample Description.</u> The sample used in this test was labeled as AW-101 CL-1. The homogenization, dilution, caustic adjustment, and representative subsampling were performed as described in test plan BNFL-29953-6, *Sub-Sampling and Characterization of AN-107 and AW-101 Diluted Feed Samples* (Urie et al. 1999). The total volume of sample AW-101 CL-1 was 85 mL and it contained approximately 5 mL of settled solids. This sample was half of the material indicated as the "Caustic Leach" sample in Figure 1.1 of Urie et al. (1999).

<u>Apparatus.</u> The apparatus used consisted of an aluminum heating block placed on a hot plate/stirrer. The hot plate/stirrer was modified so that separate power could be applied to the heating and stirring functions. This allowed for continuous stirring, while the hot plate was powered by a temperature controller. The temperature controller used was a J-KEM Model 270 (J-KEM Electronics, Inc., St. Louis, MO). This temperature controller consists of two separate circuits. One is the temperature control circuit, while the other serves as an over-temperature device, which shuts down the system if a preset temperature is exceeded. The set point for the over-temperature circuit was set at 100°C for this test. A dual K-type thermocouple (model number CASS-116G-12-DUAL, Omega Engineering, Stamford, CT) was used to provide inputs to the temperature controller and over-temperature circuits. Both the J-KEM Model 270 and the dual thermocouple were calibrated before use. The aluminum heating block contained two wells. A vial containing water was placed in one of the wells, with the thermocouple wedged between this vial and the aluminum block. The vial containing the sample was placed in the other well.

Procedure.^(a) The sample in AW-101 CL was mixed by swirling. The homogenized slurry was then filtered through a pre-weighed 0.45-µm nylon filtration unit (Nalgene no. 150-0045, Nalge Nunc International, Rochester, New York). The weights of the filtrate and filtered solids were determined to be 108.127 g and 2.075 g, respectively. Five 4-mL aliquots of 0.01 M NaOH were used to transfer the filtered solids to a 30-mL high-density polyethylene (HDPE) vial (this vial also contained a Teflon®-coated magnetic stir bar). The weight of the washing slurry was 18.769 g. This value is $\sim 15\%$ less than expected based on the weight of the filtered solids and the 0.01 M NaOH (washing soluiton) added; this was perhaps due to loss of liquid through the membrane during transferring process. The vial was equipped with a condenser tube, which allowed the system to vent during heating, but minimized evaporation. The mixture was heated and stirred at 85 ± 2 °C for 17 h. After cooling to room temperature, the mixture was weighed. The weight was 18.242 g, indicating 0.527 g lost to evaporation. The washing slurry was filtered through a pre-weighed 0.45-um nylon filtration unit. During the transfer to the filter funnel, the stir bar also fell into the filter funnel. This was lifted out and the solids stuck to it were rinsed into the filter with a small amount of 0.01 M NaOH. The weights of the filtrate and filtered solids were determined to be 17.461 g and 1.317 g, respectively. Two aliquots (~10-mL each) of the filtrate were taken for analysis. There were no solids in this solution after 21.5 h, indicating no precipitation following filtration.

(a)

See Appendix A for a copy of the test plan and procedural notes.

The washing procedure described above was repeated three times for a total of four washes. The heating and mixing times for the second, third, and fourth washing steps were 16, 20, and 21 h, respectively. There was no evidence of precipitation in the wash solutions after standing overnight. The weight of the wet filtered solids were 1.210, 1.314, and 1.128 g after the second, third, and fourth washing steps, respectively. These weights can be viewed as nearly constant given the potential for variable water content in the wet solids. After the fourth washing step, the solids were transferred to a pre-weighed glass vial using deionized water. Excess water was evaporated at 80°C, then the solids were dried overnight at 105°C. The final weight of the dried washed solids was 0.058 g. This low weight was surprising given the wet weight of ~1 g. The solids apparently have a strong propensity to retain water within the filter unit.

The wash solutions were subjected to the following analytical procedures: IC(anions), TOC/TIC, acid digestion, ICP/AES, ICP-MS(Tc-99), Sr-90, total alpha, total uranium, and GEA.

Because of the small quantity of washed solids, it was not possible to perform all the analyses originally stated in the test specification. To dissolve the solids for analysis, 5 mL of 12 <u>M</u> HCl was added to the glass vial containing the dried washed solids. After heating at 90°C for ~1.5 h, most of the solids had dissolved, but some remained. In an attempt to dissolve the remaining solids, 1 mL of 16 <u>M</u> HNO₃ was added. Again, the mixture was heated at 90°C. After 1.75 h, a white solid had collected around the threads of the vial cap. The sample was evaporated to dryness at 90°C, then five 5-mL aliquots of 0.1 <u>M</u> HCl was used to quantitatively transfer the material to a clean HDPE vial. One-mL of 10 <u>M</u> HF was added and the mixture was evaporated at ~80°C until only about 2 mL remained. Another 5 mL 0.1 <u>M</u> HCl was diluted to 25 mL with 0.1 <u>M</u> HCl. This solution was subjected to the following analytical procedures: ICP/AES, ICP-MS(Tc-99), Sr-90, total alpha, total uranium, and GEA. The small amount of gray filtered solid was saved, but was not further analyzed.

4.0 Results

Table 1 presents the concentration of the analyzed AW-101 components in each washing solution and in the washed solids. A caveat must be placed on the results for the washed solids: the concentrations listed in Table 1 assume that the washed solids were dissolved completely for analysis. As indicated in the experimental section, a small amount of material did not dissolve on treatment with acid. Table 2 lists the mass (or activity) of each analyzed component present in each wash solution and the washed solids and Table 3 gives the percentage of each component found in each solution and the washed solids. These values were obtained by dividing the amount of the given component found in a particular solution or the washed solids (i.e., the value in Table 2) by the total amount of that component found in all the wash solutions and the washed solids; the resulting fraction was multiplied by 100 to give the percentage values.

Aluminum, K, and Na were removed reasonably well from the AW-101 entrained solids. The Na concentration in the final wash solution (243 μ g/mL = 0.0106 <u>M</u>) was essentially the same as that in the wash solution added (0.010 <u>M</u> NaOH) indicating that essentially all soluble Na-containing components were removed. Only about 40% of the Cr was removed by dilute

hydroxide washing. The washed solids contained 3.5 wt% Cr. The main elements in the residual solids were U (18.5 wt%), Si (17.2 wt%), Na (5.7 wt%), Fe (4.9 wt%), Mn (4.5 wt%), Cr (3.5 wt%), Al (2.9 wt%), and Ca (2.3 wt%).

The radiochemical data indicated nearly quantitative removal of ¹³⁷Cs from the AW-101 entrained solids. Approximately 70% of the ⁹⁹Tc was also washed from the solids. The wash solution could be processed along with the liquid fraction of the AW-101 LAW to remove these two radioisotopes. Small fractions of the ⁹⁰Sr and TRU might also be present in the wash solution.

Much of the material found in the first wash solution can be attributed to dilution of the interstitial liquid rather than actual dissolution of entrained solids. Table 4 illustrates this. The volume of interstitial liquid in the filtered solids was estimated in the following manner. First, it was assumed that the Na present in the first wash solution was due only to dilution of the diluted AW-101 supernate and the 0.01 <u>M</u> NaOH (230 μ g/mL Na) used as the washing medium. The Na concentration in the first wash solution was 12150 μ g/mL, of which 12150 – 230 = 11,920 μ g/mL is attributed to dilution of the interstitial supernate. Given the wash solution volume of 16.9 mL and the Na concentration in the diluted AW-101 supernate was 148,500 μ g/mL (Urie 1999), the volume of the interstitial liquid was estimated as

 $V = (16.9 \text{ mL})(11,920 \mu \text{g/mL})/(148,500 \mu \text{g/mL}) = 1.36 \text{ mL}$

This value was then used to determine the concentration expected for each AW-101 component expected in the first wash solution based on dilution (Table 4). In many cases, the difference between what was expected from dilution and what was actually measured was within 20%, indicating dilution was primarily responsible. Notable exceptions were ⁹⁹Tc, Cr, Si, U, TOC, and TIC. Thus, the washing procedure appeared to actually remove fractions of these latter components.

Table 5 presents the mass recoveries for the major waste components. These mass recoveries were calculated using the composition of the diluted AW-101 feed material reported by Urie et al. (1999). In that work, the AW-101 solids were dissolved for analysis using a KOH fusion method. The mass recoveries were generally low. This is probably due to a combination of loss of material during the various transfers made during the test (e.g., the transfer of solids from the filter membrane back into the washing bottle) and the incomplete dissolution of the washed solids for analysis. If the latter reason is the dominant cause, we can adjust the concentrations in the washed solids for the material not accounted for.

For example, based on the data in Urie et al. (1999) and the mass of the sample used, the amount of Al in the sample was calculated to be 31,542 µg. Yet, only 23,454 µg were determined in the wash solutions and the washed solids (a 74% recovery). Thus, 8,088 µg of Al was unaccounted for. Assuming this was in the undissolved portion of the washed solids, the adjusted Al concentration in the washed solids is given by $(1682 + 8088 \mu g)/(0.0577 \text{ g solids}) = 169,000 \mu g/g$ (Note: The 1682 µg is the amount measured in the washed solids and 0.0577 g was the weight of the washed solids). In this manner, the following adjusted values for the washed solids were determined: Al (16.9 wt%), Cr (5.5 wt%), Fe (6.6 wt%), Mn (6.7 wt%), and U (25.6 wt%)).

Table 6 presents further comparisons to the data for the entrained solids reported in Urie et al. (1999). The concentrations could not be compared directly because the composition for the untreated entrained solids were reported on a wet-weight basis, whereas the washed solids were analyzed on a dry-weight basis. For this reason, the data were normalized to the Fe content. The percent of each component was determined based on the differences in the component concentrations relative to Fe before and after washing. For certain components (e.g., Cs, Tc, Al, Cr, K, and Na), the percent removals obtained in this manner agreed well with those reported in Table 3. However in most other cases, the removals indicated in Table 6 appear unreasonably high.

5.0 Conclusions and Recommendations

The results of this test suggest that caustic leaching would not provide much benefit for processing the AW-101 entrained solids. Washing with 0.01 <u>M</u> NaOH appeared to remove > 90% of the Al from the AW-101 solids. There is some uncertainty in this conclusion because of the low mass recovery for Al. Taking this uncertainty into account, the Al concentration in the washed solids was 2.9 to 16.9 wt%. Uranium is a major component of the washed AW-101 solids. Caustic leaching test with other tank sludges indicated that U in not generally soluble in the caustic media use (but there are some exceptions) (see Lumetta et al. 1996 and 1997; Rapko et al. 1995).

The Cr concentration (3.5 to 5.5 wt%) might present some problems in immobilizing the washed AW-101 solids. Previous studies we have done with other sludges suggest that caustic leaching might remove additional Cr, but a better strategy would be to add an oxidant during the washing process. Permanganate works very well, but sparging with air or ozone has also shown some promise (Rapko et al. 1996 and 1998). If the HLW volume is dictated by the Cr content, then an oxidative leaching process is recommended.

The concentrations of the major radionuclides contained in the washed solids were 4.51 μ Ci TRU/g (as indicated by the total alpha concentration), 2.43 μ Ci ²⁴¹Am/g, 1,950 μ Ci ⁹⁰Sr/g, and 35 μ Ci ¹³⁷Cs/g, indicating the solids should be treated as HLW. The washed solids represented only 0.05 wt% of the diluted AW-101 feed material. The blending of this material with the HLW sludge to be processed in Phase 1 Privatization should be considered. The impact to the overall flowsheet assuming the worst-case 16.9 wt% Al and 5.5 wt% Cr values, should be evaluated. Perhaps even with these assumed high Al and Cr concentrations in the washed LAW entrained solids, the overall impact of these solids on the flowsheet would be minimal if they were blended with the bulk HLW feed.

6.0 References

Lumetta, G. J., B. M. Rapko, M. J. Wagner, J. Liu, and Y. L. Chen. 1996. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1996 Studies*, PNNL-11278, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., I. E. Burgeson, M. J. Wagner, J. Liu, and Y. L. Chen. 1997. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1997 Studies*, PNNL-11636, Pacific Northwest National Laboratory, Richland, Washington.

Rapko, B. M, G. J. Lumetta, and M. J. Wagner. 1995. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1995 Studies*, PNL-10712, Pacific Northwest Laboratory, Richland, Washington.

Rapko, B. M., G. J. Lumetta, M. J. Wagner. 1996. Oxidative Dissolution of Chromium from Hanford Tank Sludges Under Alkaline Conditions, PNNL-11233, Pacific Northwest National Laboratory, Richland, Washington.

Rapko, B. M. 1998. Oxidative Alkaline Dissolution of Chromium from Hanford Tank Sludges Results of FY 98 Studies, PNNL-11908, Pacific Northwest National Laboratory, Richland, Washington.

Urie, M.W. et al. 1999. Inorganic and Radiochemical Analysis of AW-10 and AN-107 "Diluted Feed" Materials, PNWD-2463, Battelle Pacific Northwest Division, Richland, Washington.

	First Wash	Second Wash	Third Wash	Fourth Wash	Washed Solids
Analyte	AW101-AQ-30A ^(b)	AW101-AQ-50A	AW101-AQ-70A	AW101-AQ-90A	AW101-AQ-100
Cesium-137	1.70E+01	1.14E+00	3.15E-01	1.88E-01	3.50E+01
Strontium-90	3.80E-02	1.75E-02	7.19E-02	6.85E-02	1.95E+03
Technetium-99	2.35E-02	2.53E-03	8.06E-04	3.93E-04	3.22E+00
Americium-241	< 3E-04	< 5E-05	< 7E-04	< 1E-03	2.43E+00
Europium-154	< 2E-03	< 2E-04	< 8E-05	< 2E-04	6.33E-01
Europium-155 Total Alpha	< 1E-02 < 3E-04	< 2E-03 < 5E-05	< 5E-04 2.70E-04	< 8E-04 2.52E-04	7.80E-01 4.51E+00
Total Alpha	< JL-04	< 5E-05	2.7012-04	2.52E-04	4.51E+00
Ag	< 1.9	< 0.8	< 0.8	< 0.8	382
Al	1090	89.6	49.6	38.5	29159
Ba	< 1.3	(0.1)	(0.1)	(0.2)	2803
Ca	< 12.5	< 5.0	< 5.0	< 5.0	23050
Cd	< 1.9	< 0.8	< 0.8	< 0.8	1135
Со	< 3.1	< 1.3	< 1.3	< 1.3	159
Cr	65.0	5.36	1.72	(0.47)	34965
Cu	< 1.9	< 0.8	< 0.8	< 0.8	563
Fe ^(c)	< 3.1	(0.38)	(0.65)	(0.67)	48960
Κ	1615	(58)	< 100	< 100	(2166)
La	< 3.1	< 1.3	< 1.3	< 1.3	111
Mg	< 12.5	< 5.0	< 5.0	< 5.0	2080
Mn	< 0.6	(0.1)	0.428	0.382	45494
Mo	< 3.8	< 1.5	< 1.5	< 1.5	< 13
Na	12150	783	283	243	56759
Ni	(1.4)	< 1.5	< 1.5	< 1.5	7149
Р	(12)	(1.2)	(0.57)	< 5.0	2045
Pb	< 7.5	< 3.0	< 3.0	< 3.0	3726
$\mathrm{Si}^{(\mathrm{d})}$	74.2	62.9	72.4	61.2	172444
Ti	< 0.6	< 0.3	(0.03)	(0.03)	332
U	3.03	1.19	4.45	4.16	175325
Zn ^(e)	< 2.5	< 1.0	< 1.0	(0.25)	6716
Zr	< 3.1	< 1.3	(0.27)	(0.25)	7496
TOC	1900	< 170	< 80	< 80	(f)
TIC	410	190	120	120	(f)
Cl	250	11	3	2.5	(f)
F	100	6.0	< 1.4	< 1.4	(f)
NO ₃	7300	360	34	2.7	(f)
SO_4^{2-}	120	6.5	< 2.8	< 2.8	(f)
PO4 ³⁻	< 50	< 2.8	< 2.8	< 2.8	(f)

Table 1. AW-101 Component Concentrations in the Wash Solutions and the Washed Solids.^(a)

(a) For the liquids, concentrations for radionuclides are in units of μ Ci/mL; all other components are in units of μ g/mL. For the washed solids, concentrations for radionuclides are in units of μ Ci/g dry solids; all other components are in units of μ g/g dry solids. Values in parentheses are within 10 times the analytical detection limit.

(b) The reported values for the metals are the average of two duplicate ICP/AES analyses.

(c) The process blank had a relatively high Fe content of 0.4 μ g/mL.

(d) The process blank had a relatively high Si content of $119 \,\mu\text{g/mL}$.

(e) The process blank had a relatively high Zn content of $0.3 \,\mu\text{g/mL}$.

(f) Not determined because of acid dissolution method used to prepare analyte solution.

Analyte	First Wash	Second Wash	Third Wash	Fourth Wash	Washed Solids
Cesium-137	2.87E+02	2.21E+01	5.96E+00	3.35E+00	2.02E+00
Strontium-90	6.42E-01	3.39E-01	1.36E+00	1.22E+00	1.13E+02
Technetium-99	3.98E-01	4.92E-02	1.53E-02	6.99E-03	1.86E-01
Americium-241	< 5E-03	< 1E-03	< 1E-02	< 2E-02	1.40E-01
Europium-154	< 3E-02	< 4E-03	< 2E-03	< 4E-03	3.65E-02
Europium-155 Total Alpha	< 2E-01 < 5E-03	< 4E-02 < 1E-03	< 9E-03 5.11E-03	<1E-02 4.48E-03	4.50E-02 2.60E-01
Total Alpha	< 5E-05	< TE-03	J.11L-05	4.482-05	2.002-01
Ag	< 32	< 16	< 15	< 14	22
Al	18407	1741	939	685	1683
Ba	< 22	(1.8)	(1.2)	(2.7)	162
Ca	< 211	< 97	< 95	< 89	1330
Cd	< 32	< 16	< 15	< 14	66
Co	< 52	< 25	< 25	< 23	9
Cr	1098	104	33	(8.4)	2018
Cu	< 32	< 16	< 15	< 14	33
Fe	< 52	(7.4)	(12.3)	(11.9)	2825
Κ	27273	(1127)	< 1893	< 1779	(125)
La	< 52	< 25	< 25	< 23	6
Mg	< 211	< 97	< 95	< 89	120
Mn	< 10	(1.8)	8.1	6.8	2625
Mo	< 64	< 29	< 28	< 27	< 1
Na	205180	15211	5358	4324	3275
Ni	(24)	< 29	< 28	< 27	413
Р	(203)	(23)	(11)	< 89	118
Pb	< 127	< 58	< 57	< 53	215
Si	1252	1222	1371	1089	9950
Ti	< 10	< 6	(0.59)	(0.57)	19
U	51.1	23.1	84.3	74.0	10116
Zn	< 42	< 19	< 19	(4.4)	388
Zr	< 52	< 25	(5.1)	(4.4)	433
TOC	32086	< 3303	< 1515	< 1423	(b)
TIC	6924	3691	2272	2135	(b)
Cl	4222	214	57	44	(b)
F	1689	117	< 27	< 25	(b)
NO ₃	123277	6994	644	48	(b)
SO_4^{2-}	2026	126	< 53	< 50	(b)
PO ₄ ³⁻	< 844	< 54	< 53	< 50	(b)

Table 2. Quantities in Each Wash Solution and in the Washed Solids^(a)

(a) Radionuclides are given in μCi; other components are in μg. Values in parentheses are for components that were within 10 times the analytical detection limit.

(b) Not determined because of the acid dissolution method used to prepare the analyte solution.

Analyte	First Wash	Second Wash	Third Wash	Fourth Wash	Washed Solids
Cesium-137	90	7	2	1	1
Strontium-90	1	0	1	1	97
Technetium-99	61	8	2	1	28
Americium-241	< 3	< 1	< 7	< 10	> 79
Europium-154	< 43	< 5	< 2	< 4	> 46
Europium-155	< 61	< 14	< 3	< 5	> 16
Total Alpha	< 2	0	2	2	96 > x > 94
Ag	< 32	< 16	< 15	< 14	> 22
Al	78	7	4	3	7
Ba	< 12	(1)	(1)	(1)	88 > x > 85
Ca	< 12	< 5	< 5	< 5	> 73
Cd	< 23	<11	<11	< 10	> 46
Со	< 39	< 19	< 18	< 17	> 7
Cr	34	3	1	(0.3)	62
Cu	< 29	< 14	< 14	< 13	> 30
Fe	< 2	(0.3)	(0.4)	(0.4)	97
Κ	85	(3)	< 6	< 6	< 15
La	< 40	< 19	< 19	< 18	> 5
Mg	< 34	< 16	< 15	< 15	> 20
Mn	< 0	(0.1)	0.3	0.3	99
Mo	< 43	< 20	< 19	< 18	> 1
Na	88	7	2	2	1
Ni	(5)	< 6	< 5	< 5	95 > x > 79
Р	(46)	(5)	(2)	< 20	47 > x > 27
Pb	< 25	< 11	<11	< 10	> 42
Si	8	8	9	7	67
Ti	< 28	< 16	(2)	(2)	> 53
U	0.5	0.2	0.8	0.7	98
Zn	< 9	< 4	< 4	(0.9)	> 82
Zr	< 10	< 5	(1.0)	(0.9)	> 83

Table 3. Percentage of Each AW-101 Component in the Wash Solutions and in the Washed Solids^(a)

(a) Parentheses indicate that component was within 10 times the analytical detection limit.

		Concentration in Fir		
Analyte	Diluted Supernate ^(b)	Based on Dilution ^(c)	Found	Difference, %
Cesium-137	230	18.5	17.0	-8
Strontium-90	< 0.5	< 0.04	0.038	-6
Technetium-99	0.094	0.0075	0.024	213
Al	16350	1317	1090	-17
Cr	56.1	4.52	65.0	1339
Κ	23000	1852	1615	-13
Na	148500	11959	12150	2
Ni	(4.8)	(0.39)	(1.4)	262
Р	323	26.0	(12)	-54
Si	(130)	(10.5)	74.2	608
U	3.22	0.259	3.03	1067
TOC	1560	126	1900	1412
TIC	2155	174	410	136
Cl	3300	266	250	-6
F	830	67	100	50
NO ₃	123000	9906	7300	-26
SO ₄ ²⁻	1850	149	120	-19

Table 4. Expected Concentrations in the First Wash Solution Based on Dilution of the Interstitial Liquid^(a)

(a) Radionuclides are reported in units of µCi/mL; all other components are in units of µg/mL.

(b) Values taked from Urie 1999. Each value is an average of duplicate measurements.

(c) It was assumed that there were 1.36 mL of interstitial liquid. This value was determined assuming the Na concentration in the wash solution was strictly due to dilution of the interstitial liquid plus the 0.01 M NaOH used as the wash medium.

Component	Recovery, %
Cesium-137	78
Strontium-90	28
Technetium-99	71
Americium-241	26
Total Alpha	20
Al	74
Cr	74
Fe	76
Κ	91
Mn	66
Р	50
U	69

Table 5. Mass Recoveries for KeyAW-101 Waste Components

	Wet Entrained Solids ^(a)		Dry Wa	shed Solids	
Analyte	μCi/g or μg/g	Ci/g Fe or g/g Fe	μCi/g or μg/g	Ci/g Fe or g/g Fe	Removed, %
Cesium-137	192	0.138	35.0	7.14E-04	99
Strontium-90	151	0.108	1954	3.99E-02	63
Technetium-99	0.350	0.00025	3.22	6.57E-05	74
Americium-241	0.25	0.00018	2.43	4.96E-05	72
Europium-154	< 0.2	< 0.0001	0.63	1.29E-05	91
Europium-155	< 0.5	< 0.0004	0.78	1.59E-05	96 75
Total Alpha	0.511	0.00037	4.51	9.20E-05	75
Ag	(90)	(0.064)	382	0.0078	88
Al	14500	10.4	29159	0.596	94
Ba	(25)	(0.018)	2803	0.057	-218
Ca	(1700)	(1.22)	23050	0.471	62
Cd	(35)	(0.025)	1135	0.023	7
Со	< 44	< 0.03	159	0.0032	90
Cr	1620	1.17	34965	0.714	39
Cu	< 22	< 0.02	563	0.012	27
Fe	1390	1.00	48960	1.00	
Κ	17200	12.4	(2166)	(0.044)	100
La	< 44	< 0.03	111	0.0023	93
Mg	(255)	(0.183)	2080	0.042	77
Mn	1415	1.02	45494	0.929	9
Mo	< 44	< 0.03	< 13	< 0.0003	99
Na	127500	91.7	56759	1.16	99
Ni	215	0.155	7149	0.146	6
Р	(385)	(0.277)	2045	0.042	85
Pb	(120)	(0.086)	3726	0.076	12
Si	(2200)	(1.58)	172444	3.52	-123
Ti	< 22	< 0.02	332	0.0068	57
U	5440	3.91	175325	3.58	9
Zn	< 44	< 0.03	6716	0.137	-333
Zr	(220)	(0.158)	7496	0.153	3

Table 6. Comparison of the Compositions of the Washed AW-101 Solids to the Wet Untreated Solids

(a) Urie et al. 1999.

(b) Percent removed = $100*(C_o-C)/C_o$ where C_o is the Fe-normalized concentration in the wet centrifuged and C is the Fe-normalized concentration in the washed solids.

Appendix A. Test Plan

Appendix B. Raw Data

Appendix C. Calculations

Appendix A. Test Plan

\$

c Leach Testing Page 1 of 19
Effective Date: December 14, 1998
Supersedes Date: New
Required Reviewers: X Technical Reviewer X Other: Client Building Manage X Other: Project Manager Radiological Control X Other: RPL Manager ES&H X Quality Engineer
No
quire revision to reflect procedure changes? Yes No N/
Date
1/5/99
1-12-99
1/11/20
1
111211

دین م

Applicability

This test plan is to be used to determine 1) the aqueous-insoluble fraction of the entrained solids from BNFL LAW samples and 2) the caustic-insoluble fraction of the entrained solids from BNFL LAW samples. The work will be conducted in the SAL hot cells. The work will be conducted by Radiochemical Processing Group staff. This work is being done as part of the Technical Support to BNFL for Phase 1B project.

Test Objectives

Justification: This activity supports confirmation of the process sequence, equipment performance, and design parameters for caustic leaching of solids separated from the low-activity waste (LAW) solutions.

Objective: This task will gather data on the inhibited water solubility of solids entrained in the LAW solutions. Caustic leaching experiments will estimate the removal efficiency for caustic soluble components and aid in determining the disposition of these solids.

Definitions

BNFL	British Nuclear Fuels Ltd.
HDPE	High-density polyethylene
HLW	High-level waste
RPL	Radiochemical Processing Laboratory

Emergency Response

In the event of building audible alarms (e.g., fire or criticality) personnel should proceed in accordance with the RPL Building Emergency Procedure. If time permits, ensure that test materials are secured from spilling prior to exiting the area.

Quality Control

Quality assurance for work conducted under this Test Plan is governed by the Standards-Based Management System (SBMS). The quality control for each analysis will be established per Quality Assurance Plan MCS-033. MCS-033 specifies the minimum calibration and verification requirements for analytical systems, as well as batch processing quality control samples to monitor preparations (i.e., blanks, duplicates, matrix spikes, and laboratory control standards).

A work place copy of this document shall be present at the work location. Specific information regarding each test (e.g., sample numbers) will be recorded on the work place copy and kept as project records.

As discussed in the Prerequisites section, calibrated balances must be used in performing this test. Likewise, a calibrated temperature controller is required. The calibration ID, date of calibration, and calibration expiration date must be recorded on the work place copy for each balance used and for the temperature controller.

Measured weights will be recorded on the work place copy at the indicated spot in the work instructions.

1

Hand written changes or corrections made to the work place copy will be made by means of a single line-out. Such changes or corrections shall be initialed and dated by the staff member making the change and by the cognizant scientist.

Equipment Description

A standard laboratory hot plate/magnetic stirrer will be used for this test. An aluminum heating block will be placed on the hot plate/stirrer to heat the sample. The apparatus will be equipped with two thermocouples. One of the thermocouples will be connected to a temperature controller, while the other will be connected to an over-temperature shut-off device. The latter will be used to ensure the sample is not over heated, which could result in lose of sample.

Prerequisites

Staff performing the work must read and understand the entire test plan prior to beginning work.

The following are items that should be staged prior to start of the test.

Wide-mouth HDPE bottle; size to be determined (2) 20-mL HDPE vial (14) 30- to 40-mL glass vials (2) Hot plate/stirrer Aluminum heating block Temperature controller with temperature read-out Over-temperature shut-off device 0.45-µm nylon syringe filters (2) 5-mL syringes (2) 0.45-µm nylon disposable filter units (9) Adjustable 5-mL pipette 0.01 <u>M</u> NaOH 3 M NaOH

Preparetion of 0.01 M NgOIL 10 mL 0.1014 + 0.0001 0 1001 (+/10/48 +95 Chan Rec_ 43) was diluted to room L with defanited water. J.J. Lunetta 219/99 Another batch was prepared in the same manner. 2/17/19 M.1.2.

The temperature controller shall be calibrated by maintenance services. Record the following information regarding the temperature controller used.

	Theorem	
02093	02899	02900
1/12/99	1/99	1/99
1/2000	1/2001	1/200
	1/12/99	02093 02899 1/12/99 1/99

A calibrated balance is required for this test. Record the following information regarding the balance(s) used.

	Cell-2		
Calibration ID:	360-06-01-016	Calibration ID:	
Calibration Date:	9-2-98	Calibration Date:	
Expiration Date:	2-99	Expiration Date:	

BNFL-TP-29953-9

1

Before beginning work, a routine performance check should be performed and documented in the space below.

5N # HN2111 5AL Cell-2	Weights due 4/99	100 = 10,0000	2/9/44
		$20g = 20.00001^{Re}$ 50g = 50.0002	

Work Instructions

Notes

Where practical, catch pans should be used when working with the tank waste samples, so that they can be recovered if spilled.

Throughout this test plan bottle, vials, etc. are labeled as "_____--XX-YY." The labels XX and YY are defined in the text. The tank number should be filled in the blank, e.g., "AW101."

Part 1. Determination of Aqueous-Insoluble Fraction

~ AW-IOI CLI

- 1.1. Obtain a LAW sample containing ~5 mL of settled solids, as directed by the cognizant scientist. Stir to homogenize the sample.
- 1.2 Label a disposable filter unit (0.45- μ m nylon) as AQ-10 -AQ-10

2/9/99 · 1.3 Weigh Aw101-AQ-10

1.1.2

Wt. Awioi AQ-10 =
$$65.7748$$
 g (1.3A)

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

Wt. receiving bottle&cap = 42,2160 g (1.3B)

 $\frac{2}{10}$ 1.4 Connect <u>Aw 101</u> - AQ-10 to the vacuum line

p.1.4.

2/10/99 1.5 Filter the homogenized sample through A Joi -AQ-10

Disconnect from the vacuum once the liquid has filtered 1.6 1.1.2.

> 1.7 Place the cap on the top of the filter unit and weigh Aw101 -AQ-10 whighed in two pieces. Rottom 2/0 cap = 136. 1330 Wt. Aw101-AQ-10 = 175.9764g (1.7A)30 8424 TOD

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

> Wt. receiving bottle&cap = 150.3426 g (1.7B)

Save the filtered solution.

Determine the total weight of the sample

Wt. Sample =
$$1.7A - 1.3A = 10.201 g$$
 (1.8A)

Determine the weight of the filtered liquid

Wt. Liquid =
$$1.7B-1.3B = 108.126Lg$$
 (1.8B)

Determine the weight of the filtered solids

Wt. Solids =
$$1.8A - 1.8B = 2.0750$$
 g (1.8C)

Measure out the appropriate volume of 0.01 M NaOH as instructed by the cognizant scientist into a plastic bottle

> Vol. Used = 2° mL (1.9A)

Label an appropriately sized wide-mouthed HDPE bottle as Autol -AQ-20. Place a stir bar in this bottle.

Weigh AW101 -AQ-20 including cap and stir bar

Wt. AW101-AQ-20 = 12.4780 g (1.11A)
$$hm = 12.4780$$
 g (1.11A)

Also, the it appeared as thouse of the oral of the prosed 1.10 11 1.11 12 Slurry the filtered solids using a portion of 0.01 \underline{M} NaOH (volume = 1.9A + 5); transfer this slurry to AW101 - AQ-20 Solids stock fairly well to the filter membra - Difficult to starry, but was all once wetted de down yood. Repeat step 1.12 four times to ensure complete transfer of the solids to Aw^{101} -AQ-20 * 1.13 Note: On third visiting of filte, a few drops missed the botto. I deal right to suck up as much as possible Place the cap back on $A \omega_{101}$ -AQ-20 and weigh 1.14

Wt.
$$A = 10 | -AO - 20 = 31 \cdot 2475 g$$

t into 101-10-20

from secondary containe

BNFL-TP-29953-9

2/ 10/99 Page 5 of 19

(1.14A)

to Award a 20, } this will con carry of super-

turns laved to

through the filks in Emill anout

1

1.9

14.00

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Q.C. Comments:

Following are results of quality control checks performed during IC analyses. In general, quality control checks met the requirements of the governing QA Plan, MCS-033.

Working Blank Spike/Process Blank Spike: Process Blank Spike recoveries ranged from 91% to 100%, well within the acceptance criteria of 75% to 125%.

Matrix Spiked Sample: The matrix spike recovery for samples AW101-SOL-30A2 and AW101-AQ-90A ranged from 86% to 115%. Again, this is well within the acceptance criteria of 75% to 125%.

<u>Duplicate</u>: No duplicates were provided. However, the laboratory-dilution of sample AW101-SOL-40A1 was analyzed in replicate (i.e., two different analysis injections) at the IC workstation from two different IC workstation dilutions. Two replicate analyses failed the acceptance criteria of a Relative Percent Difference less than 20%; nitrate on IC dilution #1 and chloride on IC dilution #2. Based on QC performance of matrix spikes and verification standards, no explanation can be offered for the poor precision on the one nitrate from IC dilution #1. However, there are significant interference peaks between the fluoride and nitrite retention times than can account for the poor precision of the chloride results, since chloride peak baselines are difficult to establish.

<u>System Blank/Processing Blanks:</u> No anions were detected above reportable concentrations in the system blanks or in the processing/dilution blank.

<u>Quality Control Calibration Verification Check Standards</u>: Five mid-range verification standards were analyzed throughout the analysis run. For all reported results, the concentrations of all analytes of interest were recovered within the governing QA Plan acceptance criteria of $\pm 10\%$ for the verification standard.

Notes:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis.
- 2) The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- 3) Routine precision and bias is typically ± 15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions. Sample-specific precision and bias may be determined on each sample if required.

1

Project No. 29953

Internal Distribution

Date April 6, 1999

File/LB

To G. Lumetta

From M. Urie Millie

Subject

ct <u>Carbon Analysis Results for AW-101 SOL</u> and AW-101 AQ Samples

The analysis of the AW-101-SOL and AW-101-AQ samples submitted under ASR 5275 was done by the hot persulfate wet oxidation method, PNL-ALO-381, rev. 1. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92-95 °C for TOC, all on the same weighed sample, with TC being the sum of the TIC and TOC.

The samples were analyzed on April 1, 1999 and Table 1 below shows the results, rounded to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank.

Due to the limited quantity of original sample available and the number of different analyses requested, the sample were diluted to provide enough volume for each of the analyses. All results are corrected for preparative dilutions and analysis dilutions, and are reported in microgram of carbon per milliliter of original sample.

QC Narrative

The TIC standard is calcium carbonate and TOC standard is α -Glucose (the certificates of purity are attached). The standard materials were used in solid form for system calibration standards as well as matrix spikes. TIC and TOC percent recovery are determined using the appropriate standard (i.e., calcium carbonate for TIC or glucose for TOC).

The QC for the methods involves calibration blanks, system calibration standards, sample duplicates, and one matrix spike per matrix type. The QC system calibration standards were all within acceptance criteria, with the average recovery being 93.9% for TIC and 97.1% for TOC. The calibration blanks were acceptable, averaging 16.7 μ gC for TIC and 33.7 μ gC for TOC.

The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The matrix spike recovery from sample 99-1160 106% for TIC and 103% for TOC, well within the acceptance criteria of 75% to 125%. The precision, estimated by the RPD (Relative Percent Difference) between duplicates, could not be measured since the duplicate contained carbon less than 5 times the estimated quantitation limit.

G. Lumetta April 5, 1999 Page 2

Some results are reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis. The system MDL is based on the attached pooled historical blank data.

ALO Number	Sample ID	Vol ml	Prep Dilution Factor	TIC* μgC/ml	TIC RPD	TOC⁺ µgC/ml	TOC RPD	TC* µgC/ml	TC RPD
99-1151 PB	PROCESS BLANK	2.00	5.00	<25		<40		< 65**	
99-1151	AW101-SOL-30A1	1.00	12.25	2760		1900		4660	
99-1152	AW101-SOL-30A2	1.00	10.00	2960		1940		4900	
99-1153	AW101-SOL-40A1	1.00	12.25	3040		2010		5050	
99-1154	AW101-SOL-40A2	1.00	12.25	2940		1960		4900	
99-1155	AW101-SOL-50A1	1.00	10.00	3170		2010		5180	
99-1156	AW101-SOL-50A2	1.00	10.00	2730		2030		4760	
99-1157	AW101-AQ-30A	0.50	5.00	410		1900		2310	
99-1158	AW101-AQ-50A	0.50	5.00	190		<170		360**	
99-1159	AW101-AQ-70A	1.00	5.00	120		<80		200**	
99-1160	AW101-AQ-90A	1.00	5.00	120		<80		200**	
99-1160 Dup	AW101-AQ-90A Dup	1.00	5.00	120	n/a	<80	n/a	200**	n/a
99-1160 Spike	AW101-AQ-90A Spike (%rec)	1.00	5.00	106%		103%		105%	

Table 1: TIC, TOC, and TC Results

** Maximum TC (i.e., results calculated as if "< values" present in the sample)

RPD = Relative Percent Difference between sample and duplicate (n/a = not calculated since results <5xMDL)

Approve:

4-6-99

Archive Information:

Files: C124-P-701.doc, C124-701.xls

ASR: 5275

Project Number

Pacific Northwest Laboratories

Internal Distribution

329/4 File

Date March 10, 1999

то Mike Urie

ţ

James Bramson Jours From

Subject ICP/MS Analysis of Submitted Samples (ACL #99-1151 through 99-1160)

Pursuant to your request, the 11 samples that you submitted for analysis were analyzed by ICPMS for ⁹⁹Tc. The results of this analysis are reported on the attached page.

An Amersham ⁹⁹Tc standard was used to generate the calibration curve and an independent Amersham ⁹⁹Tc standard was used as the continuing calibration verification (CCV) standard. The 1% high-purity nitric acid solution used to dilute the standards and samples was used as a reagent blank. The samples were diluted an extra 5x (99-1159, 99-1160) and 20x (all others) from the dilutions provided. The results include your dilutions and are reported in ng/ml (ppb) of the original sample. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at $\pm 10\%$, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Ru counts, corrected for sample dilution, are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0624 or Tom Farmer at 372-0700.

3/10/99

Lumetta Tc-99 Samples

March 10, 1999

The results are reported in ng/ml (ppb) of original sample. The uncertainty of the results is estimated at $\pm 10\%$.

Sample Number	Client [®] Number	ICP/MS Number	Tc-99 ng/ml	Ru ratio 101/102 (*0.541)	†Ru-101 ng/ml
1%HNO3 1%HNO3 1%HNO3		9309a1 9309a10 9309a25	<0.05 <0.05 <0.05		
PB-1151		9309a11	<0.05	1.5217	3
99-1151 99-1151 + spike Spike Recovery	AW101-SOL-30A1 AW101-SOL-30A1	9309a21 9309a24	6030 8740 108%	1.1917	1700
99-1152 99-1152 Dup.	AW101-SOL-30A2 AW101-SOL-30A2	9309a19 9309a23	6230 6210	1.1788 1.2040	1800 1700
99-1153 99-1154 99-1155 99-1156	AW101-SOL-40A1 AW101-SOL-40A2 AW101-SOL-50A1 AW101-SOL-50A2	9309a20 9309a22 9309a17 9309a18	6320 6230 6520 6400	1.1136 1.1630 1.1806 1.1421	1700 1700 1800
99-1157 99-1157 Dupe	AW101-AQ-30A AW101-AQ-30A	9309a15 9309a16	1380 1390	1.1868 1.0951	150 150
99-1158 99-1159 99-1160	AW101-AQ-50A AW101-AQ-70A AW101-AQ-90A	9309a14 9309a13 9309a12	149 47.4 23.1	1.2497 1.0146 1.6620	15 0.8 0.5
1ppb Tc-99 10ppb Tc-99		9309a7 9309a26	0.977		
10ppm Co	-	9309a5	<0.05		

* Natural ¹⁰¹Ru/¹⁰²Ru ratio.

ţ

†Based on response from yttrium.

Te . 19 0.017 Ci/g

<u>mb</u> <u>s</u> <u>s</u> <u>o.017</u><u>c</u> <u>10⁶</u><u>r</u><u>c</u> <u>c</u>

DATA REVIEW

Date: ////100 99 Pages: _____

Project Number

Pacific Northwest Laboratories

Internal Distribution

329/4 File

Date April 29, 1999

To Greg Lumetta

From Tom Farmer

1

Subject ICP/MS Analysis of Submitted Samples

Pursuant to your request, the sample that you submitted for analysis was analyzed by ICPMS for ⁹⁹Tc. The results of this analysis are reported on the attached page.

An Amersham ⁹⁹Tc was used to generate the calibration curve. An independent Amersham ⁹⁹Tc standard was used as the continuing calibration verification (CCV) standard. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at $\pm 10\%$, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Approximate ¹⁰¹Ru concentrations are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0700 or James Bramson at 372-0624

Lumetta Tc-99 Analysis

April 28, 1999

4/30/99

Results are reported in ng analyte/ml solution submitted. The uncertainty of the results is estimated at $\pm 10\%$.

Sample Number	ICP/MS Number	Tc-99 ng/ml	¹⁰¹ Ru/ ¹⁰² Ru (*.541)	† ¹⁰¹ Ru ng/ml
1%HNO3 1%HNO3	9428a1	<1		
	9428a4	<1		
99-1161 AWIDI - AQ - 100 \$	9428a5	431	. 0.854	17
99-1161 Dup.	9428a7	443	1.166	18
99-1161 + spike	9428a8	629		
Spike Recovery	and the second s	99%		
5ppb Tc-99 CCV	9428a6	4.78		
10ppb Co	9428a9	<1		

Date: Pages:

Reviewed by: ____

DATA REVIEW

1

DATA REVIEW

Dato: 30Apr 99 Pagos: 10/1

AW101 Tank Liquids and Wash Solutions (ASR 5275) Radiochemistry Analytical Results

Sample Preparation

Tank liquid and wash solution samples were analyzed from tank AW101. The samples were acid digested according to procedure PNL-ALO-128 in the laboratory prior to analysis. Radiochemistry results are shown on the attached table along with 1-sigma total uncertainties. All results are reported on a uCi per ml of liquid. Samples labeled "duplicate" are independent analyses from separate aliquots of starting material in the hot cell; those labeled "replicate" are separate aliquots analyzed in the laboratory.

Gamma Energy Analysis

The acid digested samples were directly gamma counted following procedure PNL-ALO-450. Most of the gamma emission from these samples is from Cs-137. The only other detectable gamma emitters were Co-60 and Cs-134. The prep blank had a negligible amount of Cs-137.. All of the duplicate results agree within the expected uncertainties. Since gamma analyses do not involve chemical separations, no sample spiking is performed. Due to the high level of Cs-137 in these samples, it was not possible to detect all of the other analytes at the requested Minimum Reportable Quantity values. Detection limits are thus reported for Eu-154, Eu-155, and Am-241.

Gross Alpha

For gross alpha measurements, aliquots of the digested samples were evaporated on planchets for counting following procedures PNL-ALO-420 and 421. Weak alpha activity was only detectable in two of the wash solutions. All of the other samples had detection limits well below the requested MRQ values. Sample and blank spike recoveries were acceptable. No alpha activity was found in either the prep blank or the lab blank.

Strontium-90

The Sr-90 analyses were conducted according to procedures PNL-ALO-476, 484, and 450 using a Sr-85 tracer to monitor the chemical yields. All of the samples had detectable levels of Sr-90. Sr-90 was not detected in the hot cell blanks. The blank and sample spike recoveries were acceptable. Duplicate results were in acceptable agreement considering the uncertainties on the measurements.

Uranium

1

Uranium was measured directly in the digested samples by kinetic phosphorescence following procedure PNL-ALO-4014. Uranium was detectable in all of the samples with concentrations ranging from 1-4 ug/ml. A negligible amount of uranium was seen in the prep blank; no uranium was detected in the lab blank. No uranium was detectable in the instrument blanks. The duplicate samples were in good agreement. All of the instrument check standards came out between 99% and 102%.

LAGreenerd 3-30-99

Determine the weight of the slurry

Wt. Slurry =
$$1.14A-1.11A = \frac{18.769}{g}$$
 (1.14B)

- 1.15 Equip <u>Auloi</u>-AQ-20 with a condenser, then place in an aluminum heating block at 85°C
- 1.16 Stir the sample in <u>AW101</u> -AQ-20 at 85°C for a minimum of 8 hours

 Start date/time:
 $\frac{2/10/99}{2/11/99}$ 15:00

 Stop date/time:
 $\frac{2}{11}/99$ 0751

- 1.17 Allow to cool to ambient temperature (1 hour)
- 1.18 Remove the condenser and replace the original cap on $A\omega(0)$ -AQ-20. Weigh $A\omega(0)$ -AQ-20

Wt.
$$A \omega_{101} - AQ - 20 = 30,7198 g$$
 (1.18A)

Determine mass loss due to evaporation

Wt. Lost =
$$1.18A - 1.14A = 0.5777 g$$
 (1.18B)

- 1.19 Label a disposable filter unit (0.45- μ m nylon) as <u>A ω 101</u>-AQ-30
- 1.20 Weigh Awidi -AQ-30

•

1

Wt.
$$Aw^{[0]}AQ-30 = 65,4860 g$$
 (1.20A)

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

		Wt. receiving bottle∩ = 41.8178 g (1.20B)	
	1.21	Connect <u>AW101</u> -AQ-30 to the vacuum line Sti- ban fell into filter formel. This was litted out and rinsed with a small	
2/11/99	1.22	Filter the wash slurry amount of 2.01 m NaOH. The rince was	
	1.23	Disconnect from the vacuum once the liquid has filtered and was pulled through with step to	23.

1.24 Place the cap on the top of the filter unit and weigh $A \omega_{101}$ -AQ-30

Wt. Awiol AQ-30 =
$$PQ. 2648$$
 g (1.24A)

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

Wt. receiving bottle∩ =
$$59.2792g$$
 (1.24B)

Transfer two 10-mL aliquots of the filtered solution to clean 20-mL HDPE sample vials labeled as $A\omega_{101}$ -AQ-30A and $A\omega_{101}$ -AQ-30B.

211/99

Checked at 12:45 on 2/12/99 No endence of solids.

Note: Monitor the solution after ~24 h to determine if any solids form.

1.25 Determine the total weight of the slurry

Wt. Slurry =
$$1.24A - 1.20A = 18.7788$$
 g (1.25A)

Determine the weight of the filtered liquid

Wt. Liquid =
$$1.24B-1.20B = \frac{17.4614}{g}$$
 (1.25B)

Determine the weight of the filtered solids

Wt. Solids =
$$1.25A-1.25B = 1.3174$$
 g (1.25C)

1.26 Measure out the appropriate volume of 0.01 <u>M</u> NaOH as instructed by the cognizant scientist into a plastic bottle

Vol. Used =
$$20$$
 mL (1.26A)

- 1.28 Weigh <u>Aw101</u>-AQ-20 Wt. <u>Aw101</u>-AQ-20 = _____ g (1.28A) $\forall mL ench$
- 1.29 Slurry the filtered solids using a portion of 0.01 <u>M</u> NaOH (volume = 1.26A + 5); transfer this slurry to <u>AW101</u> -AQ-20 Note: Solids were much easier to slorry than before (us skp 1.12).

1.30 Repeat step 1.29 four times to ensure complete transfer of the solids to _Aw101 -AQ-20

1.31 Weigh <u>Awiol</u> -AQ-20

Wt.
$$A \omega_{101} - AQ - 20 = 31.70 \text{ g}$$
 (1.31A)

A11.

Determine the weight of the slurry

Wt. Slurry =
$$1.31A - 1.28A = 19.2270$$
 g (1.31B)

- 1.32 Equip <u>A ω_{101} </u>-AQ-20 with a condenser, then place in an aluminum heating block at 85°C
- 1.33 Stir the sample in $A \omega_{101}$ -AQ-20 at 85°C for a minimum of 8 hours

 Start date/time:
 2/11/94
 >1 / 1/200

 Stop date/time:
 2-12-99
 07:42

- 1.34 Allow to cool to ambient temperature 'lo ming
- 1.35 Remove the condenser and replace the original cap on <u>Aw101</u> -AQ-20.
 Weigh <u>Aw101</u> -AQ-20

Wt.
$$Aw_{101} - AQ - 20 = 31,5136$$
 g (1.35A)

N.1.L. 2/12/99

H

Page 7 of 19

BNFL-TP-29953-9

1

Determine mass loss due to evaporation

Wt. Lost =
$$1.35A-1.31A = 0.1914$$
 g (1.36B)

- 1.36 Label a disposable filter unit (0.45-µm nylon) as Awiol -AQ-50
- 1.37 Weigh <u>Aw101</u> AQ-50

Wt.
$$A = 40101 \text{ AQ-50} = \frac{65,1844 \text{ g}}{1.37\text{ A}}$$
 (1.37A)

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

Wt. receiving bottle∩ =
$$449023$$
 g (1.37B)

1.40 Disconnect from the vacuum once the liquid has filtered

1.41 Place the cap on the top of the filter unit and weigh $A \omega 101$ -AQ-50

Wt. Awiol AQ-50 =
$$85.9188$$
 g (1.41A)

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

Wt. receiving bottle&cap = $61.5^{-0}64$ g (1.41B)

Transfer two 10-mL aliquots of the filtered solution to clean 20-mL HDPE sample vials labeled as $A\omega_{101}$ -AQ-50A and $A\omega_{101}$ -AQ-50B.

Polled sumply -504 at 13:40 on 2/12/99, but left remaining solution in AQ-50, so that it Note: Monitor the solution after ~24 h to determine if any solids form. Louid Le monitor for solids. (this both is clear).

Wt. Slurry = 1.41A-1.37A = 20.7344g

•

Wt. Liquid =
$$1.41B-1.37B = \frac{19.5241}{g}$$
 (1.42E)

Determine the weight of the filtered solids

Wt. Solids =
$$1.42A-1.42B = 1.2103$$
 g (1.42C)

1.43 Measure out the appropriate volume of 0.01 <u>M</u> NaOH as instructed by the cognizant scientist into a plastic bottle

Vol. Used =
$$2^{\circ}$$
 mL (1.43A)

2/17/99 10:00 Ehecked sola. in

(1.42A)

AW101- 49-50

Solution class.

no precipitate

BNFL-TP-29953-9

3

1.45 Weigh Awiol -AQ-20

Wt. AQ-20 = 12.6000 g (1.45A)

my und each

1.46 Slurry the filtered solids using a portion of 0.01 <u>M</u> NaOH (volume = 1.43A + 5); transfer this slurry to Autol -AQ-20

1.47 Repeat step 1.46 four times to ensure complete transfer of the solids to Autor -AQ-20

1.48 Weigh Aw 101 -AQ-20

Wt.
$$Awiol - AQ - 20 = 31.8450$$
 g (1.48A)

Determine the weight of the slurry

Wt. Slurry = 1.48A - 1.45A = 19.2450 g (1.48B) Stopped Leve on 2/12/99; will resource must week.

✓ 1.49 Equip $A \cup O$ -AQ-20 with a condenser, then place in an aluminum heating block at 85°C

1.50 Stir the sample in Aw101 -AQ-20 at 85°C for a minimum of 8 hours

Start date/time: 2-16-99 11:13 am Stop date/time: 2-17-99 07:42 am

1.51 Allow to cool to ambient temperature 2 krs

1.52 Remove the condenser and replace the original cap on <u>Awioi</u> -AQ-20. Weigh <u>Awioi</u> -AQ-20

Wt.
$$A W 101 - AQ - 20 = 31.6388 g$$
 (1.52A)

Determine mass loss due to evaporation

Wt. Lost =
$$1.52A - 1.48A = 0.2062 g$$
 (1.52B)

1.53 Label a disposable filter unit (0.45-µm nylon) as Awlo1 -AQ-70

1.54 Weigh Awo -AQ-70

Wt.
$$A \omega^{101} - AQ - 70 = 65,2459 g$$
 (1.54A)

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

Wt. receiving bottle&cap = A2,1154 g (1.54B)

1.55 Connect <u>Awioi</u> -AQ-70 to the vacuum line

1.57 Disconnect from the vacuum once the liquid has filtered

BNFL-TP-29953-9

۲.۱.^{4.} Page 9 of 19 2/17^{A9}
1.58 Place the cap on the top of the filter unit and weigh $Awi \circ i$ -AQ-70

Wt.
$$A = 0 | AQ - 70 = 85.5 | 26 g$$
 (1.58A)

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

Wt. receiving bottle&cap = 41.0280 g (1.58B)

Transfer two 10-mL aliquots of the filtered solution to clean 20-mL HDPE sample vials labeled as <u>Awioi</u>-AQ-70A and <u>Awioi</u>-AQ-70B. (Again, 1eff areat work believed in the total wight of the slurry Note: Monitor the solution after ~24 h to determine if any solids form. Determine the total weight of the slurry Wt. Slurry = 1.58A-1.54A = <u>20.7667 g</u> (1.59A)

Determine the weight of the filtered liquid

Wt. Liquid =
$$1.58B-1.54B = 18.952L$$
 g (1.59B)

Determine the weight of the filtered solids

Wt. Solids =
$$1.59A-1.59B = 1.3141$$
 g (1.59C)

1.60 Measure out the appropriate volume of 0.01 <u>M</u> NaOH as instructed by the cognizant scientist into a plastic bottle

Vol. Used =
$$20$$
 mL (1.60A)

1.62 Weigh
$$AW101 - AQ-20$$

1.59

Wt. Awioi -AQ-20 =
$$12.59$$
 / 15° g (1.62A)

HIT

1.63 Slurry the filtered solids using a portion of 0.01 <u>M</u> NaOH (volume = 1.60A + 5); transfer this slurry to Aujon -AQ-20

1.64 Repeat step 1.63 four times to ensure complete transfer of the solids to Awivi -AQ-20

1.65 Weigh Awioi -AQ-20

Wt.
$$Awivi$$
 -AQ-20 = 31. 9706 g (1.65A)

Determine the weight of the slurry

Wt. Slurry =
$$1.65A-1.62A = 19.3791 g$$
 (1.65B)

1.66 Equip Aw_{101} -AQ-20 with a condenser, then place in an aluminum heating block at 85°C

1

1.44. 2/17/99 1.67 Stir the sample in $A \omega |0|$ -AQ-20 at 85°C for a minimum of 8 hours

> Start date/time: 3/17/99 11:05 Stop date/time: 2-18-99 07:42

Allow to cool to ambient temperature thr. 1.68

Remove the condenser and replace the original cap on $A \omega l \omega l - AQ-20$. 1.69 Weigh AWIOI -AQ-20

Determine mass loss due to evaporation

Wt. Lost =
$$1.65A - 1.69A = 0.2235^{\circ}g$$
 (1.69B)

1.70 Label a disposable filter unit (0.45-µm nylon) as AU-90 -AQ-90

1.71 Weigh Awioj -AQ-90

Luna

Wt. AW101-AQ-90 =
$$65,2234$$
 g (1.71A)

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

Wt. receiving bottle∩ =
$$42,0873$$
 g (1.71B)

- 1.74 Disconnect from the vacuum once the liquid has filtered
- 1.75 Place the cap on the top of the filter unit and weigh Awill -AQ-90

AO 00 to the sus own

$$Wt_{A}\omega 101 - AQ-90 = 84.2158 g$$
 (1.75A)

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

> Wt. receiving bottle&cap = $\zeta^{9} \cdot {}^{9} \cdot {}^{7} H_{g}$ (1.75B)

Aa-qut, Transfer two 10-mL aliquots of the filtered solution to clean 20-mL HDPE sample vials labeled as Awioi -AQ-90A and Awioi -AQ-90B.

Note: Monitor the solution after ~24 h to determine if any solids form.

1.76 Determine the total weight of the slurry

> Wt. Slurry = 1.75A - 1.71A = 18.4424g

> > M1.L. 2/ 19/94

. 40 -9 T

obsum thom.

romanie, b AWIN - 40-402

2 412/94 ville

Page 11 of 19

(1.76A)

1

2/19/44 8.50 1 72

BNFL-TP-29953-9

Determine the weight of the filtered liquid

Wt. Liquid =
$$1.75B-1.71B = 17.8641$$
 g (1.76B)

Determine the weight of the filtered solids

Wt. Solids =
$$1.76A-1.76B = 1.1283$$
 g (1.76C)

- 1.77 Label a glass vial as $A^{\omega 101}$ -AQ-100
- 1.78 Dry <u>AU-101</u> -AQ-100 at 105°C for a minimum of 1 h 08:45 → 10:48
- 1.79 Cool <u>Awiol</u> -AQ-100 to ambient temperature in a desiccator
- 1.80 Weigh Aw101 -AQ-100

2/19/44

ţ

Wt.
$$Awig - AQ - 100 = \frac{16.8270 \text{ g}}{1.80\text{A}}$$
 (1.80A)

S x 4 mL
 1.81 Using several portions of deionized water, quantitatively transfer the washed solids from this the filter membrane to Aw101-AQ-100 Nor: First two alignots of water ware used to find the filter membrane to Aw101-AQ-100 Nor: First two alignots of water ware used to flow the filter determined.
 1.82 Weigh Aw101-AQ-100 all solids could be well recovered.
 1.82 Weigh Aw101-AQ-100 all solids could be well recovered.
 Nor: First ware a few publics that seems to flow the flow of the flow of the flow of the flow.
 Wt. Aw101-AQ-100 = 35.7611 g (1.82A) date volumed.

1.82 Heat Aw101 - AQ-100 at 80°C to evaporate excess water

- 1.83 Heat Aw 101 AQ-100 at 105°C overnight 2-23-99 removed from overnight heat.
- 1.84 Cool Awioi -AQ-100 to ambient temperature in a desiccator
- 1.85 Weigh Aw 101 AQ-100

Wt.
$$A^{\omega_{101}} - AQ - 100 = 16,6847 g^{(*)}$$
 (1.85A)

1.86 Determine the dry weight of the washed solids

Wt. Dry Solids =
$$1.85A-1.82A = 0.65770$$
 g(1.86A)

2/23/99

1.87 The washed solids are to be submitted for analysis. The cognizant scientist will prepare the required ASR.

(a) A reweigh on this gave 16.8841g Note: Pages 13 through 19 deal with the countric leaching test. Per the direction of BNFL, the caustic leaching was not performed. M.1. 8/11/44 BNFL-TP-29953-9 Page 12)of 19

Appendix B. Raw Data

Analytical Chemistry Laboratory (ACL) Analytical Services Request (ASR) (Cover Page ... information applicable to all samples in series)

:11

Requested By: <u>Gregg J. Lumetta</u> Print Name	Signature/Date 2/18/99 376-6911 P7-25 Signature/Date Phone MSIN
Requester - Please Complete All Fields In Th	is Section, Unless Specified "Optional" or ASR is a Revision
Request ID (optional):	Matrix: XSamples vary (specify on Request Page), or
PNL Project Number (if known): 29953	Liquid:AqueousOrganicMulti-phasic
Work Order/Pkg.: (a)	Solid:SoilSludgeSedimentGlass
Cost Estimate (\$):	
Protocol Requirement: XNoneRCRACERCLA, or	
Other (specify):	
	/
Hold Time Requirement:NoneCERCLA, or	
Other (specify):	
-	rubs Fresent:NUTes
TPA Support: XNo, or	Sample Disposition
Milestone No.:	Untreated Sample(s):ReturnDisposeStore, or
QA Plan: MCS-033, or	Prep'd Sample(s):DisposeReturn XStore, or
Other ACL QA Plan (specify):	
Additional QA Requirements:No, or	Reference Doc.:
Reference Doc.:	
	Additional Instructions: XNo, or
ACL COC Req'd (PNL-ALO-010):No XYes	Reference Doc.:
Sample Storage Requirements: \underline{X} NoRefrigerate,	or Date Report Req'd: (b)
Other (specify):	Send Report to: <u>G.J. Lumetta</u>
Date Sampled (optional):	MSIN: <u>P7-25</u> Phone:
Time Sampled (optional):	Fax (optional):
For ACL Use Only	Do Not Complete This Section
Date Delivered:	Job Group (optional):
Time Delivered (optional):	
Deliv. By (if known):	
Received By:	
Resp. ACL Mgr.:	
Signature/Date:	ACL Numbers
) W48482 to samples AW101-SOL-30A	1 - 5 AW101-SOL-50AZ) All others 4/2/99.

				TATAL	condition	and the second se		and a state of the	and the second se		and the second second			
													Laser	
		Acid	KOH	Na_2O_2		Ŋ			ICP-MS			Total	Fluorimetry	
Sample ID	Description	Digestion	Fusion	Fusion	ICP/AES	(anions)	TOC	TIC	(²⁷ c)	GEA	⁹⁰ Sr	Alpha	ົອ	
AW101-SOL-30A1	AW101 Liquid	×			x	×	×	×	×	×	×	×	×	
AW101-SOL-30A2	AW101 Liquid	×			×	×	×	×	×	×	×	×	×	
AW101-SOL-40A1	AW101 Liquid	×			×	×	×	×	×	×	×	×	×	
AW101-SOL-40A2	AW101 Liquid	×			×	×	×	×	×	×	×	×	×	
AW101-SOL-50A1	AW101 Liquid	×			×	×	×	×	×	×	×	×	×	
AW101-SOL-50A2	AW101 Liquid	×			×	×	×	×	×	×	×	×	×	
AW101-AQ-30A	AW101 Wash Solution	×	·		×	×	×	×	×	×	×	×	×	
AW101 AQ 30B	AW101 Wash Solution	*			X	X	*	*	*	×	×	×		(v)
AW101-AQ-50A	AW101 Wash Solution	×			×	×	×	×	×	×	×	×	×	
AW101-AQ-S0B	AW101 Wash Solution	*			×	×	×	*	×	×	×	×		(2)
AW101-AQ-70A AW101-AQ-70B	AW101 Wash Solution AW101 Wash Solution	××			××	××	××	××	××	××	××	××	××	(د)
AW101-AQ-90A AW101-AQ-90B	AW101 Wash Solution AW101 Wash Solution	××			××	××	× *	××	××	××	××	××	××	(4)
AW101-AQ-100	Washed AW101 Solids		×	×	×	×	×	×	×	×	×	×	×	`

AW101 Samples

!

19.1.4. 2/1/99

from Paul Townson on 2/18/99

(a) prelive these samples for now , per instructions

ASR 5275 Addendum

Gregg Lumetta March 16, 1999

1

Sample AW101-AQ-100 has been dissolved in acid for analysis. The solution with the dissolved solids is labeled as AW101-AQ-100D. The sample matrix is 0.1M HCl.

AW101-AQ-100D needs to be subjected to the following analyses:

ICP ICP-MS (⁹⁹Tc) GEA ⁹⁰Sr Total alpha Laser fluorimetry (U)

Lumetta, Gregg J

From:	MJohnson@bnflinc.com
Sent:	Monday, March 01, 1999 7:45 AM
To:	Lumetta, Gregg J; PTownson@bnflinc.com
From: Sent: To: Subject:	Fwd[2]:AW-101 Testing

Gregg - I concur with your recommendation for analyzing the ~0.058 grams of AW-101 solids remaining after washing.

Please proceed with dissolution of the solids in acid and conducting analyses for metals and radionuclides per Table 6-1 from BNFL letter 000749 (Revision to Ultrafiltration / Solids Dissolution Test Specification. I understand there is insufficient solids to accomplish these analyses in duplicate. I also understand there is insufficient solids conduct the requested anion analyses.

Michael Johnson

Forward Header

Subject: AW-101 Testing Author: "Lumetta Gregg J" <gregg.lumetta@pnl.gov> Date: 2/23/99 2:23 PM

Paul:

This message is to update you on progress made and to seek your counsel on a technical issue we've encountered.

First, the solubility versus temperature test with the AW-101 LAW sample was completed. This test proceeded according to plan (test plan BNFL-TP-29953-7) with no problems encountered. The samples from this test have been submitted for analysis.

Second, the washing test with the AW-101 LAW entrained solids was also completed. Again, the test when according to plan (test plan BNFL-TP-29953-9). Samples of the washing solutions have been submitted for analysis.

However, here's where the problem comes in. There is only a small amount (0.058 g) of residual solids remaining. With this small amount of material, we cannot perform all the analyses originally planned, much less do them in duplicate. So the question is: How should we proceed with analyzing the solids?

My recommendation would be to dissolve the solids in acid (HCI with perhaps HNO3 or HF added, as needed). The resulting solution could then be analyzed, but we could not analyze for the following constituents: TOC, TIC, CI, F, NO3, SO4, PO4 (although we would get the total P concentration by ICP).

I'll await your advice on this matter.

Gregg

Protocol for Dissolving Sample AW101-AQ-100

Purpose

The quantity of residual solids from the AW-101 LAW entrained solids washing test was such that the full suite of analyses requested by BNFL could not be completed. There was not enough material to do the KOH and Na₂O₂ fusions. The purpose of this protocol is to dissolve the residual AW-101 solids for ICP/AES and radiochemical analysis.

Instructions

3.

4.

314194

315/99

1

Heat AW101-AQ-100 at 105°C for 1 h start 11:19 am-12:45 pm

Cool AW101-AQ-100 in a desiccator, then weigh

Wt. AW101-AQ-100 = 16.8796 g (2a)

Add 5 mL of concentrated (12 M) HCl (Ultrex-grade) to AW101-AQ-100

Place the cap loosely on AW101-AQ-100 and heat in the aluminum heating block at $\frac{4}{1045}$ 100 90°C.

Occasionally, tighten the cap and swirl the vial to contact the acid with the solids on the wall of the vial. Loosen the cap and continue to heat.

5. Continue to heat until all solids dissolved. If solids are not dissolved after 1 hour, consult with GJ Lumetta.

After ~1.5 h most of the collids had dersolved, but there was still some. Added Incl of conc. Havog (at 11:00). Repet step 4. After 1.75 h, a white solid had formed. This solid tended to collect around the thereads of the cop. At this point, we proceeded with step 6 to respond the acid.

- 6. Once all solids dissolved, remove the cap from AW101-AQ-100 and evaporate to dryness lead 3-5.99 at 90°C.
- 7. Add 4 mL of 0.1 M HCl to AW101-AQ-100 to dissolve the sample.
- 8. Transfer the solution to a 25-mL volumetric flask.
- 9. Add another 4 mL of 0.1 <u>M</u> HCl to AW101-AQ-100 to rinse the vial; transfer this rinse liquid to the volumetric flask.
- 10. Repeat step 8 three times for a total of 4 rinses of AW101-AQ-100. Note: Do not discard vial AW101-AQ-100.

steps 7 - 10 revised us on work pros.

Note:	Take measures to ensure bottle AW101-AQ-100C is free of external removable contamination when removed from the hot cell.
√ 7.	Use five 5-mL aliquots of 0.1 <u>M</u> HCl to quantitatively transfer the material from $4\pi 3^{-12-99}$ AW101-AQ-100 to AW101-AQ-100C (a 30-mL HDPE vial).
× 8.	Remove AW101-AQ-100C from the hot cell.
V 9.	Provided the dose rate (at 6") is less than 3000 mrem/h, transfer AW101-AQ-100C to lab 511. 1725 mr
✓ 10. √ 11.	Heat AW101-AQ-100 at 105°C for 1 h 5/2++ 1:30 pm 3-12-99 stop 3:30 pm " Cool AW101-AQ-100 in a desiccator, then weigh
	Wt. AW101-AQ-100 = 16.77 g (15a)
<u>/12</u> .	Determine the weight of the solids
	Wt. solids = $2a - 15a = \underbrace{\circ \cdot i \circ \circ \circ}_{g} g$ (15b)
3/12/41 13. n.1.2.	1.0 mL of 10 m HP was added to AW101-AQ-100C (15,00). Maxima was stirred at ambiant femperature.
2/15/44 14.	Solids were still present. Heated at ~80°C with lid off to everyonte about. 8:00 - 16:00 that everyonted to ~2 ml
	Stopped herting.
3/16/19 15.	
16.	Fi) twood through a 0.45-40 mylon membrane. Flask pullol AQ-100c was vinsed with several zmL aliquets of 0.1 ps HLI with the pince liquid
	being used to ming rinse the filter.
רו.	Filtural solution was diluted to 25ml in a vol. flask Sample (AW101-AQ-100)
18.	The molow filter membrane with the filtured solids was placed
	in a glass vial labeled at (AW101-10-1005) and was allowed
	to air day.
	1.1. hunter 3/16/99
١	

Page 1 of 3

						1		
A0517					Filtrate,			
03/15/99					Wash			
ASR5275					Solutions			
	Multiplier=					12.5	50.0	50.0
	ALO#=					99-1151-PB @1	99-1151 @2	99-1152 @2
	Client ID=	ICP/EQL	ICP/EQL	ICP/EQL		P rocess Blank	AW101-SOL-30A1	AW101-SOL-30A2
Det. Limit	Run Date=	@ 5	@12.5	@ 50	MRQ	3/15/99	3/15/99	3/15/99
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.015	Ag	0.8	1.9	7.5		-	[0.81]	[0.77]
0.060	AI	3.0	7.5	30.0	75.0	[7.3]	17,600	18,300
0.080	As	4.0	10.0	40.0		-	[12]	[12]
0.050	в	2.5	6.3	25.0		112	95.9	71.2
0.010	Ba	0.5	1.3	5.0	78.0		-	
² 0.010	Be	0.5	1.3	5.0			[1.5]	[1.6]
0.100	Bi	5.0	12.5	50.0		-		-
0.100	Ca	5.0	12.5	50.0	150.0	-	[9.3]	[11]
0.015	Cd	0.8	1.9	7.5	75.0	-	[2.1]	[2.0]
0.100	Ce	5.0	12.5	50.0			-	-
0.025	Co	1.3	3.1	12.5	30.0		-	-
0.020	Cr	1.0	2.5	10.0	15.0		62.9	65.0
0.015	Cu	0.8	1.9	7.5	17.0		[1.6]	[1.6]
0.050	Dy	2.5	6.3	25.0				
0.100	Eu	5.0	12.5	50.0		-		-
0.025	Fe	1.3	3.1	12.5	150.0	[0.39]	[3.5]	[3.5]
2.000	ĸ	100.0	250.0	1000.0	75.0	-	24,400	25,600
0.025	La	1.3	3.1	12.5	35.0		-	-
0.005	Li	0.3	0.6	2.5		-	[0.57]	[0.44]
0.100	Mg	5.0	12.5	50.0	150.0			-
0.005	Mn	0.3	0.6	2.5	150.0			
0.030	Mo	1.5 5.0	3.8	15.0	90.0	-	143,000	145,000
0.100	Na Nd	5.0	12.5 12.5	50.0 50.0	75.0	117		-
0.030	NI	1.5	3.8	15.0	30.0		[5.1]	[5.3]
0.030	P	5.0	12.5	50.0	30.0	-	344	358
0.060	Pb	3.0	7.5	30.0	300.0		38.9	42.7
0.300	Pd	15.0	37.5	150.0	300.0			-
0.300	Rh	15.0	37.5	150.0		-	-	-
0.075	Ru	3.8	9.4	37.5	1	-	[5.2]	[5.1]
0.050	Sb	2.5	6.3	25.0		_	-	-
0.050	Se	2.5	6.3	25.0		-	[5.7]	[5.3]
0.100	SI	5.0	12.5	50.0	170.0	119	264	202
1.000	Sn	50.0	125.0	500.0		-	[84]	[86]
0.005	Sr	0.3	0.6	2.5		-	-	-
0.500	Te	25.0	62.5	250.0		. –	-	-
0.800	Th	40.0	100.0	400.0		-	-	-
0.005	Ti	0.3	0.6	2.5	17.0	[0.092]	-	-
0.250	TI	12.5	31.3	125.0		-		- 1
2.000	U	100.0	250.0	1000.0	600.0	· _	-	-
0.015	v	0.8	1.9	7.5		-		-
.500	w	25.0	62.5	250.0		-	[74]	[76]
0.010	Y	0.5	1.3	5.0		-	-	-
0.020	Zn	1.0	2.5	10.0	16.5	[0.32]	[6.3]	[6.7]
0.025	Zr	1.3	3.1	12.5			[6.7]	[6.8]
					Accession and a second second	- · · ·		and the second sec

Page 2 of 3

A0517 03/15/99

ASR5275

Multiplier 50.0 50.0 50.0 50.0 50.0 50.0 50.0 51.56 52.5 Del. Limit Run Dates AWI01:SQL-6Q2 AW	A3H32/5						
Client ID AVVID:SOL-602 AVVID:SOL-602 AVVID:SOL-602 AVVID:SOL-602 AVVID:AD:302 0.015 Ap (0.9mh) (0.9		Multiplier=	50.0	50.0	50.0	50.0	12.5
Del. Limit <i>Run Dates</i> 31599 31599 31599 31599 31599 31599 19369 (ugmL) (ugmL) <td></td> <td>ALO#=</td> <td>99-1153 @2</td> <td>99-1154 @2</td> <td>and the second construction and the second sec</td> <td>99-1156 @2</td> <td>99-1157 @1</td>		ALO#=	99-1153 @2	99-1154 @2	and the second construction and the second sec	99-1156 @2	99-1157 @1
$\begin{array}{ $		Client ID=	AW101-SOL-40A1	AW101-SOL-40A2	AW101-SOL-50A1	AW101-SOL-50A2	AW101-AQ-30A
0.05 Ag (0.84) (0.81) (0.84) (0.82) 0.060 As (12) (11) (12) (11) 0.060 Bs BS.0 BS.0 BS.2 99.2 94.7 31.3 0.060 Bs 0.010 Bs 0.010 Bs (14) (15) (17) (16) 0.010 C4 (21) (20) (21) (20)	Det. Limit	Run Date=	3/15/99	3/15/99	3/15/99	3/1 5/99	3/15/99
0.660 Ai 18.600 19.200 19.700 10.000 0.680 As [12] [11] [12] [11] $$ 0.010 Ba $$ $$ $$ $$ $$ 0.010 Ba $$ $$ $$ $$ $$ 0.010 Bi $$ $$ $$ $$ $$ 0.100 Bi $$ $$ $$ $$ $$ $$ 0.100 Ca [11] [11] [12] [10] $$ 0.000 Ca [11] [12] [10] $$ $$ 0.002 Ca $$ $$ $$ $$ $$ 0.020 Cr 67.5 57.4 70.6 58.8 64.4 0.010 Eu $$ $$ $$ $$ $$ 0.200 Ck 2000 28.000 28.700	(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.080 As (12) (11) (12) (11) - 0.050 B 98.0 08.8 08.2 94.7 31.3 0.010 Be (1.6) (1.1) (1.7) (1.6) - 0.010 Be (1.6) (1.1) (1.7) (1.6) - 0.100 Ca (11) (11) (12) (10) - 0.016 Cd (2.1) (2.0) (2.1) (2.0) - 0.025 Co - - - - - - 0.026 Cr 67.5 67.4 70.6 68.8 64.4 0.015 Cu (1.6) (1.5) - - - 0.025 Fe (4.4) (4.0) (4.4) (4.2) - - 0.026 Ka 26.000 26.000 15.90 - - - 0.005 Mn - - - <td< td=""><td>0.015</td><td>Ag</td><td>[0.84]</td><td>[0.81]</td><td>[0.84]</td><td>[0.82]</td><td>-</td></td<>	0.015	Ag	[0.84]	[0.81]	[0.84]	[0.82]	-
0.050 B 98.0 99.2 94.7 31.3 0.010 Be 0.010 Bi 0.010 Bi 0.100 Ca [11] [11] [12] [10] 0.010 Ca [21] [20] [21] [20] 0.015 Cd [21] [20] [21] [20] 0.025 Co - - - - - 0.026 Co - - - - - 0.026 Co - - - - - 0.026 Co - - - - - - 0.026 Ke [4.0] [4.0] [4.4] [4.0] - - - 0.027 La - - - - - - - 0.030 Mo - - <td>0.060</td> <td>AI</td> <td>18,600</td> <td>18,600</td> <td>19,200</td> <td>18,700</td> <td>1,080</td>	0.060	AI	18,600	18,600	19,200	18,700	1,080
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.080	As	[12]	[11]	[12]	[11]	-
0.010 Be [1.6] (1.5) (1.7) [1.6] 0.100 Bi - - - - - - 0.010 Ca (11) (11) (11) (12) (10) - 0.016 Cd (2.1) (2.0) - - - 0.020 Cc 67.5 67.4 70.6 68.8 64.4 0.010 Cc - - - - - - 0.020 Cr 67.5 67.4 70.6 68.8 64.4 0.010 Eu - - - - - - 0.025 Fe (4.4) (4.0) (4.4) (4.2) - - 0.025 La - - - - - - 0.036 Mi 10.51) (0.39) (0.49) (0.40) 12000 0.100 Na 146.000 147	0.050	В	98.0	89.8	89.2	94.7	31.3
0.100 Bi - </td <td>0.010</td> <td>Ва</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	0.010	Ва	-	-	-	-	-
0.100 Bi - </td <td>0.010</td> <td>Be</td> <td>[1.6]</td> <td>[1.6]</td> <td>[1.7]</td> <td>[1.6]</td> <td>-</td>	0.010	Be	[1.6]	[1.6]	[1.7]	[1.6]	-
0.100 Ca [11] [12] [10] 0.015 Cd [2.1] [2.0] [2.1] [2.0] 0.010 Ce - - - - - 0.025 Co - - - - - 0.026 Cr 67.5 67.4 70.6 68.8 64.4 0.015 Cu [1.6] [1.5] [1.2] [1.5] - 0.025 Cr 67.5 67.4 70.6 68.8 64.4 0.015 Cu [1.6] [1.5] [1.2] [1.5] - 0.025 Fe [4.4] [4.0] [6.4] [4.2] - - 0.025 La - - - - - - - 0.025 La - <t< td=""><td>0.100</td><td>Bi</td><td></td><td>-</td><td>······</td><td></td><td>_</td></t<>	0.100	Bi		-	······		_
0.015 Cd (2.1) (2.0) - 0.100 Ce - - - - 0.020 Cr 67.5 67.4 70.6 68.8 64.4 0.015 Cu [1.6] [1.5] (1.2] (1.5) - 0.020 Cr 67.5 67.4 70.6 68.8 64.4 0.015 Cu - - - - - - 0.020 Fe [4.4] [4.0] [4.4] (4.2] - - 0.025 Li (0.51) (0.39) (0.48) (0.40) - - 0.005 Li (0.51) (0.39) (0.48) (0.40) - - 0.005 Mn -	0.100	Ca	[11]	[11]	[12]		-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
0.015 Cu [1.6] [1.2] [1.5] - 0.050 Dy - - - - - 0.000 Eu - - - - - 0.000 Eu - - - - - 0.002 Fe [4.4] [4.0] [4.4] [4.2] - 0.005 Li [0.51] [0.39] [0.48] [0.40] - 0.005 Mg - - - - - - 0.005 Mg - - - - - - 0.005 Mg - - - - - - 0.005 Ma 146.000 146.000 146.000 12000 12000 0.100 Na 146.000 40.7 42.0 [3.3] 12.01 0.100 P 361 372 364 [12] 0.01					the second se	and the second distance of the second distanc	The second se
0.050 Dy - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>······</td> <td></td>						······	
0.100 Eu - - - - - 0.025 Fe [4.4] [4.0] [4.4] [4.2] - 2.000 K 26.000 26.000 26.000 26.000 26.000 0.025 La - - - - - - 0.005 Li [0.51] [0.39] [0.48] [0.40] - 0.005 Mn - - - - - - 0.005 Mn - - - - - - 0.005 Mn - - - - - - 0.000 Na 146.000 146.000 12.000 12.000 12.000 12.000 12.000 12.010 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12							
0.025 Fe [4.4] [4.0] [4.4] [4.2] 2000 K 25.000 26.000 26.000 26.000 1.590 0.025 La - - - - - 0.005 Li (0.51) (0.39) (0.48) (0.40) - 0.005 Mn - - - - - 0.005 Mn - - - - - 0.005 Mn - - - - - 0.000 Mo - - - - - 0.000 Mo - - - - - 0.000 Na 146.000 147.000 146.000 12.000 0.100 Na 146.91 357 372 364 (12) 0.600 Pb 48.6 40.0 40.7 42.0 (3.3) 0.300 Rh -<							
2.000 K 26,000 26,000 -						•••••••••••••••••••••••••••••••••••••••	······
0.025 La $ 0.005$ Li (0.51) (0.39) (0.48) (0.40) $ 0.005$ Mn $ 0.005$ Mn $ 0.005$ Mo $ 0.005$ Mo $ 0.005$ Mo $ 0.006$ Na 146,000 147,000 146,000 12,000 0.100 Na 165,31 (5,5) (5,5) (1,4) 0.100 Pa 48.6 40.0 442.0 (2,3) 0.300 Pd $ 0.075$ Ru (5,5) (4,7) (5,0) $ 0.050$ Sb <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			20,000	20,000		20,000	
0.100 Mg <th< td=""><td></td><td></td><td>[0 51]</td><td>10 201</td><td>••••••••</td><td>-</td><td></td></th<>			[0 51]	10 201	••••••••	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					the second s		
0.100 Na 145,000 147,000 146,000 12,000 0.100 Nd - - - - - 0.030 Ni [5.3] [5.2] [5.5] [5.5] [1.4] 0.100 P 361 357 372 364 [12] 0.060 Pb 48.6 40.0 40.7 42.0 [33] 0.300 Pd - - - - - 0.300 Rh - - - - - 0.050 Sb - - - - - 0.050 Se [5.5] [4.7] [5.0] - - 0.050 Se [5.5] [5.5] [4.7] [5.0] - - 0.050 Se [5.5] [5.5] [4.7] [5.0] - - 0.005 Sr - - - - - - - 0.005 Sr - - - - - -			··	······			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					the second se		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				······		146,000	12,000
0.100 p 361 357 372 364 (12) 0.060 Pb 48.6 40.0 40.7 42.0 (3.3) 0.300 Pd - - - - - 0.300 Rh - - - - - 0.300 Rh - - - - - 0.075 Ru [5.1] (4.9) (5.0) (4.9) - 0.050 Sb - - - - - - 0.050 Se (5.5) (5.5) (4.7) (5.0) - - 0.050 Se (5.5) (5.5) (4.7) (5.0) - - 0.005 Sr - - - - - - 0.005 Sr - - - - - - 0.005 Ti - - - - -			the second se			-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		*					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					•••••••		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						42.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				·······	······		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						[4.9]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						***************************************	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					the second s		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			[87]	[86]	[87]	[87]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-		-	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	-	
0.015 V - - - - 0.500 W [77] [77] [79] [77] 0.010 Y - - - 0.020 Zn [6.6] [6.6] [7.0] [6.7]			-		-	-	-
0.500 W [77] [79] [77] 0.010 Y 0.020 Zn [6.6] [6.6] [7.0] [6.7]			-	-	-	-	
0.010 Y	0.015	<u>v</u>	-		-	-	
0.020 Zn [6.6] [7.0] [6.7] -	。 0.500	w	[77]	[77]	[79]	[77]	-
	0.010	Y	-	-	-		
0.025 Zr [7.0] [7.0] [7.2] [7.1] –	0.020	Zn	[6.6]	[6.6]	[7.0]	[6.7]	-
	0.025	Zr	[7.0]	[7.0]	[7.2]	[7.1]	-

!

A0517 03/15/99

ASR5275

ASR5275	and an an and				
	Multiplier=	12.5	5.0	5.0	5.0
	ALO#=	99-1157-DUP @1	99-1158 @1	99-1159 @1	99-1160 @1
-	Client ID=	AW101-AQ-30A-DUP	AW101-AQ-50A	AW101-AQ-70A	AW101-AQ-90A
Det. Limit	Run Date=	3/15/99	3/15/99	3/15/99	3/15/99
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.015	Ag	-	-		-
0.060	Al	1,100	89.6	49.6	38.5
0.080	As				
0.050	В	29.8	27.5	27.4	27.5
0.010	Ba		[0.094]	[0.066]	[0.15]
0.010	Be		-		
0.100	Bi		-	-	
0.100	Ca	-	-	-	
0.015	Cd		-		
0.100	Ce	-	-	-	-
0.025	Co	-	-	-	-
0.020	Cr	65.6	5.36	1.72	[0.47]
0.015	Cu	-	-	-	-
0.050	Dy	-	-	-	-
0.100	Eu	-	-	-	-
0.025	Fe	-	[0.38]	[0.65]	[0.67]
2.000	· K	1,640	[58]	-	-
0.025	La	-	-	-	-
0.005	LI	-	-	-	-
0.100	Mg	-	-	-	-
0.005	Mn	-	[0.093]	0.428	0.382
0.030	Мо		_	- 1	-
0.100	Na	12,300	783	283	243
0.100	Nd	-	-	-	
0.030	Ni	[1.4]	-	-	-
0.100	Р	[12]	[1.2]	[0.57]	-
0.060	Pb		[0.36]		_
0.300	Pd	-	-	-	-
0.300	Rh	-		-	-
0.075	Ru	-	_		
0.050	Sb	-	-	-	-
0.050	Se	-	-		
0.100	Si	68.5	62.9	72.4	61.2
1.000	Sn	-	-	-	-
0.005					
0.500	Sr Te				
0.800	Th	-	-	-	
0.005	Ti	-	-		and the second se
			······	[0.031]	[0.032]
0.250 2.000	TI [.] U	-			
			-		-
0.015	<u>v</u>		-		
0.500	w				-
0.010	Y				-
0.020	Zn	-	-	[0.27]	[0.25]

PNL-LD2 Nitcle and Hydrochloric Acid Extraction of Liquids Using a Dy-Block Heater "Ofmumin: Lizer Hill "Ofmumin: Lizer Hill "Statk Hill "Off Hill Statk Hill "Off Hill "Off Hill "Off Hill		Lumetta A SR # 5275 for Ash 5275 for Ash 5275 Act order number or Client sample 10 Autor - SoL - 30A1 Awtor - SoL - 30A1 Awtor - SoL - 40A1 Awtor - SoL - 40A1 Awtor - SoL - 40A1 Awtor - SoL - 40A1		Sample Sample Volume (n Volume (n	d Extraction of Lig	luids Using a Dry Work Prop. lab Prepurat Final solution (g) Volume (mi)	y-Block Heater (packago numbor: Project numbor: PNL Impact lovel: (SAL/SHPL/othor): Idon.batch.number; Process Factor (1)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Lumetta A S.E. # 5275 for Ash 5275 AcL order number or Client sample ID ALI or - Sol - 30A1 AWIDI - Sol - 30A1 AWIDI - Sol - 40A1 AWIDI - Sol - 50A1		rochloric Ac Sample Sample Volume (m) 2 m L H 20 1 m L	d Extraction of Lig	luids Using a Dry Work Propriat Propurat Final solution (g) Volume (m)	y-Block Heater c packago numbor: Project numbor: PNL Impact Joval: (SAL/SHPL/othor): Ilon batch number; Process Factor (1)	Multh ple 29953 SA PL
Work Alth. Dec (MJD) A > C # > C Work Alth. Dec (MJD) Mork package on motor. Mork package on motor. Mork package Final Constrained Final Constrained Final Constrained PNL Constrained	X 0 11 7 7 10 1			D Micitrix Sample Sample Volume (m) 2 m L H=0 1 m L	Spike add	Prof. Prof. Prof. Volume	Cipackargo number: Prolect number: PNL GA plun: PNL Impact lovel: (SAL/SHPL/othor): Ilon:batch:number; Process Factor (1)	Multhple 29953 56.01
Timol Constribution: Project function: Project function: Project function: Project function: Provident function:				0 Martix Sample Sample Volume (m) 2mL Hz0 1 mL	2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Prop Pro Final solt Volume	Project number: PNL GA plan: PNL Impact level: (SAL/SRPE/other); flon.batch.number: Process Factor (1)	TO NS
$ \begin{array}{c} \label{eq:product} \mbox{First National Instruction} \mbox{First National Instruments} \mbox{Instruction} \mbox{First National Instruments} \mbox{Instruction} \mbox{First National Instruments} \mbox{Instruction} \mbox{First National Instruments} \mbox{Instruction} $				0 Illactrix	Spike edd		PNL Impact Jovol: (SAL/SRPE/othor); Jon:batch: number; Process Factor (1)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ACL order number or ACL order number or Client sample ID AW101-SoL-30A1 AW101-SoL-40A1 AW101-SoL-40A1 AW101-SoL-40A2 AW101-SoL-40A2 AW101-SoL-40A2	Vial Identifiar	Sample Volume (ml) 2mL HzO 1 mL			(SAL/SRPE/othor): Ilon:batch: number: Process Factor (1)	- Jaya
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Visi	Sample Volume (ml) 2mL H-20 1 mL		Final	Factor (1)	
1 PS-1151	- ~ ~ ~ ~ ~	Awio1-SoL-30A1 Awio1-SoL-30A2 Awio1-SoL-40A1 Awio1-SoL-40A2 Awio1-SoL-40A2 Awio1-SoL-40A2		2mL Hz0			Factor (1)	
2 q_{2} -115/1 $hurer-sol_{-20,1}$ $hurer-sol_{-20,1}$ $hurer-sol_{-20,1}$ $hurer-sol_{-20,1}$ 3 q_{2} -115/2 $hurer-sol_{-20,1}$ $hurer-sol_{-20,1}$ $hurer-sol_{-20,1}$ $hurer-sol_{-20,1}$ 5 q_{2} -115/2 $hurer-sol_{-20,1}$ $hurer-sol_{-20,1}$ $hurer-sol_{-20,1}$ $hurer-sol_{-20,1}$ 7 q_{2} -115/2 $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ 9 q_{1} -115/7 $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ 9 q_{1} -115/2 $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ $hurer-sol_{-20,2,2}$ 10 q_{2} -115/2 $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ $hurer-sol_{-20,2}$ $hurer-sol_{-20,2,2}$ 11 q_{2} -115/2 $hurer-sol_{-20,2,2,2}$ $hurer-sol_{-20,2,2,2,3}$ $hurer-sol_{-20,2,2,3,3}$ $hurer-sol_{-20,2,2,3,3}$ $hurer-sol_{-20,2,2,3,3}$ $hurer-sol_{-20,2,2,3,3}$ $hurer-sol_{-20,2,2,3,3,3}$ $hurer-sol_{-20,2,3,3,3,4,4,3,4,3,4,3,4,4,4,4,4,4,4,4,4$		Awio1-504-30A1 Awio1-504-30A2 Awio1-504-40A1 Awio1-504-40A2 Awio1-504-40A2				25mL		
3 $97-1152$ Ruoiar-Sou-3042 1 </td <td></td> <td>940101-50L-30A2 AW101-50L-40A1 AW101-50L-40A2 AW101-50L-40A2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		940101-50L-30A2 AW101-50L-40A1 AW101-50L-40A2 AW101-50L-40A2						
4 99-1/53 Autor-set40A1 1 1 1 5 99-1/55 Autor-set40A1 1 1 1 7 99-1/55 Autor-set60A1 1 1 1 8 99-1/55 Autor-set60A1 1 1 1 9 99-1/55 Autor-set60A2 2 1 1 1 9 99-1/57 Autor-act50A2 2 2 1 <		AW101-50L-40A1 AW101-50L-40A2 AW101-50L-50A1 BW101-50L-50A1						
5 97-1154 AUIO1-Sa10A2 AUIO1-Sa10A2 6 97-1155 AVIO1-Sa10A2 A 7 97-1155 AVIO1-Sa10A2 A 8 97-1157 AVIO1-Sa50A2 A 9 97-1157 AVIO1-Sa50A2 A 9 97-1157 AVIO1-AA-50A A 10 97-1158 AVIO1-AA-50A A 11 97-1156 AVIO1-AA-50A A 12 97-1160 AVIO1-AA-50A A 13 97-1160 AVIO1-AA-50A A 14 Analyst samplo preparation comments: <i>Parichaes : #10948</i> A A 13 97-1160 AVIO1-AA-50A A A 14 Analyst samplo preparation comments: <i>Parichaes : #10948</i> A A A 14 Analyst samplo proparation comments: <i>Parichaes : #10948</i> A A A A 15 97-1160 AVI01-A A A A A A 14 Analyst samplo preparation comments: <i>Parichaes : #10948</i> A A A A A <t< td=""><td></td><td>AW101 - SoL - 40A2 AW101 - SoL - 50A1 BW101 - SoL - 50A1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		AW101 - SoL - 40A2 AW101 - SoL - 50A1 BW101 - SoL - 50A1						
6 97-1155 Avuor-solSol 4 6 9 6 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 9 7 9		AWLOI-SOL - SOA!						(b)
7 $9q \cdot II \leq C$ Partic - Sonz $2m_L$ 1 1 8 $9q \cdot II \leq T$ Autor - Souz - Sonz $2m_L$ 1 1 9 $9q \cdot II \leq T$ Autor - Aq - 3:0A $2m_L$ 1 10 $9q \cdot II \leq T$ Autor - Aq - 3:0A $2m_L$ 1 11 $9q \cdot II \leq T$ Autor - Aq - 3:0A $2m_L$ 1 12 $9q - II \leq Q$ Autor - Aq - 3:0A $2m_L$ 1 13 $9q - II \leq Q$ $4moi - Aq - 3:0A$ $2m_L$ 1 14 1 $9q - II \leq Q$ 1 1 1 15 $9q - II \leq Q$ $4moi - Aq - 3:0A$ $2m_L$ $2m_L$ 14 1 1 1 1 1 1 15 $9q - II \leq Q$ 1 1 1 1 16 1 1 1 1 1 1 17 $2q - 1I \leq Q$ 1 1 1 1 18 $2moi + 3:0$ 1 1 1 1 14 1 1 1 1 1 1 15 1 1 1 1 1 1 16 1 1 1 1 1 1 17 $2m_L \neq 3$ $2m_L \neq 3$ $2m_L \neq 3$ $2m_L \to 3$ 2 $2m_L \neq 3$ 1 0 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 <	-	BUIDI - Soi - Soin						
8 $99-11\leq T$ Autor- $Aa-3oA$ $2m_L$ q 49 $99-11\leq 7b_{xte}$ Autor- $Aa-3oA$ $2m_L$ q 10 $99-11\leq 8$ $Autor-Aa-3oA$ $2m_L$ q 11 $99-11\leq 9$ $Autor-Aa-3oA$ $2m_L$ q 12 $99-11\leq 9$ $Autor-Aa-7oA$ $2m_L$ m_L 13 $99-11LCC$ $Autor-Aa-7oA$ $2m_L$ m_L 14 $Analyst's sample preparation comments:PiterLibuek: # 1D572DN e 5m_LSpite source:13Analyst's sample preparation comments:PiterLibuek: # 1D572DN e 5m_LSpite source:10Potesis1.00764.97533Anal. balance MaTE:10Process lactor1.00765.02203mple fillored (yosfno):11Process lactorElal volume (m) Samplo volume (m)0.9764.9557Sample fillored (yosfno):10Process lactorElal volume (m) Samplo vol$	+	ZHOC						e 1
	0			2 ml			•	
1099-1158Awioi-HaSo.4SmLM1199-1159Awioi-HaZo.ASmLM1299-1160Awioi-HaZo.AMM1399-1160Awioi-HaYo.AMM14Analyst's samplo preparation comments: $P_{POL}L_{heck}$: #10246#102478#2.05720N @ SmL14Analyst's samplo preparation comments: $P_{POL}L_{heck}$: #102478#125720N @ SmLSpike source:2dore # Zeo-cd-ov-cold $1.00/66$ 4.97833 PNL spike ID number:NL spike ID number:10Process lactor $1.00/76$ $5.00/73$ Samplo fillored (yes/no):Smplo fillored (yes/no):(1)Process lactor $=$ Final volume (m) 0.9776 Samplo volume (m)Samplo volume (m)Other samplo preparation workshoots may be substituted at the discontion of the Contrart Scientife Uncontract Scientifie	64	-		1				
1199-1159Autor-Aa-70A111299-11(LOAutor-Aa-90A11399-11(LOAutor-Aa-90A114Analysi's samplo preparation comments: $P_{1D}L_{ekc}$: #11249 & #105 T2DN @ Sml14Analysi's samplo preparation comments: $P_{1D}L_{ekc}$: #11249 & #105 T2DN @ Sml14Analysi's samplo preparation comments: $P_{1D}L_{ekc}$: #11249 & #105 T2DN @ Sml2dorce # 3dorce # 3dorce # 3dorce # 3dorce # 1.0012 $P_{10}D_{13}$ Analysi's samplo preparation comments: $P_{1D}L_{ekc}$: #11249 & #105 T2DN @ SmlAnalysi's samplo preparation comments: $P_{1D}L_{ekc}$: #11249 & #105 T2DN @ SmlAnalysi's samplo preparation comments: $P_{1D}L_{ekc}$: #11249 & #105 T2DN @ SmlAnalysi's samplo preparation (m) $P_{1D}L_{ekc}$: #107 & #105 T2DN @ Sml(1)Process factor F_{1nal} volume (m)Othor samplo proparation workshoots may be substituted at the discretion of the Conntrant Scientist Lie on undertained (yos/no):	9			SmL				
1299-11 LCOAutor - Aa - 90.4Loc1314	Ŧ	AWIOL-AQ-JOA						
nalyst's samploPipel checks : #1/249.8# LD5.72DN @ $\overline{\neg}m$ Balore # 360-66-01-0261.00/39#.95.33Balore # 360-66-01-0261.00/764.97833PNL spike source:1.000764.97833Process factorFinal volume (m) /Samplo volume (m)Process factorFinal volume (m) /Samplo volume (m)Other samplo preparation workshoots may be substituted at the discretion of the Comizent Scientist Les non-model.	12	AWIOI-AQ-904		7		 . 		
nalyst's sample preparation comments: Pipetchacks : #1/249 % # LD572DN @ 5m/ Spike source: Balarce # 360-66-01-026 1:001/59 #.95339 PNL spike ID number: Process lactor = Final volume (mi) /Sample volume (mi) 0.997/59 5:00205 Process lactor = Final volume (mi) /Sample volume (mi) 0.997/59 5:00205 Other sample preparation workshools may be substituted at the discretion of the Connized Scientist Leone models and be substituted at the discretion of the Connized Scientist Leone models and be substituted at the discretion of the Connized Scientist Leone models and be substituted at the discretion of the Connized Scientist Leone models and be substituted at the discretion of the Connized Scientist Leone models and be substituted at the discretion of the Connized Scientist Leone models and be substituted at the discretion of the Connized Scientist Leone models and be substituted at the discretion of the Connized Scientist Leone models at the discretion of the Connized Scientist Leone models at the discretion of the Connized Scientist Leone models at the discretion of the Connized Scientist Leone models at the discretion of the Connized Scientist Leone models at the discretion of the Connized Scientist Leone models at the discretion of the Connized Scientist Leone models at the discretion of the Connized Scientist Leone models at the connized Scient	13					*		
nalyst's sample preparation comments:P:pefcheeks: #11249.8# LD572DN @ 5mLSpike source:Solore: # 360-66-01-0261.001/394.95339PNL spike 1D number:1.001/361.001/364.97839Anal. balance M&TE:1.001/362.007/34.97839Anal. balance M&TE:Process lactor= Final volume (mi) /Sample volume (mi)0.9971/35.00209Other sample preparation workshoots may be substituted at the discretion of the Contrant Scientist Trease under the discretion of the Scientist Trease under the discretion of the Scientist Trease under the scienti	14							
$\frac{100139}{10016} \frac{100139}{10016} \frac{100139}{10016} \frac{100139}{10016} \frac{100139}{10016} \frac{100139}{10016} \frac{100139}{10016} \frac{100139}{10016} \frac{100139}{100016} \frac{100139}{100016} \frac{1000139}{1000000000000000000000000000000000000$	Analyst's sample		#	£ 11249 8	NG2 507		Spika source.	.
$\frac{1 \cdot 001 (c_{a}}{1 \cdot 001 (c_{a}} - \frac{4! \cdot 9783g}{2! \cdot 9783g}$ $\frac{1 \cdot 0001 g}{1 \cdot 0001 g} - \frac{4! \cdot 9783g}{2! \cdot 9757g}$ Process factor = Final volume (mi) /Sample volume (mi) 0 \cdot 9971 g - 5 \cdot 0026g - 5 \cdot 0026			-	00/39	0		. spike ID number:	-
$\frac{1.0017}{1.0014} = \frac{5.0073}{4.9957}$ Process factor = Final volume (ml) /Sample volume (ml) Other sample preparation workshoots may be substituted at the discretion of the Connizent Scientist. The provenue of the substituted at the discretion of the Connizent Scientist. The provenue of the substituted at the discretion of the Connizent Scientist. The provenue of the substituted at the discretion of the Connizent Scientist. The provenue of the substituted at the discretion of the Connizent Scientist.			1.	00169	4.97820	Ane	al balance M&TE-	
$\frac{1.0007}{0.977} + \frac{1.0007}{5.002} + \frac{1.9557}{5.002}$ Process factor = Final volume (ml) /Sample volume (ml) 0.977 + 5.0020			./	00179	5.00/29			
Process factor = Final volume (mi) /Sample volume (mi) Other sample preparation worksheets may be substituted at the discretion of the Connizent Scientist The and worksheets			-	00019	4.99576	Samplo	o filtorod (ves/no):	
				•	5.0020			
		oparation workshoots may bo s	iplo volumo (ml) substituted at the dis	scration of the Cor	inizant Scientist - 1 les ses			

97

Rev. 2.0 7-23-95 JAIR

Project: Client: 29953 G. J. Lumetta

ACL Number(s): 99-1161, 99-1458-Zr & 99-1458-Ni

Client ID: "AW101-AQ-100d", "AN107-AQ-100"(Zr) & "AN107-AQ-100"(Ni)

ASR Number: 5275 & 5319

Total Samples: 3

Procedure: PNL-ALO-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICP-AES).

Analyst: J. J. Wagner

Analysis Date (Filename): 4-22-99 (A0524) and 4-27-99 (A0525)

See system file: "ICP-325-405-1" for traceability to Calibration, Quality Control, Verification, and Raw Data.

M&TE Number:

ICPAES instrument -- WB73520 Mettler AT400 Balance -- Ser.No. 360-06-01-029

Reviewed by

Concur

<u>5/4/99</u>

One radioactive solid sample AN107-AQ-100 (ASR 5319) was analyzed by ICPAES after preparation by the 325 Shielded Analytical Laboratory (SAL) using two fusion preparation procedures: PNNL-ALO-114 Na2O2-NaOH/Zr and PNNL-ALO-115 KOH/Ni. Approximately 0.05 to 0.06-gram aliquots were used for each procedure. After samples were fused they were diluted to a final volume of 50 ml. Additional dilution, up to 10 fold, was performed during ICPAES analysis. All measurement results reported have been corrected for preparation and analytical dilution. Because of limited sample material, duplicates were not prepared. Analytes of interest include Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Si, Ti, U, Zn and Zr.

Sample AW101-AQ-100d (ASR 5275) was prepared by the client and analyzed by ICPAES without further processing other than necessary analytical dilution up to 5-fold. Analytes of interest are the same as those listed above. <u>Measurement results have been corrected for analytical dilution only</u>. Results are reported as μ g/ml as agreed upon by the client.

All quality control checks met tolerance requirements for analytes of interest except as noted below. Following is a list of quality control check measurement results relative to ICPAES analysis tolerance requirements under MCS-033.

Five fold serial dilution:

All results are within tolerance limit of $\leq 10\%$ after correcting for dilution.
All results were within tolerance limit of $\leq 10\%$ after correcting for dilution except Mg in sample AW101-AQ-100d @5 and AW101-AQ-100d @1. Mg concentration was recovered within 13% after dilution correction. All other analytes of interest in the above sample were within 4% after dilution correction.
ve Percent Difference):
No duplicates were prepared because of limited sample material.
No duplicates were provided.
Group A):
All analytes of interest were recovered within tolerance of 75 to
125%.
All analytes of interest were recovered within tolerance of 75 to 125%.

5/4/99

Post-Spiked Samples (Group B):

(Solid samples)	All analytes of interest were recovered within tolerance of 75 to 125%.
(Aqueous samples)	All analytes of interest were recovered within tolerance of 75 to 125%.
Blank Spike: (Solid samples)	A blank spike was not prepared.
(Aqueous samples)	A blank spike was not provided.
Matrix Spiked Sample: (Solid samples)	A matrix spike was not prepared.
(Aqueous samples)	A matrix spike was not provided.

Quality Control Check Standards:

Concentration of all analytes of interest, except for Si, was recovered within tolerance of $\pm 10\%$ accuracy in the standards: QC_MCVA, QC_MCVB, and QC_SSTMCV. Calibration Blank (ICP98.0) concentration was less than two times IDL. Silicon was slightly high (about 14%) in one determination of QC_SSTMCV. Silicon in QC_MCVA check standard was within 5% of the true value of 20 µg/ml, which was run several times during the analysis, thus, measurement results for Silicon in the samples are not likely to be affected.

High Calibration Standard Check:

Verification of the high-end calibration concentration for all analytes of interest was within tolerance of $\pm 5\%$ accuracy except for Ca, Fe, and U. These three analytes were slightly high, between 6% and 7%, in the high-end cal. check standard. Measurement results for these analytes in the samples were closer to mid-range concentrations like those found in QC_MCVA. Therefore, sample measurement results are not likely to be affected by the slightly high recovery for Ca, Fe, and U.

5/4/99

Process Blank:	
(Solid samples)	All analytes of interest were within tolerance limit of \leq EQL or $<$
	5% of sample concentration except Ca in ALO-114 prepared
	samples and Na in ALO-115 prepared samples. Concentration of
	Ca in the process blank for sample AN107-AQ-100 (Zr) was about
	52% of that in the sample. Concentration of Na in the process
	blank for sample AN107-AQ-100 (Ni) was about 12% of that in
	the sample.
(Aqueous samples)	No preparation blank provided.
Laboratory Control S	tandard:
(Solid samples)	All analytes of interest at a concentration equal to or greater than

(Solid samples) All analytes of interest at a concentration equal to or greater than EQL were recovered within tolerance of 75% to 125% in both fusion prepared LCS standards. SRM-2710 Montana Soil was used for the LCS in both ALO-114 and ALO-115 fusion preparations.

(Aqueous samples) No LCS provided.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- 2) Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically $\pm 15\%$ or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight).
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

5/4/99

!

Battelle PNNL/RPG/Inorganic Analysis ... ICPAES Data Report 1 of 1

	Multiplier=	814.3	1900.1			
	ALO#=	99-1458-Zr-PB	99-1458-Zr @ 2.3333			
	Client ID=	AN107-AQ-100	AN107-AQ-100			
Det. Limit	Run Date=	4/22/99	4/22/99			
(ug/mL)	(Analyte)	ug/g	ug/g			
0.015	Ag	[12]	[52]	-	-	
0.060	A	[200]	18,800	_	_	
0.080	As		[200]	- 1	_	
0.050	B	[49]			_	
0.010	Ba	[9.0]	1,410	-	-	
0.010	Be			-	-	
0.100	Bi				-	
0.100	Ca	3.540	6.820			
0.015	Cd		[69]		-	
		[150]		·····		
0.100	Ce		5,820			· · ·
0.025	Co	-	-			
0.020	Cr	[35]	9,160			
0.015	Cu	[28]	[94]			
0.050	Dy		-			
0.100	Eu		-			
0.025	Fe	366	245,000			
2.000	к	[2,000]	-	-	-	
0.025	La	[30]	1,940	-	-	
0.005	LI	[29]	[57]		-	
0.100	Mg	-	[1,200]	-	-	
0.005	Mn	[7.3]	143,000		-	
0.030	Мо	-				
0.100	Nd	[100]	6,710	-	-	
0.030	Ni	439	749	-	-	
0.100	Р	[96]	[1,300]	-	-	
0.060	Pb	[85]	18,700	-	-	
0.300	Pd	-	[3,300]	-	-	
0.300	Rh	-	-	-	-	
0.075	Ru	-	[450]	_	— ·	
0.050	Sb	[96]	[210]	-	-	
0.050	Se	[76]	[350]	-	-	
0.100	SI	[380]	6,930	-	-	
1.000	Sn		[3,500]	-	-	
0.005	Sr	56.0	220	-	-	
0.500	Te		-		-	
0.800	Th	-	-	-	-	
0.005	т	[10]	185	200 <u>2</u>		
0.250	TI				_	
2.000	U		[4,000]	-	-	
0.015	v	[13]	[45]	-	-	
0.500	v		-			••••••
0.010	Y		811			
0.010	Zn	<u> </u>	1,670			

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is <u>below</u> detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNL/RPG/Inorganic Analysis ... ICPAES Data Report^{1 of 1}

	Multiplier=	994.0	4970.2			
	ALO#=	99-1458-NI-PB	99-1458-Ni @5			
	Client ID=	AN107-AQ-100	AN107-AQ-100			
Det. Limit	Run Date=	4/22/99	4/22/99			
(ug/mL)	(Analyte)	ug/g	ug/g			
0.015	Ag	[15]	[90]	-		
0.060	AI	[320]	20,000	-	-	
0.080	As	[100]	-		 -	
0.050	в	[200]	[400]	-	-	
0.010	Ba	-	1,470	-		
0.010	Be	-	-		 	
0.100	Bi	-	-	-		
0.100	Ca	[150]	[2,200]	-	-	
0.015	Cd	-	[84]	-	 -	
0.100	Ce	-	[4,300]	-	-	
0.025	Co	[30]	-	-	-	
0.020	Cr	[22]	10,100	-	 	
0.015	Cu	[24]	[100]	-	-	
0.050	Dy	-	-	-	-	
0.100	Eu				 	
0.025	Fe	388	273,000	-	-	
0.025	La	[25]	1,990		 	
0.005	LI	[15]	[68]	· -	-	
0.100	Mg	[100]	[740]	-	-	
0.005	Mn	191	162,000		 -	
0.030	Мо	-	-	-	-	
0.100	Na	3,820	26,500	-	-	
0.100	Nd	[100]	6,540	-	-	
0.100	P	[120]	[2,000]	-	-	
0.060	Pb	[110]	15,900	-	-	
0.300	Pd	-	[3,300]	-	 -	
0.300	Rh			-	-	
0.075	Ru	-	[530]	-	-	
0.050	Sb	[82]	[330]	-	-	
0.050	Se	[110]	[570]	-	-	
0.100	Si	1,640	7,470	-	-	
1.000	Sn	-	-	-	-	
0.005	Sr	-	[170]	-	-	
0.500	Te	-	-	-	-	
0.800	Th	-	-	-	-	
0.005	ті	[14]	[210]	-	-	
0.250	TI	-		-	-	
2.000	U	-	_	-	 -	
0.015	v	-	-	-		
0.500	W	_		-	-	
0.010	Y	-	652	-	-	
0.020	Zn	[39]	1,770	-	-	
0.025	Zr	-	3,190	-	 -	
			and the second	and the second	 the second second	#7

Note: 1) Overall error <u>greater than</u> 10-times detection limit is estimated to be within +/- 15%. 2) Values In brackets [] are <u>within</u> 10-times detection limit with errors likely to exceed 15%.

3) *--* indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNL/RPG/Inorganic Analysis ... ICPAES Data Report Page 1 of 1

Multiplier= 1.0 ALO#= 99-1161 @1 Client ID= AW101-AQ-100d Det. Limit Run Date= 4/22/99 (ug/mL) (Analyte) (ug/mL) 0.015 Ag 0.881 - - 0.060 Al 67.3 - - - 0.080 As [0.12] - - - 0.080 As [0.12] - - - 0.080 B 34.3 - - - 0.010 Ba 6.47 - - - 0.010 Ba 6.47 - - - 0.100 Ca 53.2 - - - 0.100 Ca 53.2 - - - 0.015 Cd 2.62 - - - 0.100 Ce [0.46] - - - 0.101 - - -	
Client ID= AW101-AQ-100d 4/22/99 (ug/mL) (Analyte) (ug/mL) 0.015 Ag 0.881 - 0.060 Ai 67.3 - 0.060 Ai 67.3 - 0.060 Ai 67.3 - 0.080 As [0.12] - - 0.010 Ba 6.47 - - 0.010 Ba 6.47 - - 0.010 Ba 6.47 - - 0.100 Ba 6.47 - - 0.100 Ca 53.2 - - 0.100 Ca 53.2 - - 0.100 Ce [0.46] - - 0.025 Co 0.366 - - 0.020 Cr 80.7 - - 0.020 Cr 80.7 - - 0.050 Dy [0.11] -	
Det. Limit Run Date= (ug/mL) 4/22/99 (ug/mL) - - - 0.015 Ag 0.881 - - - - 0.060 Al 67.3 - - - - 0.060 As [0.12] - - - - 0.060 As [0.12] - - - - 0.050 B 34.3 - - - - 0.010 Bs 6.47 - - - - 0.100 Bs 2.61 - - - - 0.100 Ca 53.2 - - - - 0.100 Ce [0.46] - - - - 0.020 Cr 80.7 - - - - 0.020 Cr 80.7 - - - - 0.015 Lu 1.30 - -	
(ug/mL) (Analyte) (ug/mL) -	
0.015 Ag 0.881 - - - - 0.060 Ai 67.3 - - - - - 0.080 As [0.12] - - - - - 0.050 B 34.3 - - - - - 0.010 Ba 6.47 - - - - - 0.010 Ba 6.47 - - - - - 0.100 Bi 2.61 - - - - - 0.100 Ca 53.2 - - - - - 0.100 Ce [0.46] - - - - - 0.025 Co 0.366 - - - - - 0.020 Cr 80.7 - - - - - 0.015 Cu 1.30 -<	
0.060 Al 67.3 - - - - 0.080 As [0.12] - - - - - 0.050 B 34.3 - - - - - 0.010 Ba 6.47 - - - - - 0.010 Bi 2.61 - - - - - 0.100 Bi 2.61 - - - - - 0.100 Ca 53.2 - - - - - 0.100 Ce [0.46] - - - - - 0.100 Ce [0.46] - - - - - 0.025 Co 0.366 - - - - - 0.015 Cu 1.30 - - - - - 0.025 Fe 113 -<	
0.080 As $[0.12]$ $ 0.050$ B 34.3 $ 0.010$ Ba 6.47 $ 0.010$ Be $[0.057]$ $ 0.100$ Bi 2.61 $ 0.100$ Ca 53.2 $ 0.015$ Cd 2.62 $ 0.015$ Cd 2.62 $ 0.015$ Cd 2.62 $ 0.025$ Co 0.366 $ 0.025$ Co 0.366 $ 0.015$ Cu 1.30 $ 0.025$ Fe 113 $ 0.025$ La 0.257 </td <td></td>	
0.050 B 34.3 -<	
0.010 Ba 6.47 - - - - 0.010 Bi 2.61 - - - - - 0.100 Bi 2.61 - - - - - 0.100 Ca 53.2 - - - - - 0.015 Cd 2.62 - - - - - 0.015 Cd 2.62 - - - - - 0.025 Co 0.366 - - - - - 0.020 Cr 80.7 - - - - - 0.020 Cr 80.7 - - - - - 0.015 Cu 1.30 - - - - - 0.100 Eu [0.15] - - - - - 0.025 Fe 113 - <td></td>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
0.100 Bi 2.61 - - - - 0.100 Ca 53.2 -	
0.100 Ca 53.2 - - - - 0.015 Cd 2.62 - - - - - 0.100 Ce [0.46] - - - - - 0.025 Co 0.366 - - - - - 0.020 Cr 80.7 - - - - - 0.015 Cu 1.30 - - - - - 0.050 Dy [0.11] - - - - - 0.100 Eu [0.15] - - - - - 0.025 Fe 113 - - - - - 0.025 La 0.257 - - - - - 0.005 Mn 105 - - - - - 0.005 Mn 105 - </td <td></td>	
0.015 Cd 2.62 - - - - 0.100 Ce [0.46] -	
0.100 Ce [0.46] - - - 0.025 Co 0.366 - - - - 0.020 Cr 80.7 - - - - 0.015 Cu 1.30 - - - - 0.050 Dy [0.11] - - - - 0.100 Eu [0.15] - - - - 0.025 Fe 113 - - - - 0.025 Fe 113 - - - - 0.025 La 0.257 - - - - 0.005 Li 0.098 - - - - 0.100 Mg 4.80 - - - - 0.005 Mn 105 - - - - 0.000 Mo - - - - <	
0.025 Co 0.366 0.020 Cr 80.7 - - - - 0.015 Cu 1.30 - - - - - 0.050 Dy [0.11] - - - - - - 0.100 Eu [0.15] - - - - - - 0.025 Fe 113 - - - - - - 0.025 La 0.257 - - - - - - 0.005 Li 0.098 - - - - - - 0.100 Mg 4.80 - - - - - - 0.005 Mn 105 - - - - - - 0.030 Mo - - - - - - - 0.100 Nd [0.46] - - - - - </td <td></td>	
0.020 Cr 80.7 -	
0.015 Cu 1.30 - - - 0.050 Dy [0.11] - - - - 0.100 Eu [0.15] - - - - - 0.025 Fe 113 - - - - - 0.025 Fe 113 - - - - - 2.000 K [5.0] - - - - - 0.025 La 0.257 - - - - - 0.005 Li 0.098 - - - - - 0.100 Mg 4.80 - - - - - 0.005 Mn 105 - - - - - 0.030 Mo - - - - - - 0.100 Nd [0.46] - - -	
0.050 Dy [0.11] - - - 0.100 Eu [0.15] - - - 0.025 Fe 113 - - - 2.000 K [5.0] - - - 0.025 La 0.257 - - - 0.025 La 0.257 - - - 0.005 Li 0.098 - - - 0.100 Mg 4.80 - - - 0.005 Mn 105 - - - 0.005 Mn 105 - - - 0.100 Na 131 - - - 0.100 Nd [0.46] - - -	
0.100 Eu [0.15] - - - - 0.025 Fe 113 -	
0.025 Fe 113 - - - - 2.000 K [5.0] -	
2.000 K [5.0] - - - 0.025 La 0.257 - - - - 0.005 Li 0.098 - - - - 0.100 Mg 4.80 - - - - 0.005 Mn 105 - - - - 0.005 Mn 105 - - - - 0.030 Mo - - - - - 0.100 Na 131 - - - - 0.100 Nd [0.46] - - - -	
0.025 La 0.257 -	
0.005 Li 0.098 -	
0.100 Mg 4.80 - - - - 0.005 Mn 105 -	
0.005 Mn 105 0.030 Mo - - - - - 0.100 Na 131 - - - - 0.100 Nd [0.46] - - - -	
0.030 Mo - - - - 0.100 Na 131 - - - - 0.100 Nd [0.46] - - - -	
0.100 Na 131	
0.100 Nd [0.46]	
0.030 Ni 16.5	
0.100 P 4.72	
0.060 Pb 8.60	
0.300 Pd	
0.300 Rh – – – –	
0.075 Ru [0.34]	
0.050 Sb [0.090]	
0.050 Se [0.23]	
0.100 Si 398 – – – –	
1.000 Sn [3.5]	
0.005 Sr 0.734	
0.500 Te	
0.800 Th [4.5]	
0.005 Ti 0.766	
0.250 TI	2
2.000 U 428	
0.015 V [0.058]	
0.500 W	
0.010 Y [0.021]	
0.020 Zn 15.5	
0.025 Zr 17.3	

Note: 1) Overall error <u>greater than</u> 10-times detection limit is estimated to be within +/- 15%. 2) Values in brackets [] are <u>within</u> 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

WO/Project: Client:

W48481&W48482/29953 G. Lumetta

ACL Nmbr(s): 99-1151 through 99-1160

Client ID: AW101 SOL and AW101 AQ series

ASR Nmbr 5275

Total Samples: 10 liquids

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography" (IC).

Analyst: **MJ Steele**

Analysis Date: March 30-31, 1999 and Reruns April 12-13, 1999

See Chemical Measurement Center 98620: IC File for Calibration and Maintenance Records.

M&TE Number:

IC instrument -- WD25214 Mettler AT400 Balance - Cal. No. 360-06-01-031

Analyst: <u>Masterle</u> 4/27/99 Approval: <u>MWMa</u> 4/27/99

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Final Results:

Ten liquid samples were analyzed by ion chromatography (IC) for inorganic anions as specified in ASR 5275. The liquid samples were diluted 5-fold to 12.25-fold during the preparation of the samples prior to distribution to the IC workstation, and were diluted at the IC workstation up to 200-fold to ensure that all anions were within the calibration range. The samples were initially analyzed on March 30-31, 1999. From this run, the verification standards for many analytes were below the 90% recovery acceptance criteria. Therefore the samples were reanalyzed on April 12-13, 1999. Only results from the final analysis run are provided in this report. The results from the initial analysis run are included in the data package for information only.

Based on client communications the nitrate result for AW101-SOL-40A2 appears to be about a factor of two higher than expected. The only other analyte in this sample at a high enough concentration to provide reliable results nitrite, and the nitrite for sample AW101-SOL-40A2 is only slightly higher than sample AW101-SOL-40A1. To provide sufficient sample for all analyses requested, AW101-SOL samples had to be diluted 10-12 fold; it is possible that the small volume sample was contaminated during the initial dilution. Both the initial run (which failed QC) and the final run measured nitrate above 200,000 μ g/ml.

SAMPLE	Client	; Dil 🥂	F	· Cl	-NO2	Br	NO3	PO4	SO4	C204
D	,D	Factor	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml*	µg/ml	+μg/ml;
99-1151 PB	PROCESS BLANK	5	<1.4	<1.4	<2.8	<1.4	<2.8	<2.8	<2.8	<2.8
	% RECOVERY		91	97	100	97	96	94	95	98
99-1151	AW101-SOL-30A1	12.25	1,300	3,600	69,400	<600	118,000	<1200	<1200	<1200
99-1152	AW101-SOL-30A2	10	1,300	4,100	. 62,300	<500	120,000	<1000	<1000	<1000
		91	115	110	105	111	100	103	107	
99-1153 #1	AW101-SOL-40A1	12.25	1,600	4,400	75,300	<600	122,000	<1200	<1200	<1200
99-1153 #1 REPLICATE	AW101-SOL-40A1	12.25	1,400	5,000	80,000	<300	154,000	<613	1,752	<613
		15	14	6	n/a	24	n/a	n/a	n/a	
99-1153 #2	AW101-SOL-40A1	12.25	1,100	3,000	65,400	<300	124,000	1,400	1,400	<600
99-1153 #2 REPLICATE	AW101-SOL-40A1	12.25	1,200	3,800	64,600	<300	125,000	1,400	1,600	<600
	RPD (%)		6	22	1	n/a	0	4	11	n/a
99-1154	AW101-SOL-40A2	12.25	1,600	4,200	72,700	<600	227,000	<1200	<1200	<1200
99-1155	AW101-SOL-50A1	10	1,600	4,100	65,200	<500	126,000	<1000	<1000	<1000
99-1156	AW101-SOL-50A2	10	1,500	4,100	63,500	<500	122,000	<1000	<1000	<1000
99-1157	AW101-AQ-30A	5	100	250	3,800	<25	7,300	<50	120	6,400
99-1158	AW101-AQ-50A	5	6.0	11	170	<1.4	360	<2.8	6.5	210
99-1159	AW101-AQ-70A	5	<1.4	3.0	8.0	<1.4	34	<2.8	<2.8	<2.8
99-1160	AW101-AQ-90A	5	<1.4	2.5	<2.8	<1.4	2.7	<2.8	<2.8	<2.8
3	% RECOVERY		98	110	108	107	103	101	104	86

The results for the samples from the April 12-13, 1999 run are presented in the table below.

RPD = Relative Percent Difference (between sample and duplicate)

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

,

99-1151 Rev. 1 3/30/99

Client : Lumetta	
Cognizant Scientist:	-Rifreencord
Concur :	Tizang-le.

<u>3/30/99</u> 333999 Date : Date :

Measured Activities (uCi/ml) Uranium

ALO ID Client ID	Alpha Error %	Sr-90 Error %	ug/ml Error %	Co-60 Error %	Cs-134 Error %	Cs-137 Error %	Am-241 Error %	Eu-154 Error %	Eu-155 Error %
99-1151PB AW101-SOL-30A1	<4.E-5	<1.E-4	6.96E-5 3%	<9.E-6	<8.E-6	1.55E-5 29%	<5.E-5	<3.E-5	<3.E-5
99-1151 AW101-SOL-30A1	<6.E-3	9.49E-1 14%	2.73E+0 2%	<4.E-3	5.48E-2 10%	2.55E+2 2%	<2.E-1	<1.E-2	<2.E-1
99-1151 Rep AW101-SOL-30A1	<6.E-3								
99-1152 AW101-SOL-30A2	<6.E-3 ,	4.00E-1 30%	2.80E+0 2%	<4.E-3	5.94E-2 9%	2.64E+2 2%	<2.E-1	<9.E-3	<2.E-1
99-1153 AW101-SOL-40A1	<7.E-3	5.19E-1 24%	3.00E+0 2%	<3.E-3	5.68E-2 10%	2.67E+2 2%	<2.E-1	<1.E-2	<2.E-1
99-1154 AW101-SOL-40A2	<6.E-3	6.96E-1 18%	2.98E+0 2%	<4.E-3	5.73E-2 9%	2.64E+2 2%	<2.E-1	<1.E-2	<2.E-1
99-1155 AW101-SOL-50A1	<6.E-3	5.34E-1 23%	3.15E+0 2%	<2.E-3	5.77E-2 7%	2.76E+2 2%	<7.E-2	<1.E-2	<7.E-2
99-1156 AW101-SOL-50A2	<8.E-3	3.52E-1 34%	3.08E+0 2%	<2.E-3	6.09E-2 7%	2.72E+2 2%	<7.E-2	<9.E-3	<7.E-2
99-1157 AW101-AQ-30A	<3.E-4	3.44E-2 18%	3.00E+0 4%	<4.E-4	3.03E-3 16%	1.69E+1 2%	<2.E-2	<2.E-3	<1.E-2
99-1157 DUP AW101-AQ-30A	<3.E-4	4.16E-2 15%	3.05E+0 4%	<4.E-4	3.18E-3 18%	1.71E+1 2%	<2.E-2	<2.E-3	<1.E-2
RPD		19%	2%		5%	1%			
99-1158 AW101-AQ-50A	<5.E-5	1.89E-2 8%	1.19E+0 4%	<7.E-5	2.38E-4 20%	1.14E+0 2%	<3.E-3	<2.E-4	<2.E-3
99-1158 Rep AW101-AQ-50A		1.60E-2 9%							
99-1159 AW101-AQ-70A	2.70E-4 10%	7.19E-2 3%	4.45E+0 4%	4.60E-5 17%	6.67E-5 19%	3.15E-1 2%	<7.E-4	<8.E-5	<5.E-4
99-1160 AW101-AQ-90A	2.52E-4 11%	6.85E-2 3%	4.16E+0 4%	<6.E-5	<7.E-5	1.88E-1 2%	<1.E-3	<2.E-4	<8.E-4
Matrix Spike	93%	117%							
Reagent Spike	88%	104%							
Blank Before Run UL 283 R-283		<1.E-4	<-1.78E-5 100% 99%						
Mid Run UL -283 R-283			101% 102%		210				
Post Run UL 283 R-283			99% 102%						

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

Client : Lumetta

١

Cognizant Scientist:

Concur :

<u>IRGreenwood</u> TTizang-le

5/5/99

99-1161

Date: 5/5/99Date: 5/5/99

Measured Activities (uCi	/mi)
--------------------------	------

ALO ID Client ID	Alpha Error %	Sr-90 Error %	Uranium ug/ml Error %	Co-60 Error %	Sb-125 Error %	Cs-137 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
99-1161 AW101-AQ-100	1.04E-2 3%	4.51E+0 3%	4.05E+2 3%	3.64E-3 2%	4.03E-3 3%	8.07E-2 2%	1.46E-3 3%	1.80E-3 6%	5.60E-3 5%
Matrix Spike	102%	127%							
Blank Spike	103%	96%	96% 102%						
Blank	<5.E-5	<8.E-6	<2.E-5						

Battelle			-					Page of
acific Northwest Lab	oratories			ERING WOP				and the second second
1.1.	hunt	Da	te: 4/ 13/99	Project: 2 95.	53			
Subject:	rement of	AWIOI ~		Solution De	. 't'ar			
/		70101 1					Roden	ed by KP Brook
i		i	i				Ticaleo	5/8/29
بوف المراج	J. 1141	166	(see att		ration inform	1		-101-1
npu ye	••••••••••••••••••••••••••••••••••••••	100		Acres Calib	ration inform	at on I		
		1	Į				ħ	
1.00 -mL	aliquots	were weigh	I on balan	~~ *	a	(Cal. expi	8/49)	
1)					
1		1	1	į				
Sample I	D	#1	# 2	* 3	# 4		Mean	Stil Dew
Jumper 1			Concerning the second s					
AWIDI-A		1.036	1,030	1.035	TOSE 1.0.	36 1.1.1.	1,034	٥.003
		1.036	1,030	1.035	T-056 1.0. 1.006	36 13.1.1.	1,034	دهم. ی اهم. ی
	Q -30B					36 s.1.1. 4113/99	1,034	
	Q -30B - 50B	1,005	1.006	1,003	1.006	36 s.1.1- 4113/99	1,034	0.001
	Q -30B - 50B - 70B	1,005-	1.006 0.996	1,003 1,002	1.006	36 s.1.1. 4113/99	1,034 1.005 1.001	0.001 0.004
	- 303 - 508 - 703 - 908 - 908	1,005 1,001 1,006	1.006 0.996	1,003 1,002	1,006 1,06 1,063	36 s.1.1- 4113/99	1,034 1.005 1.001	0.001 0.004
AW101-A	- 303 - 508 - 703 - 908 - 908	1,005 1,006 1,006	1,006 c,946 1, co3	1,003 1,002 1,005 1,005	1,006 1,06 1,063 1,073	36 s.1.1- 4113/99	1,034 1.005 1.001 1,004	0.001 0.004 0.002
AW101-A	Q -30B - 50B - 70B - 90B - 90B	1,005 1,006 1,006 1,070 1,011	1,006 c.946 1, co3 1, 076 1.000	1,002 1,002 1,005 1,005 1,077 1,008	1,006 1,06 1,063 1,073 1,073	36 s.1.1- 4113/99	1,034 1.005 1.001 1,004 1,074 1.074 1.005	0.001 0.004 0.002 0.003 0.003
AW101-A	Q -30B - 50B - 70B - 90B 2-30A - 50A - 70A	1.005 1.006 1.070 1.011 1.011 1.0045	1,006 c,946 1, cc3 1, 076 1, cc2 1, 008	1,003 1,002 1,005 1,005 1,077 1,008 1,001	1,006 1,06 1,063 1,073 1,073 1,006	36 s.1.1- 4113199	1,034 1.005 1.001 1.004 1.004	0.001 0.004 0.002 0.003
AW101-A	- 303 - 508 - 703 - 908 - 908 - 908 - 304 - 504	1,005 1,006 1,006 1,070 1,011	1,006 c.946 1, co3 1, 076 1.000	1,002 1,002 1,005 1,005 1,077 1,008	1,006 1,06 1,063 1,073 1,073	36 s.1.1- 4113/99	1,034 1.005 1.001 1.004 1.004 1.074 1.005	0.00 0.004 0.002 0.003 0.003 0.003
AW101-A	Q -30B - 50B - 70B - 90B 2-30A - 50A - 70A	1.005 1.006 1.070 1.011 1.011 1.0045	1,006 c,946 1, cc3 1, 076 1, cc2 1, 008	1,003 1,002 1,005 1,005 1,077 1,008 1,001	1,006 1,06 1,063 1,073 1,073 1,006	76 s.1.1- 4113/99	1,034 1.005 1.001 1.004 1.004 1.074 1.005	0.00 0.004 0.002 0.003 0.003 0.003
AW101-A	Q -30B - 50B - 70B - 90B 2-30A - 50A - 70A	1.005 1.006 1.070 1.011 1.011 1.0045	1,006 c,946 1, cc3 1, 076 1, cc2 1, 008	1,003 1,002 1,005 1,005 1,077 1,008 1,001	1,006 1,06 1,063 1,073 1,073 1,006	36 s.1.1- 4113/99	1,034 1.005 1.001 1.004 1.004 1.074 1.005	0.00 0.004 0.002 0.003 0.003 0.003

DOSt rete in AN107-40-304	(huttest sample)	Contact :	145 B	238	wind: Sheets
(a) A start of the second s Second second s Second second se	and the state of t	and the second	1 1.1. Part 444 (1) 1.1.	The second se	
		6" :	45 B	58	RCT

Battelle Pacific Northwest National Laboratory Radiochemical Processing Laboratory Shielded Analytical Laboratory

Shielded Analytical Laboratory -Bench Sheet

client: <u>Lumetta</u> , Gregg WE TI#/ASR: <u>E-mail dated 4-9-99</u> PI	P Number: <u>W47471</u> cocedure: <u>FO SOP 325-SAL-iDS-1</u>
A W 101 Sludge WASh & SAMPLE IDENTIFICATION	,
· transfer the following to clean vials, then to rm	511:
· removed from archieve rack 4 slots 1,2,3, an	d 4, AWIOI-AQ-30B/50B/70B/902
· ANIO7-AQ-30A/50A/70A/90A.	

(placed into like labeled 20 ml vials.)

M&TE:	Cell 2	(360-06-01-016)	Mettler AE1	60 Balance	Other _		
	Cell 5	(360-06-01-039)	Mettler AT4	00 Balance			•
	Bench	(360-06-01-024)	Sartorius B	alance	2		
	Cell 5	(360-06-01-045)	Toledo 3026	Balance			
Analyst:	ettan	Date:	13-99	Reviewer	A	tule	Date: 4/30/49
				'/			//

Lettau, Ralph C

From: Sent: To: Subject: Kelly, Elizabeth F 'Friday, April 09, 1999 1:41 PM Lettau, Ralph C Transfer of Samples (Lumetta)

Ralph,

B

Welcome back!

Per Gregg Lumetta, he needs the following samples put into clean vials and transferred to lab 511. You have been scheduled to do this work on Monday, April 12th.

The work should be charged to W48481.

The samples are:

AW101-AQ-30B AW101-AQ-50B AW101-AQ-70B AW101-AQ-70B AW101-AQ-90B

AN107-AQ-30A AN107-AQ-50A AN107-AQ-70A AN107-AQ-90A

Elizabeth Kelly 509/373-4146 (-9675 fax) elizabeth.kelly@pnl.gov

PCS-TP-511-2 EXHIBIT 1 Page 1 of 1

	Fage 1 01 1	1
DATA SHEET FOR PIPETTOR CALIB	BRATION	
Procedure Number: PCS-TP-511-2 Revision Num	mber: _/	
1. Date Performed: 4/9/94		
2. Pipettor ID: 1141166 (1-ml copicity)		
	6-01-005-	
6. Volume 1 = 0.20 7. Volume 2 = 0.50 8. Volume 3 = $1,00$		
9. Ambient Temperature at Start of Procedure:	°C	
Aliquot No. =1210. Mass Volume 1, g 0.202 $0.19L$ 11. Mass Volume 2, g 0.498 0.499 12. Mass Volume 3, g 1.002 1.202	3 4 5 6 0:199 0:197 - 0:495 0:494 0:489 0:492 0:996 0:998 1.004 -	
13. Ambient Temperature at End of Procedure:	°C	
Performed by: 1. 1. June 1. June 1. Reviewed by: Buan Lopko	Date: 4/1/199 Date: 8-10-99	

10

PCS-TP-511-2 EXHIBIT 2

Appendix C. Calculations

S.J. hunt	10	Date: 1/2/// Proje	NG WORKSHEET		
ject:		Date : 4/24/99 Proje	29953		
AWIOI WW	h/Luch			Re	vevedby
					KP Break
;	1			1	1
Percentage of A	rl in each	solution and the	vashed solids :		
				23, 754	
	Tom A1 =	18,407 + 1,74	+ 134 + 685 + 1682	= 2+, 222 mg	
			1	ð	÷
		2)	1954		1 Million 2011 -
	st wash	100 (18407 / 24	12) = 789		
2	nd wash	100 (1741 / 347		7.4	
. 3	-4 wash	100 (937 / 317		4.0	
. 4	th wash	100 (685 /217		2.9	
u	Jashed Lolids	100 (1652/217	· · · · · · · · · · · · · · · · · · ·	7.2	
2		N	round	1 . 1	
	, 1,	A. (A. 4/26/9	1 99 70 down	ο /20.0 οχ	
i	1			*	
Courts a s		··· · · · · · · · · · · · · · · · · ·			a (a ¹⁶) ¹⁷ - 14 M
	and pram	one of the wash	al solids did not di	solut in acid. The	alow
Value	* assume th	not all the solid.	s were dissolved for	analysis.	
27					
one i con e pr	a -				
<i>c</i>					
See the attacked	R Printouts	for the results	of the other calcular	tion done within t	Fral.
	1		2		
	W	2+3			
	(Table	15 1,2,+3	1		
			*	1	

DE-RL Richland, WA

DOE-RL Richland, WA

54-1007-114 (1/83)

Participantities ENGINEERING WORKSHEET Participantities Date: $7/3743$ Protect: Participantities Date: $7/3743$ Protect: Participantities Participantities Recently Participantities Participantities Recently Participantities Participantities Recently Participantities Participantities Recently Participantities Participantities Participantities Recently It is calculation Participantities Participantities Participantities Supervise (41.1 + 51.1)/2 + 54.1 + 51.2 + 54.1 + 54.1 + 51.2 + 54.1 +	red By: n.g. hunette		
Subject public work for the set Belance Considerations Rescale by Rescale by		Date: 5/17/66 Project:	
The adjubble AI cancerbation, second " "Institut is in the antiparticle solute solute solute solutions project (is a whole). This calculates is requested for option two comparates below. (thround an a second of the two comparates below. (through and the two comparates below. (through and the two comparates below. (\$1.44 angle) (110, 2016 5 = 40.30 as the two of the comple (\$1.44 angle) (110, 2016 5) = 40.30 as the (\$1.44 angle) (110, 2016 5) = 40.30 as the Adjuted to unce in method collids : (\$2018 + 11.74) (\$1.6077 = 5 x 3 200 mg/g s.s.s.utho The Supermedia (\$1.1 + 41.3) A = 4.7 - 21.32 Supermedia (\$1.1 + 41.3) A = 4.7 - 21.32 (\$1.6 (\$1.1 + 110, 2) - 21.21 (\$1.6 (\$1.1 + 110, 2) - 21.21 (\$	Subject:		P alle
The adjusted AI cance better, according "lest" AI is in the andress land solids is given on the provises page (16.4 whole). This calculates is repeated to optice two compareds below. <u>(Incontion</u> Superate (61.1 + 51.1)/2 = 54.1 mple ($\frac{3.671}{1.5}$ 42.5 mpl (14.0 + 1400/2 = 1620 mpl) (14.0 + 1400/2 = 1620 mpl) (14.0 + 1400/2 = 1620 mpl) (14.0 + 1400/2 = 1620 mpl) (81.14 mpl) (110, 2016 s) = 40.30 mple $(81.14 mpl) (110, 2016 s) = 40.30 mple (1425 mpl) (110, 2016 s) = 40.30 mple (1425 mpl) (110, 2016 s) = (1.571 mple (removed in superate)) (14.14 mple) (110, 2016 s) = (1.571 mple (removed in superate)) (14.14 mple) (110, 2016 s) = (1.571 mple (removed in superate)) (14.14 mple) (110, 2016 s) = (1.571 mple (removed in superate)) (14.14 mple) (110, 2016 s) = (1.571 mple (removed in superate)) (14.14 mple) (110, 2016 s) = (1.571 mple (removed in superate))(14.14 mple) (110, 2016 s) = (1.571 mple (removed in superate)) (14.14 mple (removed in 10.14 mple (removed in superate))(14.14 mple (removed in 10.14 mple (removed in superate))(14.14 mple (removed in 10.14 mple (removed in superate))(15.14 mple (removed in method collids : (2018 mple (removed in superate)))(1.50 (100, 2016) = 4.216(1.50 (100, 2016) = 4.216(1.50 (100, 2016) = 4.216(1.50 (100, 2016) = 4.216(1.50 (100, 2016) = 4.216(1.50 (100, 2016) = 4.216(1.50 (100, 2016) = 4.216(1.50 (100, 2016) = 7.54 mple (remove)(100 (21.57) form = 7.54 mple (remove)$	(with any car	h	
m the previous page (16.9 0.000). This calculate is regarded to obtain two compareds below. <u>Chroanium</u> Superate (41.1 + 51.1)/2 : 56.1 mg/c $\frac{5.671}{100}$ 42.5 mg/3 Settine (1600 + 1600)/2 : 1620 mg/3 $\frac{(47.5^{-1})(41.5^{-}mg/3) + (2.5^{-})(14.3^{-}mg/3)}{100} = 81.944 mg/3 := 400 date comple (81.34 mg/3) (100, 20163) = 90.30 mg/C (91.5^{-}mg/3) (100, 20163) = 90.50 mg/C (91.5^{-}mg/3) (100, 20163) = 70.900 recomp Historie expert. This is a factorial in 101 + 101 + 23.444 + 2016 = 32.61 mg/C (from 78.61 2) 100 (21.5^{-}mg/2) = 13.0 mg/3 (00) (21.5^{-}mg/2) = 13.0 mg/2 Ioo (21.5^{-}mg/2) (100, 2016) = 42.16 (100 (21.5^{-}mg/2) = 75.900 mecommy Ioo (21.5^{-}mg/2) (100, 2016) = 75.900 mecommy$		a na	
$\frac{(Lu_{continum})}{(4u_{1}+s_{1},1)/2} + s_{1}^{4}(1 - s_{1}^{4}u_{2}^{2}) + s_{2}^{4}(1 - s_{2}^{4}u_{2}^{2}) + s_{2}^{4}(1 - s_{2}^{4}$			mains about solids is given
$\begin{aligned} \sup_{x \in Y} \frac{(4i, x + 5i, x)}{2} + \frac{(5 + 6i)}{2} + \frac{(5 + 7^{2})}{2} + \frac{(2 + 5^{2})}{2} + \frac{(2 + 5^{2})}{3} \\ \frac{(4 + 5^{2})(2 + 3 + \frac{1}{2})(2 + 2 + 1620)}{100} + \frac{(2 + 5^{2})(2 + 3 + \frac{1}{2})(2 + $	This columbution is	repented for often key components bel	. مد ما
$ \begin{aligned} & (140 + 1600)/2 &= 1620 - \frac{1}{3}/3 \\ \end{aligned} \\ \begin{aligned} & (\frac{47.5^{-}}{100})(41.5, -\frac{1}{34}\frac{1}{4}) + (2.5^{+})(142^{+0}-\frac{1}{34}) &= 81.944 - \frac{1}{34}\frac{1}{3} &= 440 - 1040 - 1000 + 100$	Chromium		
$ \begin{array}{rcl} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c$		\$ 1.7 ²	
$\frac{(47.5^{-})(47.5^{-},m_{3}4) + (2.5^{-})(1432^{-},m_{3}4)}{100} = 81.944 m_{3}4^{-} := 442^{-} dede sample (81.44 m_{3}4)(110, 2016_{3}) = 40.30 m_{3} Ce (42.5^{-},m_{3}4)(110, 2016_{3}) = 4.515 m_{3} Ce (42.5^{-},m_{3}4)(110, 2016_{3}) = 74.90 m_{2}Ce (443.474) Ce (50.000 (21.1 + 41.3)/2 = 74.90 m_{2}Ce (50.000 (21.1 + 41.3)/2 = 1.310 m_{3}4) (41.5^{-}, 12.6 m_{3}4) (41.5^{-}, 12.6 m_{3}4)(10, 2016_{3}) = 4.216 (5.5^{-}, 14.4 m_{3}4)/2 = 1.310 m_{3}4 ((47.5^{-})(2.64) + (2.5^{-})(1200_{3})/200 = 38.26 m_{3}4^{-} in sample (5.5^{-}, 14.9)(10, 2016_{3}) = 4.216 (5.6^{-}, 10.481(2)) = 4.216 (5.6^{-}, 10.481(2)) = 4.216 (5.6^{-}, 10.481(2)) = 4.216 (5.6^{-}, 10.481(2)) = 4.216 (5.6^{-}, 10.481(2)) = 4.216 (5.6^{-}, 10.481(2)) = 4.216 (5.6^{-}, 10.481(2)) = 4.216 (5.6^{-}, 10.481(2)) = 4.216 (5.6^{-}, 10.481(2)) = 4.216 (5.6^{-}, 10.481(2)) = 7.44 + 10.3 + 11.9 + 2.525 + 2.657 m_{3}) = \frac{3827}{2.677}$ (5.7^{-}, 100 (21.57)/400 = 7.590 m_{10.05}m_{3}			42.5 43
(81.44 mg/s) (110, 2016s) = 4030 mg Cr(425 mg/s) (188.1266s) = 4515 mg Cr(4425 mg/s) (188.1266s) = 4515 mg Cr(4435 mg Cr(443 mg Cr))/(400 mg Cr(443 mg Cr(443 mg Cr))/(443 mg Cr))/(400 mg Cr(443 mg Cr))/(443 mg Cr)(443 mg Cr))/(443 mg			
$(425 m/g) (188.1246 g) = \frac{4515 m}{4435 m} \frac{1}{35 m} (1500 m) ($	(9	2.5-)(42.5 mg4) + (2.5) (1620 - 16) 100 = 81.9	4 mg :- the shall sample
$ \begin{pmatrix} 425 & ny/s \end{pmatrix} (188.1246 s) = \frac{4517}{4435} \frac{n}{25} \frac{c}{27} (scored in separation) \\ \frac{1}{4435} \frac{n}{25} \frac{c}{27} (scored) \frac{1}{2527} \frac{1}{2525} \frac{1}{2557} \frac{1}{25577} \frac{1}{2557} \frac{1}{25577} \frac{1}{2$		(81.14 m/2) (110 7016 c) = 9030 mg G	-
$4 + 33 r - y_{12} + 32 + 2018 = 2561 r - 3261 $			
$100 (13261) / 4 435^{-} = 7450 recovery 4435^{-} - 32(1 = 1174 - 5 Ce - 31/5 - 31/$			
$100 (3261) / 443J^{-2} = 7450 recovery 4435-3212 = 1174 - 5 Ce JARECONTREE (ex. 445 - 324 = 1174) / 0.0077 = 555320 - 3/5 50 - 3450 $			
$\frac{44j}{44} = \frac{1}{2} + \frac$	+	ohl c found = 1092 + 104 + 33 + 8 + 2018	= 3261 mg (from Table 2)
$\frac{1}{5 \cdot 5 \cdot 5} = \frac{1}{5} = \frac{1}{5$		100 (3261) / 4435 = 7450 recovery	
Superate $(5:1 + 4.3)/2 = 4.7 - \frac{5.132}{50} - 3.6 - 3.6$ Solide $(13.50 + 1430)/2 = 1350 - 3.6$ ((57.5)(3.6) + (2.5)(1230))/100 = 38.26 - 3.6 (38.26)(100.2016) = 42.16 (3.6)(108.1266) = -381 3827 - 49 Fe Im. Total Fe found: $7.4 + 12.3 + 11.9 + 2825 = 2857 - 43$ 100(2857)/700 = -75.90 recommy	4 <i>س</i> اخ	when to come. In weekend sei): (201	ن د
$\begin{aligned} \text{Solide} (13J0 + 1430)/2 = 1330 + 3/3 \\ & ((17.5)(3.6) + (2.5)(1230))/100 = 38.26 + 3/4 \text{in sample} \\ & (38.26)(10.2016) = 4216 \\ & (3.6)(108.1266) = 381 \\ & 3427 + 376 \text{ frem} \\ \end{aligned}$ $\begin{aligned} \text{Total Free found: } 7.4 + 12.3 + 11.9 + 2425 = 2457 + 3 \\ & 600 + 3827 \\ & 600 + 3827 \end{aligned}$	Iron 6	+++ + 1) / = + 7 + + + + + + + + + + + + + + + + +	
((47.5)(3.6) + (2.5)(1310))/100 = 38.26 43/9 in sample (38.26)(110.2016) = 4216 (3.6)(108.1266) = 381 3827 49 Fe in. 70ml Fe found: 7.4 + 12.3 + 11.9 + 2825 = 2857 49 100(2857)/100 = 75% necomy 100(2857)/100 = 75% necomy	•	· · · · · · · · · · · · · · · · · · ·	
(38.26)(110.2016) = 4216 $(3.6)(108.1266) = 381$ $3827 my Fe in.$ $70tal Fe (ound: 7.4 + 12.3 + 11.9 + 2525 = 2857 my for memory for (2857)/400 = 7500 memory$			
(3.6) (108.1266) = 311 3827 ay Fe In. Total Fe found: 7.4 + 12.3 + 11.9 + 2425 = 2457 ay 100 (2457) / 100 = 7500 recovery 3827	((17.5) (3.6) + (2.5) (1210) / 100 = 38.26 mg	& in sample
3427 mg Fe in. Total Fe found: 7.4 + 12.3 + 11.9 + 2425 = 2457 mg J = 3827 100 (2457)/400 = 7500 recovery 3827			
Total Fr found: $7.4 + 12.3 + 11.9 + 2425 = 2457$ mg $\frac{3427}{500}$ for $\frac{2457}{600}$.			
100 (2857) / 100 = 7500 recovery		3 + 27 mg Fe in.	3827
100 (2857) / 100 = 7500 recovery		10tal For found: 7.4+12.3+11.9+2425	= 2857 mg . 570 mg Whener www.
, 2825		100 (2857) /+00 = 7500 recovery 3827	
(2+23+ 1/0)/0.05 77 = 63, 75/ mg/g => 6.6 wt?	. 1	(2+25+ 170) /0.05	177 = 65,771 mg/g => 6.6 wt?

Superate $(3, 22+3.12)/2 \in 3.22 \xrightarrow{\pm 1.32} 2.4 = 2.4 = 2.4$ Superate $(3, 22+3.12)/2 \in 3.40 = 2.4$ (5765)(2.4) + (2.5)(540)/100 = 138.34 = 2.4 (138.34 = 2.4) + (2.5)(540)/100 = 138.34 = 2.4 (138.34 = 2.4) + (2.5)(540)/100 = 138.34 = 2.4 (138.34 = 2.4) + (2.5)(540)/100 = 138.34 = 2.4 (138.34 = 2.4) + (2.5)(540)/100 = 138.34 = 2.4 $(138.34 = 2.4) + (2.5)(108.1246_3) = 152.45 = 3.4$ $(138.34 = 2.4) + (2.5)(108.1246_3) = 152.45 = 3.4$ (148.455 = -2.4) = 100 14.9455 = -2.4 $(2.4 = 2.4) + (2.5)(108.1246_3) = -2.40$ (14.9455 = -2.4) = -2.4 $(2.4 = 2.4) + (2.5)(108.1246_3) = -2.40$ (14.9455 = -2.4) = -2.4 $(2.4 = 2.4) + (2.5)(108.1246_3) = -2.40$ (14.9455 = -2.4) = -2.4 $(2.4 = 2.4) + (2.5)(108.1246_3) = -2.40$ (14.9455 = -2.40 = -2.40(14.94

Battelle Page _____ of____ Pacific Northwest Laboratories ENGINEERING WORKSHEET Date: 8/6/44 Prepared By : Project: s.1. hutte Title/Subject: AWIOI Wash / Lench Reviewed by KP Brooks The filtered solids apparently retained considerable 1- quid. How much of the components in solution, and simply se dilution of this liquid (as opposed to actual dissolution of solicity)? result from Consider the first wash step. 2.0750 g of filtered 101:45 (1.95) In the and we anded up with only 0.0577 & of worked solids So actume we had ~ 2 g of interstitial liquial. (Let's say 2mL) Let's consider 12°Cs. From PNWD-2463 (Unie at al. 1949): The Librar AW.101 contatant liquid contained (250 + 210)/2 = 230 m Gi/mL The volume of the first wash solution was 16.9 ml (see p.1) ا ا (230 ~ (i/mL) (2mL) / 16.9 mL = 27.2 ~ (i/mL expected for dilution. mensured in the first was -> 17.0 withul Similarly for Al : PNWD. 2463 -> (17800 + 14400) /2 = 16350 mg/mL (16350 mg/ml) (2ml) / 16. Sml = 1935 mg/ml appeted for dilotion Found Logo w/unk Let's try to get a better assumption have. Assume that atoga in wa concentration in first which solution is due to dilution of interstition liquid + 0.01 # NGOH added ~ (230 m/nL) 12150 my Me/ml found in first lack solution. 12150 - 230 = 11920 w/ml due to dilution EAL Richland, WA

Battelle Page _7_ of ____ ENGINEERING WORKSHEET st Laboratories Date : 5/ 6/99 Prepared By : Project: n.1. h the Title/Subject: AWIOI wash/leach Reviewed by RP Brooks datas DUWD-2463 -> (163000 + 134 000)/2 = 1485000 mg/ml was in dil. Aw 101 From V (148500 - 3/2L) = (16.9 mL)(11920 mg/mL) (V= 1.36 mb of interstitical liquid) - Assume theis "12(5: (230 mic/ml) (1.36 ml) / 16.9 ml = 18.5 mic/ml (17.0 mic/ml found) (16350 might) (1.36mL) / 16.9mL : 1311 49/mL (1010 mg/ml forme) Al: DOE-AL Richland, WA + U.S. GPO: 1997 - 592-715 54-1007-114 (1/83)