LETTER REPORT

Washing of the AW-101 Entrained Solids

Gregg J. Lumetta
Ralph C. Lettau

August 1999

Prepared for BNFL, Inc. under Project 29952/29953
Battelle, Richland, Washington, 99352

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR
IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Contents

1.0 Introduction 1
2.0 Personnel. 1
3.0 Experimental 2
4.0 Results 3
5.0 Conclusions and Recommendations 5

Appendix A. Test Plan
Appendix B. Raw Data
Appendix C. Calculations

1.0 Introduction

BNFL Inc. (BNFL) is under contract with the U.S. Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: 1) primarily liquid low-activity waste (LAW) consisting of less than $2 \mathrm{wt} \%$ entrained solids and 2) high-level waste (HLW) consisting of 10 to $200 \mathrm{~g} / \mathrm{L}$ solids slurry.

The RPP contract includes three options for disposition of the entrained solids contained in low-activity waste feed solutions: 1) washing to remove sodium, cesium, and technetium then returning via pipeline to DOE-RPP, 2) vitrification along with pretreated LAW solutions, or 3) vitrification along with pretreated high-level waste (HLW).

BNFL requested Battelle test inhibited water ($0.01 \underline{\mathrm{M}} \mathrm{NaOH}$) and caustic leaching ($3 \underline{\mathrm{M}} \mathrm{NaOH}$) as methods for pretreating the solids entrained in the AW-101 sample. These methods are meant to remove certain nonradioactive components (e.g., $\mathrm{Na}, \mathrm{Al}, \mathrm{Cr}, \mathrm{P}$, and S) from the HLW fraction so as to reduce the volume of immobilized HLW.

This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW101 entrained solids in $0.01 \underline{\mathrm{M}} \mathrm{NaOH}$, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, LAW Entrained Solids Water W ash and Caustic Leach Testing. The test went according to plan, with no deviations from the test plan. Based on the results of the $0.01 \underline{\mathrm{M}} \mathrm{NaOH}$ washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume.

2.0 Personnel

The Battelle personnel and their responsibilities in performing this test are given below.

Staff Member	Responsibilities
G.J. Lumetta	Cognizant scientist. Prepared test plan and designed experiment. Supervised performance of the test. Prepared analytical service request. Interpreted data and reported results.
	Hot cell technician. Performed test.
R.C. Lettau	Managed chemical and radiochemical analytical work.
	Technical reviewer.
M.W. Urie	Task Leader.
B.M. Rapko	
K.P. Brooks	

3.0 Experimental

Sample Description. The sample used in this test was labeled as AW-101 CL-1. The homogenization, dilution, caustic adjustment, and representative subsampling were performed as described in test plan BNFL-29953-6, Sub-Sampling and Characterization of AN-107 and AW-101 Diluted Feed Samples (Urie et al. 1999). The total volume of sample AW-101 CL-1 was 85 mL and it contained approximately 5 mL of settled solids. This sample was half of the material indicated as the "Caustic Leach" sample in Figure 1.1 of Urie et al. (1999).

Apparatus. The apparatus used consisted of an aluminum heating block placed on a hot plate/stirrer. The hot plate/stirrer was modified so that separate power could be applied to the heating and stirring functions. This allowed for continuous stirring, while the hot plate was powered by a temperature controller. The temperature controller used was a J-KEM Model 270 (J-KEM Electronics, Inc., St. Louis, MO). This temperature controller consists of two separate circuits. One is the temperature control circuit, while the other serves as an over-temperature device, which shuts down the system if a preset temperature is exceeded. The set point for the over-temperature circuit was set at $100^{\circ} \mathrm{C}$ for this test. A dual K-type thermocouple (model number CASS-116G-12-DUAL, Omega Engineering, Stamford, CT) was used to provide inputs to the temperature controller and over-temperature circuits. Both the J-KEM Model 270 and the dual thermocouple were calibrated before use. The aluminum heating block contained two wells. A vial containing water was placed in one of the wells, with the thermocouple wedged between this vial and the aluminum block. The vial containing the sample was placed in the other well.

Procedure. ${ }^{(2)}$ The sample in AW-101 CL was mixed by swirling. The homogenized slurry was then filtered through a pre-weighed $0.45-\mu \mathrm{m}$ nylon filtration unit (Nalgene no. 150-0045, Nalge Nunc International, Rochester, New York). The weights of the filtrate and filtered solids were determined to be 108.127 g and 2.075 g , respectively. Five $4-\mathrm{mL}$ aliquots of 0.01 M NaOH were used to transfer the filtered solids to a $30-\mathrm{mL}$ high-density polyethylene (HDPE) vial (this vial also contained a Teflon ${ }^{\circledR}$-coated magnetic stir bar). The weight of the washing slurry was 18.769 g. This value is $\sim 15 \%$ less than expected based on the weight of the filtered solids and the $0.01 \underline{\mathrm{M}} \mathrm{NaOH}$ (washing soluiton) added; this was perhaps due to loss of liquid through the membrane during transferring process. The vial was equipped with a condenser tube, which allowed the system to vent during heating, but minimized evaporation. The mixture was heated and stirred at $85 \pm 2{ }^{\circ} \mathrm{C}$ for 17 h . After cooling to room temperature, the mixture was weighed. The weight was 18.242 g , indicating 0.527 g lost to evaporation. The washing slurry was filtered through a pre-weighed $0.45-\mu \mathrm{m}$ nylon filtration unit. During the transfer to the filter funnel, the stir bar also fell into the filter funnel. This was lifted out and the solids stuck to it were rinsed into the filter with a small amount of $0.01 \underline{\mathrm{M}} \mathrm{NaOH}$. The weights of the filtrate and filtered solids were determined to be 17.461 g and 1.317 g , respectively. Two aliquots ($\sim 10-\mathrm{mL}$ each) of the filtrate were taken for analysis. There were no solids in this solution after 21.5 h , indicating no precipitation following filtration.
(a) See Appendix A for a copy of the test plan and procedural notes.

The washing procedure described above was repeated three times for a total of four washes. The heating and mixing times for the second, third, and fourth washing steps were 16,20 , and 21 h , respectively. There was no evidence of precipitation in the wash solutions after standing overnight. The weight of the wet filtered solids were $1.210,1.314$, and 1.128 g after the second, third, and fourth washing steps, respectively. These weights can be viewed as nearly constant given the potential for variable water content in the wet solids. After the fourth washing step, the solids were transferred to a pre-weighed glass vial using deionized water. Excess water was evaporated at $80^{\circ} \mathrm{C}$, then the solids were dried overnight at $105^{\circ} \mathrm{C}$. The final weight of the dried washed solids was 0.058 g . This low weight was surprising given the wet weight of $\sim 1 \mathrm{~g}$. The solids apparently have a strong propensity to retain water within the filter unit.

The wash solutions were subjected to the following analytical procedures: IC(anions), TOC/TIC, acid digestion, ICP/AES, ICP-MS(Tc-99), Sr-90, total alpha, total uranium, and GEA.

Because of the small quantity of washed solids, it was not possible to perform all the analyses originally stated in the test specification. To dissolve the solids for analysis, 5 mL of $12 \underline{\mathrm{M}} \mathrm{HCl}$ was added to the glass vial containing the dried washed solids. After heating at $90^{\circ} \mathrm{C}$ for $\sim 1.5 \mathrm{~h}$, most of the solids had dissolved, but some remained. In an attempt to dissolve the remaining solids, 1 mL of $16 \underline{\mathrm{M}} \mathrm{HNO}_{3}$ was added. Again, the mixture was heated at $90^{\circ} \mathrm{C}$. After 1.75 h , a white solid had collected around the threads of the vial cap. The sample was evaporated to dryness at $90^{\circ} \mathrm{C}$, then five $5-\mathrm{mL}$ aliquots of $0.1 \underline{\mathrm{M} \mathrm{HCl}}$ was used to quantitatively transfer the material to a clean HDPE vial. One-mL of 10 M HF was added and the mixture was evaporated at $\sim 80^{\circ} \mathrm{C}$ until only about 2 mL remained. Another $5 \mathrm{~mL} 0.1 \underline{\mathrm{M} \mathrm{HCl}}$ was added and the solution was filtered through a $0.2-\mu \mathrm{m}$ nylon membrane. The filtered solution was diluted to 25 mL with 0.1 M HCl . This solution was subjected to the following analytical procedures: ICP/AES, ICP-MS(Tc-99), Sr-90, total alpha, total uranium, and GEA. The small amount of gray filtered solid was saved, but was not further analyzed.

4.0 Results

Table 1 presents the concentration of the analyzed AW-101 components in each washing solution and in the washed solids. A caveat must be placed on the results for the washed solids: the concentrations listed in Table 1 assume that the washed solids were dissolved completely for analysis. As indicated in the experimental section, a small amount of material did not dissolve on treatment with acid. Table 2 lists the mass (or activity) of each analyzed component present in each wash solution and the washed solids and Table 3 gives the percentage of each component found in each solution and the washed solids. These values were obtained by dividing the amount of the given component found in a particular solution or the washed solids (i.e., the value in Table 2) by the total amount of that component found in all the wash solutions and the washed solids; the resulting fraction was multiplied by 100 to give the percentage values.

Aluminum, K , and Na were removed reasonably well from the AW-101 entrained solids. The Na concentration in the final wash solution $(243 \mu \mathrm{~g} / \mathrm{mL}=0.0106 \underline{\mathrm{M}})$ was essentially the same as that in the wash solution added $(0.010 \mathrm{M} \mathrm{NaOH})$ indicating that essentially all soluble Na containing components were removed. Only about 40% of the Cr was removed by dilute
hydroxide washing. The washed solids contained $3.5 \mathrm{wt} \% \mathrm{Cr}$. The main elements in the residual solids were $\mathrm{U}\left(18.5 \mathrm{wt}^{\%} \%\right)$, $\mathrm{Si}(17.2 \mathrm{wt} \%)$, $\mathrm{Na}(5.7 \mathrm{wt} \%)$, $\mathrm{Fe}(4.9 \mathrm{wt} \%)$, $\mathrm{Mn}\left(4.5 \mathrm{wt}^{\circ} \%\right), \mathrm{Cr}(3.5$ $\mathrm{wt} \%$), $\mathrm{Al}\left(2.9 \mathrm{wt}^{\circ} \%\right)$, and $\mathrm{Ca}(2.3 \mathrm{wt} \%)$.

The radiochemical data indicated nearly quantitative removal of ${ }^{137} \mathrm{Cs}$ from the AW-101 entrained solids. Approximately 70% of the ${ }^{99} \mathrm{Tc}$ was also washed from the solids. The wash solution could be processed along with the liquid fraction of the AW-101 LAW to remove these two radioisotopes. Small fractions of the ${ }^{90} \mathrm{Sr}$ and TRU might also be present in the wash solution.

Much of the material found in the first wash solution can be attributed to dilution of the interstitial liquid rather than actual dissolution of entrained solids. Table 4 illustrates this. The volume of interstitial liquid in the filtered solids was estimated in the following manner. First, it was assumed that the Na present in the first wash solution was due only to dilution of the diluted AW-101 supernate and the $0.01 \mathrm{M} \mathrm{NaOH}(230 \mu \mathrm{~g} / \mathrm{mL} \mathrm{Na})$ used as the washing medium. The Na concentration in the first wash solution was $12150 \mu \mathrm{~g} / \mathrm{mL}$, of which $12150-230=$ $11,920 \mu \mathrm{~g} / \mathrm{mL}$ is attributed to dilution of the interstitial supernate. Given the wash solution volume of 16.9 mL and the Na concentration in the diluted AW-101 supernate was 148,500 $\mu \mathrm{g} / \mathrm{mL}$ (Urie 1999), the volume of the interstitial liquid was estimated as

$$
\mathrm{V}=(16.9 \mathrm{~mL})(11,920 \mu \mathrm{~g} / \mathrm{mL}) /(148,500 \mu \mathrm{~g} / \mathrm{mL})=1.36 \mathrm{~mL}
$$

This value was then used to determine the concentration expected for each AW-101 component expected in the first wash solution based on dilution (Table 4). In many cases, the difference between what was expected from dilution and what was actually measured was within 20%, indicating dilution was primarily responsible. Notable exceptions were ${ }^{99} \mathrm{Tc}, \mathrm{Cr}, \mathrm{Si}, \mathrm{U}, \mathrm{TOC}$, and TIC. Thus, the washing procedure appeared to actually remove fractions of these latter components.

Table 5 presents the mass recoveries for the major waste components. These mass recoveries were calculated using the composition of the diluted AW-101 feed material reported by Urie et al. (1999). In that work, the AW-101 solids were dissolved for analysis using a KOH fusion method. The mass recoveries were generally low. This is probably due to a combination of loss of material during the various transfers made during the test (e.g., the transfer of solids from the filter membrane back into the washing bottle) and the incomplete dissolution of the washed solids for analysis. If the latter reason is the dominant cause, we can adjust the concentrations in the washed solids for the material not accounted for.

For example, based on the data in Urie et al. (1999) and the mass of the sample used, the amount of Al in the sample was calculated to be $31,542 \mu \mathrm{~g}$. Yet, only $23,454 \mu \mathrm{~g}$ were determined in the wash solutions and the washed solids (a 74% recovery). Thus, $8,088 \mu \mathrm{~g}$ of Al was unaccounted for. Assuming this was in the undissolved portion of the washed solids, the adjusted Al concentration in the washed solids is given by $(1682+8088 \mu \mathrm{~g}) /(0.0577 \mathrm{~g}$ solids $)=$ $169,000 \mu \mathrm{~g} / \mathrm{g}$ (Note: The $1682 \mu \mathrm{~g}$ is the amount measured in the washed solids and 0.0577 g was the weight of the washed solids). In this manner, the following adjusted values for the washed solids were determined: $\mathrm{Al}\left(16.9 \mathrm{wt}^{0} \%\right), \mathrm{Cr}(5.5 \mathrm{wt} \%), \mathrm{Fe}(6.6 \mathrm{wt} \%)$, $\mathrm{Mn}(6.7 \mathrm{wt} \%)$, and $\mathrm{U}(25.6$ $\mathrm{wt} \%$).

Table 6 presents further comparisons to the data for the entrained solids reported in Urie et al. (1999). The concentrations could not be compared directly because the composition for the untreated entrained solids were reported on a wet-weight basis, whereas the washed solids were analyzed on a dry-weight basis. For this reason, the data were normalized to the Fe content. The percent of each component was determined based on the differences in the component concentrations relative to Fe before and after washing. For certain components (e.g., $\mathrm{Cs}, \mathrm{Tc}, \mathrm{Al}$, Cr, K, and Na), the percent removals obtained in this manner agreed well with those reported in Table 3. However in most other cases, the removals indicated in Table 6 appear unreasonably high.

5.0 Conclusions and Recommendations

The results of this test suggest that caustic leaching would not provide much benefit for processing the AW-101 entrained solids. Washing with $0.01 \underline{\mathrm{M}} \mathrm{NaOH}$ appeared to remove $>90 \%$ of the Al from the AW-101 solids. There is some uncertainty in this conclusion because of the low mass recovery for Al. Taking this uncertainty into account, the Al concentration in the washed solids was 2.9 to $16.9 \mathrm{wt} \%$. Uranium is a major component of the washed AW-101 solids. Caustic leaching test with other tank sludges indicated that U in not generally soluble in the caustic media use (but there are some exceptions) (see Lumetta et al. 1996 and 1997; Rapko et al. 1995).

The Cr concentration (3.5 to $5.5 \mathrm{wt} \%$) might present some problems in immobilizing the washed AW-101 solids. Previous studies we have done with other sludges suggest that caustic leaching might remove additional Cr, but a better strategy would be to add an oxidant during the washing process. Permanganate works very well, but sparging with air or ozone has also shown some promise (Rapko et al. 1996 and 1998). If the HLW volume is dictated by the Cr content, then an oxidative leaching process is recommended.

The concentrations of the major radionuclides contained in the washed solids were $4.51 \mu \mathrm{Ci}$ TRU/g (as indicated by the total alpha concentration), $2.43 \mu \mathrm{Ci}^{241} \mathrm{Am} / \mathrm{g}, 1,950 \mu \mathrm{Ci}{ }^{90} \mathrm{Sr} / \mathrm{g}$, and $35 \mu \mathrm{Ci}^{137} \mathrm{Cs} / \mathrm{g}$, indicating the solids should be treated as HLW. The washed solids represented only $0.05 \mathrm{wt} \%$ of the diluted AW-101 feed material. The blending of this material with the HLW sludge to be processed in Phase 1 Privatization should be considered. The impact to the overall flowsheet assuming the worst-case $16.9 \mathrm{wt} \% \mathrm{Al}$ and $5.5 \mathrm{wt} \% \mathrm{Cr}$ values, should be evaluated. Perhaps even with these assumed high Al and Cr concentrations in the washed LAW entrained solids, the overall impact of these solids on the flowsheet would be minimal if they were blended with the bulk HLW feed.

6.0 References

Lumetta, G. J., B. M. Rapko, M. J. Wagner, J. Liu, and Y. L. Chen. 1996. Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1996 Studies, PNNL-11278, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., I. E. Burgeson, M. J. Wagner, J. Liu, and Y. L. Chen. 1997. Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1997 Studies, PNNL-11636, Pacific Northwest National Laboratory, Richland, Washington.

Rapko, B. M, G. J. Lumetta, and M. J. Wagner. 1995. Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1995 Studies, PNL-10712, Pacific Northwest Laboratory, Richland, Washington.

Rapko, B. M., G. J. Lumetta, M. J. Wagner. 1996. Oxidative Dissolution of Chromium from Hanford Tank Sludges Under Alkaline Conditions, PNNL-11233, Pacific Northwest National Laboratory, Richland, Washington.

Rapko, B. M. 1998. Oxidative Alkaline Dissolution of Chromium from Hanford Tank Sludges Results of FY 98 Studies, PNNL-11908, Pacific Northwest National Laboratory, Richland, Washington.

Urie, M.W. et al. 1999. Inorganic and Radiochemical Analysis of AW-10 and AN-107 "Diluted Feed" Materials, PNWD-2463, Battelle Pacific Northwest Division, Richland, Washington.

Table 1. AW-101 Component Concentrations in the Wash Solutions and the Washed Solids. ${ }^{\text {(a) }}$

Analyte	First Wash AW101-AQ-30A ${ }^{(b)}$	Second Wash AW101-AQ-50A	Third Wash AW101-AQ-70A	Fourth Wash AW101-AQ-90A	Washed Solids AW101-AQ-100
Cesium-137	$1.70 \mathrm{E}+01$	$1.14 \mathrm{E}+00$	$3.15 \mathrm{E}-01$	$1.88 \mathrm{E}-01$	$3.50 \mathrm{E}+01$
Strontium-90	$3.80 \mathrm{E}-02$	$1.75 \mathrm{E}-02$	$7.19 \mathrm{E}-02$	$6.85 \mathrm{E}-02$	$1.95 \mathrm{E}+03$
Technetium-99	$2.35 \mathrm{E}-02$	$2.53 \mathrm{E}-03$	$8.06 \mathrm{E}-04$	$3.93 \mathrm{E}-04$	$3.22 \mathrm{E}+00$
Americium-241	$<3 \mathrm{E}-04$	$<5 \mathrm{E}-05$	< 7E-04	$<1 \mathrm{E}-03$	$2.43 \mathrm{E}+00$
Europium-154	$<2 \mathrm{E}-03$	$<2 \mathrm{E}-04$	$<8 \mathrm{E}-05$	$<2 \mathrm{E}-04$	$6.33 \mathrm{E}-01$
Europium-155	$<1 \mathrm{E}-02$	$<2 \mathrm{E}-03$	$<5 \mathrm{E}-04$	$<8 \mathrm{E}-04$	$7.80 \mathrm{E}-01$
Total Alpha	< 3E-04	$<5 \mathrm{E}-05$	$2.70 \mathrm{E}-04$	$2.52 \mathrm{E}-04$	$4.51 \mathrm{E}+00$
Ag	< 1.9	<0.8	<0.8	<0.8	382
Al	1090	89.6	49.6	38.5	29159
Ba	< 1.3	(0.1)	(0.1)	(0.2)	2803
Ca	<12.5	<5.0	<5.0	<5.0	23050
Cd	< 1.9	<0.8	<0.8	<0.8	1135
Co	<3.1	<1.3	< 1.3	< 1.3	159
Cr	65.0	5.36	1.72	(0.47)	34965
Cu	< 1.9	<0.8	<0.8	<0.8	563
$\mathrm{Fe}^{(\mathrm{c})}$	< 3.1	(0.38)	(0.65)	(0.67)	48960
K	1615	(58)	<100	<100	(2166)
La	<3.1	<1.3	<1.3	<1.3	111
Mg	<12.5	<5.0	< 5.0	< 5.0	2080
Mn	<0.6	(0.1)	0.428	0.382	45494
Mo	< 3.8	<1.5	< 1.5	< 1.5	<13
Na	12150	783	283	243	56759
Ni	(1.4)	<1.5	<1.5	<1.5	7149
P	(12)	(1.2)	(0.57)	<5.0	2045
Pb	<7.5	<3.0	<3.0	<3.0	3726
$\mathrm{Si}^{\text {(d) }}$	74.2	62.9	72.4	61.2	172444
Ti	<0.6	<0.3	(0.03)	(0.03)	332
U	3.03	1.19	4.45	4.16	175325
$\mathrm{Zn}^{(\mathrm{e})}$	<2.5	<1.0	<1.0	(0.25)	6716
Zr	< 3.1	<1.3	(0.27)	(0.25)	7496
TOC	1900	<170	<80	<80	(f)
TIC	410	190	120	120	(f)
Cl^{-}	250	11	3	2.5	(f)
F-	100	6.0	<1.4	<1.4	(f)
$\mathrm{NO}_{3}{ }^{-}$	7300	360	34	2.7	(f)
$\mathrm{SO}_{4}{ }^{\text {- }}$	120	6.5	<2.8	<2.8	(f)
$\mathrm{PO}_{4}{ }^{3-}$	< 50	<2.8	<2.8	<2.8	(f)

(a) For the liquids, concentrations for radionuclides are in units of $\mu \mathrm{Ci} / \mathrm{mL}$; all other components are in units of $\mu \mathrm{g} / \mathrm{mL}$. For the washed solids, concentrations for radionuclides are in units of $\mu \mathrm{Ci} / \mathrm{g}$ dry solids; all other components are in units of $\mu \mathrm{g} / \mathrm{g}$ dry solids. Values in parentheses are within 10 times the analytical detection limit.
(b) The reported values for the metals are the average of two duplicate ICP/AES analyses.
(c) The process blank had a relatively high Fe content of $0.4 \mu \mathrm{~g} / \mathrm{mL}$.
(d) The process blank had a relatively high Si content of $119 \mu \mathrm{~g} / \mathrm{mL}$.
(e) The process blank had a relatively high Zn content of $0.3 \mu \mathrm{~g} / \mathrm{mL}$.
(f) Not determined because of acid dissolution method used to prepare analyte solution.

Table 2. Quantities in Each Wash Solution and in the Washed Solids ${ }^{(\text {a) }}$

Analyte	First Wash	Second Wash	Third Wash	Fourth Wash	Washed Solids
Cesium-137	$2.87 \mathrm{E}+02$	$2.21 \mathrm{E}+01$	$5.96 \mathrm{E}+00$	$3.35 \mathrm{E}+00$	$2.02 \mathrm{E}+00$
Strontium-90	$6.42 \mathrm{E}-01$	$3.39 \mathrm{E}-01$	$1.36 \mathrm{E}+00$	$1.22 \mathrm{E}+00$	$1.13 \mathrm{E}+02$
Technetium-99	$3.98 \mathrm{E}-01$	$4.92 \mathrm{E}-02$	$1.53 \mathrm{E}-02$	$6.99 \mathrm{E}-03$	$1.86 \mathrm{E}-01$
Americium-241	$<5 \mathrm{E}-03$	$<1 \mathrm{E}-03$	$<1 \mathrm{E}-02$	$<2 \mathrm{E}-02$	$1.40 \mathrm{E}-01$
Europium-154	$<3 \mathrm{E}-02$	$<4 \mathrm{E}-03$	$<2 \mathrm{E}-03$	$<4 \mathrm{E}-03$	$3.65 \mathrm{E}-02$
Europium-155	$<2 \mathrm{E}-01$	< 4E-02	$<9 \mathrm{E}-03$	$<1 \mathrm{E}-02$	$4.50 \mathrm{E}-02$
Total Alpha	< 5E-03	$<1 \mathrm{E}-03$	$5.11 \mathrm{E}-03$	$4.48 \mathrm{E}-03$	$2.60 \mathrm{E}-01$
Ag	<32	<16	<15	<14	22
Al	18407	1741	939	685	1683
Ba	<22	(1.8)	(1.2)	(2.7)	162
Ca	<211	<97	<95	<89	1330
Cd	<32	<16	<15	<14	66
Co	< 52	<25	<25	<23	9
Cr	1098	104	33	(8.4)	2018
Cu	<32	< 16	<15	< 14	33
Fe	<52	(7.4)	(12.3)	(11.9)	2825
K	27273	(1127)	<1893	<1779	(125)
La	< 52	<25	<25	<23	6
Mg	<211	<97	<95	< 89	120
Mn	<10	(1.8)	8.1	6.8	2625
Mo	<64	<29	<28	<27	< 1
Na	205180	15211	5358	4324	3275
Ni	(24)	<29	<28	<27	413
P	(203)	(23)	(11)	< 89	118
Pb	< 127	<58	< 57	<53	215
Si	1252	1222	1371	1089	9950
Ti	< 10	< 6	(0.59)	(0.57)	19
U	51.1	23.1	84.3	74.0	10116
Zn	<42	<19	<19	(4.4)	388
Zr	<52	<25	(5.1)	(4.4)	433
TOC	32086	<3303	<1515	< 1423	(b)
TIC	6924	3691	2272	2135	(b)
Cl^{-}	4222	214	57	44	(b)
F-	1689	117	<27	<25	(b)
$\mathrm{NO}_{3}{ }^{-}$	123277	6994	644	48	(b)
$\mathrm{SO}_{4}{ }^{2-}$	2026	126	<53	<50	(b)
$\mathrm{PO}_{4}{ }^{3-}$	< 844	<54	<53	<50	(b)

(a) Radionuclides are given in $\mu \mathrm{Ci}$; other compoents are in $\mu \mathrm{g}$. Values in parentheses are for components that were within 10 times the analytical detection limit.
(b) Not determined because of the acid dissolution method used to prepare the analyte solution.

Table 3. Percentage of Each AW-101 Component in the Wash Solutions and in the Washed Solids ${ }^{(a)}$

Analyte	First Wash	Second Wash	Third Wash	Fourth Wash	Washed Solids
Cesium-137	90	7	2	1	1
Strontium-90	1	0	1	1	97
Technetium-99	61	8	2	1	28
Americium-241	<3	<1	<7	<10	>79
Europium-154	<43	<5	<2	<4	>46
Europium-155	<61	<14	<3	<5	>16
Total Alpha	<2	0	2	2	$96>x>94$
Ag	<32	<16	<15	<14	> 22
Al	78	7	4	3	7
Ba	<12	(1)	(1)	(1)	$88>x>85$
Ca	<12	<5	<5	<5	>73
Cd	<23	<11	<11	<10	>46
Co	<39	<19	< 18	<17	> 7
Cr	34	3	1	(0.3)	62
Cu	<29	<14	<14	<13	> 30
Fe	<2	(0.3)	(0.4)	(0.4)	97
K	85	(3)	< 6	<6	<15
La	<40	<19	<19	<18	> 5
Mg	<34	<16	<15	<15	> 20
Mn	<0	(0.1)	0.3	0.3	99
Mo	<43	<20	<19	<18	> 1
Na	88	7	2	2	1
Ni	(5)	<6	<5	<5	$95>\mathrm{x}>79$
P	(46)	(5)	(2)	<20	$47>x>27$
Pb	<25	<11	<11	<10	>42
Si	8	8	9	7	67
Ti	<28	<16	(2)	(2)	> 53
U	0.5	0.2	0.8	0.7	98
Zn	<9	<4	< 4	(0.9)	> 82
$\underline{\mathrm{Zr}}$	<10	<5	(1.0)	(0.9)	>83

(a) Parentheses indicate that component was within 10 times the analytical detection limit.

Table 4. Expected Concentrations in the First Wash Solution Based on Dilution of the Interstitial Liquid ${ }^{(a)}$

Analyte	Diluted Supernate ${ }^{(b)}$	Concentration in First Wash		Difference, \%
		Based on Dilution ${ }^{(c)}$	Found	
Cesium-137	230	18.5	17.0	-8
Strontium-90	<0.5	<0.04	0.038	-6
Technetium-99	0.094	0.0075	0.024	213
Al	16350	1317	1090	-17
Cr	56.1	4.52	65.0	1339
K	23000	1852	1615	-13
Na	148500	11959	12150	2
Ni	(4.8)	(0.39)	(1.4)	262
P	323	26.0	(12)	-54
Si	(130)	(10.5)	74.2	608
U	3.22	0.259	3.03	1067
TOC	1560	126	1900	1412
TIC	2155	174	410	136
Cl^{-}	3300	266	250	-6
F^{-}	830	67	100	50
$\mathrm{NO}_{3}{ }^{-}$	123000	9906	7300	-26
$\mathrm{SO}_{4}{ }^{2-}$	1850	149	120	-19

(a) Radionuclides are reported in units of $\mu \mathrm{Ci} / \mathrm{mL}$; all other components are in units of $\mu \mathrm{g} / \mathrm{mL}$.
(b) Values taked from Urie 1999. Each value is an average of duplicate measurements.
(c) It was assumed that there were 1.36 mL of interstitial liquid. This value was determined assuming the Na concentration in the wash solution was strictly due to dilution of the interstitial liquid plus the 0.01 M NaOH used as the wash medium.

Table 5. Mass Recoveries for Key AW-101 Waste Components

Component		Recovery, $\%$
Cesium-137		78
Strontium-90		28
Technetium-99		71
Americium-241	26	
Total Alpha	20	
Al	74	
Cr	74	
Fe	76	
K	91	
Mn		66
P		50
U		69

Table 6. Comparison of the Compositions of the Washed AW-101 Solids to the Wet Untreated Solids

Analyte	Wet Entrained Solids ${ }^{(\text {a }}$		Dry Washed Solids		Removed, \%
	$\mu \mathrm{Ci} / \mathrm{g}$ or $\mu \mathrm{g} / \mathrm{g}$	$\underline{\mathrm{Ci} / \mathrm{g} \text { Fe or } \mathrm{g} / \mathrm{g} \mathrm{Fe}}$	$\underline{\mu \mathrm{Ci} / \mathrm{g} \text { or } \mu \mathrm{g} / \mathrm{g}}$	$\underline{\mathrm{Ci} / \mathrm{g} \text { Fe or } \mathrm{g} / \mathrm{g} \mathrm{Fe}}$	
Cesium-137	192	0.138	35.0	$7.14 \mathrm{E}-04$	99
Strontium-90	151	0.108	1954	$3.99 \mathrm{E}-02$	63
Technetium-99	0.350	0.00025	3.22	$6.57 \mathrm{E}-05$	74
Americium-241	0.25	0.00018	2.43	$4.96 \mathrm{E}-05$	72
Europium-154	<0.2	<0.0001	0.63	$1.29 \mathrm{E}-05$	91
Europium-155	<0.5	<0.0004	0.78	$1.59 \mathrm{E}-05$	96
Total Alpha	0.511	0.00037	4.51	$9.20 \mathrm{E}-05$	75
Ag	(90)	(0.064)	382	0.0078	88
Al	14500	10.4	29159	0.596	94
Ba	(25)	(0.018)	2803	0.057	-218
Ca	(1700)	(1.22)	23050	0.471	62
Cd	(35)	(0.025)	1135	0.023	7
Co	<44	< 0.03	159	0.0032	90
Cr	1620	1.17	34965	0.714	39
Cu	<22	<0.02	563	0.012	27
Fe	1390	1.00	48960	1.00	--
K	17200	12.4	(2166)	(0.044)	100
La	<44	<0.03	111	0.0023	93
Mg	(255)	(0.183)	2080	0.042	77
Mn	1415	1.02	45494	0.929	9
Mo	< 44	<0.03	< 13	<0.0003	99
Na	127500	91.7	56759	1.16	99
Ni	215	0.155	7149	0.146	6
P	(385)	(0.277)	2045	0.042	85
Pb	(120)	(0.086)	3726	0.076	12
Si	(2200)	(1.58)	172444	3.52	-123
Ti	<22	<0.02	332	0.0068	57
U	5440	3.91	175325	3.58	9
Zn	< 44	<0.03	6716	0.137	-333
$\underline{\mathrm{Zr}}$	(220)	(0.158)	7496	0.153	3

(a) Urie et al. 1999.
(b) Percent removed $=100 *\left(\mathrm{C}_{0}-\mathrm{C}\right) / \mathrm{C}_{0}$ where C_{0} is the Fe-normalized concentration in the wet centrifuged and C is the Fe -normalized concentration in the washed solids.

Appendix A. Test Plan

Appendix B. Raw Data

Appendix C. Calculations

Appendix A. Test Plan

Work place Copy

PNNL Test Plan	Document No.: BNFL-TP-29953-9 Rev. No.: 0
Title: LAW Entrained Solids Water Wash and Caustic Leach Testing	
Work Location: RPL/SAL	Page 1 of 19
Author: GJ Lumetta	Effective Date: December 14, 1998 Supersedes Date: New
Use Category Identification: Mandatory	
Identified Hazards: - Radiological - Hazardous Materials - Physical Hazards - Hazardous Environment - Other:	Required Reviewers: X Technical Reviewer X Other. Client _Building Manage - Radiological Control $\frac{X}{X}$ Other: Project Manager ES\&H X Other. RPL Manager $\underline{\bar{X}}$ Quality Engineer
Are One-Time Modifications Allowed to this Procedure?$\underline{x} \text { Yes _ No }$	

NOTE: If Yes, then modifications are not anticipated to impact safety. For documentation requirements of a modification see SBMS
or the controlling Project QA Plan as appropriate.

On-The Job Training Required?
 \qquad Yes or_1 No

FOR REVISIONS:

Is retraining to this procedure required?
Yes \qquad No
Does the OJT package associated with this procedure require revision to reflect procedure changes? _ Yes_No_N/A
Approval:
Author Signature

Applicability

This test plan is to be used to determine 1) the aqueous-insoluble fraction of the entrained solids from BNFL LAW samples and 2) the caustic-insoluble fraction of the entrained solids from BNFL LAW samples. The work will be conducted in the SAL hot cells. The work will be conducted by Radiochemical Processing Group staff. This work is being done as part of the Technical Support to BNFL for Phase 1B project.

Test Objectives

Justification: This activity supports confirmation of the process sequence, equipment performance, and design parameters for caustic leaching of solids separated from the low-activity waste (LAW) solutions.

Objective: This task will gather data on the inhibited water solubility of solids entrained in the LAW solutions. Caustic leaching experiments will estimate the removal efficiency for caustic soluble components and aid in determining the disposition of these solids.

Definitions

BNFL British Nuclear Fuels Ltd.
HDPE High-density polyethylene
HLW High-level waste
RPL Radiochemical Processing Laboratory

Emergency Response

In the event of building audible alarms (e.g., fire or criticality) personnel should proceed in accordance with the RPL Building Emergency Procedure. If time permits, ensure that test materials are secured from spilling prior to exiting the area.

Quality Control

Quality assurance for work conducted under this Test Plan is governed by the Standards-Based Management System (SBMS). The quality control for each analysis will be established per Quality Assurance Plan MCS-033. MCS-033 specifies the minimum calibration and verification requirements for analytical systems, as well as batch processing quality control samples to monitor preparations (i.e., blanks, duplicates, matrix spikes, and laboratory control standards).

A work place copy of this document shall be present at the work location. Specific information regarding each test (e.g., sample numbers) will be recorded on the work place copy and kept as project records.

As discussed in the Prerequisites section, calibrated balances must be used in performing this test. Likewise, a calibrated temperature controller is required. The calibration ID, date of calibration, and calibration expiration date must be recorded on the work place copy for each balance used and for the temperature controller.

Measured weights will be recorded on the work place copy at the indicated spot in the work instructions.

Hand written changes or corrections made to the work place copy will be made by means of a single line-out. Such changes or corrections shall be initialed and dated by the staff member making the change and by the cognizant scientist.

Equipment Description

A standard laboratory hot plate/magnetic stirrer will be used for this test. An aluminum heating block will be placed on the hot plate/stirrer to heat the sample. The apparatus will be equipped with two thermocouples. One of the thermocouples will be connected to a temperature controller, while the other will be connected to an over-temperature shut-off device. The latter will be used to ensure the sample is not over heated, which could result in lose of sample.

Prerequisites

Staff performing the work must read and understand the entire test plan prior to beginning work.
The following are items that should be staged prior to start of the test.
Wide-mouth HDPE bottle; size to be determined (2)
$20-\mathrm{mL}$ HDPE vial (14)
$30-$ to $40-\mathrm{mL}$ glass vials (2)
Hot plate/stirrer
Aluminum heating block
Temperature controller with temperature read-out
Over-temperature shut-off device
$0.45-\mu \mathrm{m}$ nylon syringe filters (2)
$5-\mathrm{mL}$ syringes (2)
$0.45-\mu \mathrm{m}$ nylon disposable filter units (9)

Adjustable $5-\mathrm{mL}$ pipette
0.01 M NaOH
$3 \underline{\mathrm{M} \mathrm{NaOH}}$

The temperature controller shall be calibrated by maintenance services. Record the following information regarding the temperature controller used.

Dual	
Thinmocopl 4	
02899	02900
$1 / 99$	$1 / 99$
$1 / 2001$	$1 / 2001$

A calibrated balance is required for this test. Record the following information regarding the balance(s) used.

Calibration ID:	$\begin{gathered} \text { Cell-2 } \\ 360-06-01-016 \\ \hline \end{gathered}$
Calibration Date:	$9-2-98$
Expiration Date:	2-99

Calibration ID:
Calibration Date: \qquad
Expiration Date: \qquad

Before beginning work, a routine performance check should be performed and documented in the space below.

$$
\begin{aligned}
& S N \not H N_{2} 111 \text { Weights due } 4 / 99 \quad 5 \delta \\
& S A L \text { Cell-2 }
\end{aligned}
$$

Dove 9 m
$2 / 9 / 9.9$
0.1 .2.
n.1.1.

Work Instructions

Notes

Where practical, catch pans should be used when working with the tank waste samples, so that they can be recovered if spilled.

Throughout this test plan bottle, vials, etc. are labeled as " -XX-YY." The labels XX and YY are defined in the text. The tank number should be filled in the blank, e.g., "A W101."

Part 1. Determination of Aqueous-Insoluble Fraction

1.1. Obtain a LAW sample containing $\sim 5 \mathrm{~mL}$ of settled solids, as directed by the cognizant scientist. Stir to homogenize the sample.
1.2 Label a disposable filter unit ($0.45-\mu \mathrm{m}$ nylon) as Aw 101 -AQ-10

2/9/99 - 1.3 Weigh Awiol-AQ-10
$n .1 \cdot 2$

$$
\begin{equation*}
\text { Wt. Awiol } \mathrm{AQ}-10=65.7748 \mathrm{~g} \tag{1.3A}
\end{equation*}
$$

Also weigh just the bottom part of the filter unit; ie., the receiving bottle and cap
Wt. receiving bottle\&cap $=42.2160 \mathrm{~g}$
2/10)99 1.4 Connect Aw 101 -AQ-10 to the vacuum line n.1.2.

2/10/99 1.5 Filter the homogenized sample through Auriol -AQ-10
n.1.2. 1.6 Disconnect from the vacuum once the liquid has filtered
1.7 Place the cap on the top of the filter unit and weigh Aw |O1 -AQ-10
weighed in two pieces.

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

Wt. receiving bottle\&cap $=150.3426 \mathrm{~g}$
Save the filtered solution.
Determine the total weight of the sample

$$
\begin{equation*}
\text { Wt. Sample }=1.7 \mathrm{~A}-1.3 \mathrm{~A}=110.2016 \mathrm{~g} \tag{1.8~A}
\end{equation*}
$$

Determine the weight of the filtered liquid

$$
\begin{equation*}
\text { Wt. Liquid }=1.7 \mathrm{~B}-1.3 \mathrm{~B}=108.1266 \mathrm{~g} \tag{1.8B}
\end{equation*}
$$

Determine the weight of the filtered solids

$$
\begin{equation*}
\text { Wt. Solids }=1.8 \mathrm{~A}-1.8 \mathrm{~B}=2.0750 \mathrm{~g} \tag{1.8C}
\end{equation*}
$$

1.9 Measure out the appropriate volume of $0.01 \underline{\mathrm{M}} \mathrm{NaOH}$ as instructed by the cognizant scientist into a plastic bottle

$$
\begin{equation*}
\text { Vol. Used }=20 \mathrm{~mL} \tag{1.9A}
\end{equation*}
$$

1.10 Label an appropriately sized wide-mouthed HDPE bottle as Awiol_AQ-20. Place a stir bar in this bottle.
1.11 Weigh AWIO1 -AQ-20 including cap and stir bar

$$
\begin{equation*}
\text { Wt. } \underline{A \omega 101-A Q-20=12.4780 \mathrm{~g}} \tag{1.11A}
\end{equation*}
$$

1.12 Slurry the filtered solids using a portion of 0.01 M NaOH (volume $=1.9 \mathrm{~A}+5$); transfer this slurry to Aw 101 -AQ-20 Solids stack fails well to the filter members.

- Difficult to sumy, but was ok once vetted du down
1.13 Repeat step 1.12 four times to ensure complete transfer of the solids to Aw101 -AQ-20 *
1.14 Place the cap back on Awol -AQ-20 and weigh

$$
\begin{equation*}
\text { Wt. Aw 101 }-A Q-20=31.2475 \mathrm{~g} \tag{1.14A}
\end{equation*}
$$ up as math as possili

* A small arrest of solidi residue remained on the tilter - His was discarded.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Q.C. Comments:

Following are results of quality control checks performed during IC analyses. In general, quality control checks met the requirements of the governing QA Plan, MCS-033.

Working Blank Spike/Process Blank Spike: Process Blank Spike recoveries ranged from 91% to 100%, well within the acceptance criteria of 75% to 125%.

Matrix Spiked Sample: The matrix spike recovery for samples AW101-SOL-30A2 and AW101-AQ-90A ranged from 86% to 115%. Again, this is well within the acceptance criteria of 75% to 125%.

Duplicate: No duplicates were provided. However, the laboratory-dilution of sample AW101-SOL-40A1 was analyzed in replicate (i.e., two different analysis injections) at the IC workstation from two different IC workstation dilutions. Two replicate analyses failed the acceptance criteria of a Relative Percent Difference less than 20\%; nitrate on IC dilution \#1 and chloride on IC dilution \#2. Based on QC performance of matrix spikes and verification standards, no explanation can be offered for the poor precision on the one nitrate from IC dilution \#1. However, there are significant interference peaks between the fluoride and nitrite retention times than can account for the poor precision of the chloride results, since chloride peak baselines are difficult to establish.

System Blank/Processing Blanks: No anions were detected above reportable concentrations in the system blanks or in the processing/dilution blank.

Quality Control Calibration Verification Check Standards: Five mid-range verification standards were analyzed throughout the analysis run. For all reported results, the concentrations of all analytes of interest were recovered within the governing QA Plan acceptance criteria of $\pm 10 \%$ for the verification standard.

Notes:

1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis.
2) The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
3) Routine precision and bias is typically $\pm 15 \%$ or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.
: Sample-specific precision and bias may be determined on each sample if required.

The analysis of the AW-101-SOL and AW-101-AQ samples submitted under ASR 5275 was done by the hot persulfate wet oxidation method, PNL-ALO-381, rev. 1. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at $92-95^{\circ} \mathrm{C}$ for TOC , all on the same weighed sample, with TC being the sum of the TIC and TOC.

The samples were analyzed on April 1, 1999 and Table 1 below shows the results, rounded to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank.

Due to the limited quantity of original sample available and the number of different analyses requested, the sample were diluted to provide enough volume for each of the analyses. All results are corrected for preparative dilutions and analysis dilutions, and are reported in microgram of carbon per milliliter of original sample.

QC Narrative

The TIC standard is calcium carbonate and TOC standard is α-Glucose (the certificates of purity are attached). The standard materials were used in solid form for system calibration standards as well as matrix spikes. TIC and TOC percent recovery are determined using the appropriate standard (i.e., calcium carbonate for TIC or glucose for TOC).

The QC for the methods involves calibration blanks, system calibration standards, sample duplicates, and one matrix spike per matrix type. The QC system calibration standards were all within acceptance criteria, with the average recovery being 93.9% for TIC and 97.1% for TOC. The calibration blanks were acceptable, averaging $16.7 \mu \mathrm{gC}$ for TIC and $33.7 \mu \mathrm{gC}$ for TOC.

The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The matrix spike recovery from sample 99-1160 106\% for TIC and 103\% for TOC, well within the acceptance criteria of 75% to 125%. The precision, estimated by the RPD (Relative Percent Difference) between duplicates, could not be measured since the duplicate contained carbon less than 5 times the estimated quantitation limit.
G. Lumetta

April 5, 1999
Page 2
Some results are reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis. The system MDL is based on the attached pooled historical blank data.

Table 1: TIC, TOC, and TC Results

Approve:

Archive Information:
Files: C124-P-701.doc, C124-701.xls

	Internal Distribution	
Date	March 10, 1999	329/4 File
To	Mike Urie	
From	James Bramson foreos	
Subject	$\frac{\text { ICP/MS Analysis of Submitted Samples }}{(A C L ~ \# 99-1151 ~ t h r o u g h ~ 99-1160) ~}$	

Pursuant to your request, the 11 samples that you submitted for analysis were analyzed by ICPMS for ${ }^{99}$ Tc. The results of this analysis are reported on the attached page.

An Amersham ${ }^{99}$ Tc standard was used to generate the calibration curve and an independent Amersham ${ }^{99}$ Tc standard was used as the continuing calibration verification (CCV) standard. The 1\% high-purity nitric acid solution used to dilute the standards and samples was used as a reagent blank. The samples were diluted an extra $5 x$ (99-1159, 99-1160) and 20x (all others) from the dilutions provided. The results include your dilutions and are reported in $\mathrm{ng} / \mathrm{ml}(\mathrm{ppb})$ of the original sample. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at $\pm 10 \%$, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ${ }^{99} \mathrm{Tc}$ values reported assume that the Ru present is exclusively fission-product $R u$, and therefore does not have an isotope at $\mathrm{m} / \mathrm{z} \mathrm{99}$; i.e., everything observed at $\mathrm{m} / \mathrm{z} 99$ is due to ${ }^{99} \mathrm{Tc}$. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Ru counts, corrected for sample dilution, are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0624 or Tom Farmer at 372-0700.

Lumetta Tc-99 Samples

March 10, 1999
The results are reported in $\mathrm{ng} / \mathrm{ml}$ (ppb) of original sample.
The uncertainty of the results is estimated at $\pm 10 \%$.

* Natural ${ }^{101} \mathrm{Ru} /{ }^{102} \mathrm{Ru}$ ratio.
\dagger Based on response from yttrium.

$$
\begin{aligned}
& T_{c} \cdot 99 \quad 0.017 C i / j \\
& \frac{n_{j}}{m L} \cdot \frac{g}{16^{9}}-\frac{0.017 c_{j}}{g} \cdot \frac{10^{6} \mu c i c i^{c i}}{l}
\end{aligned}
$$

DATA REVIEW
Fioviewed bx anctliemaice errrecie
Date: //m 4299 Pages: \qquad

Pursuant to your request, the sample that you submitted for analysis was analyzed by ICPMS for ${ }^{99} \mathrm{Tc}$. The results of this analysis are reported on the attached page.

An Amersham ${ }^{99} \mathrm{Tc}$ was used to generate the calibration curve. An independent Amersham ${ }^{99} \mathrm{Tc}$ standard was used as the continuing calibration verification (CCV) standard. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at $\pm 10 \%$, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ${ }^{99} \mathrm{Tc}$ values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at $\mathrm{m} / \mathrm{z} 99$; i.e., everything observed at $\mathrm{m} / \mathrm{z} 99$ is due to ${ }^{99} \mathrm{Tc}$. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Approximate ${ }^{101} \mathrm{Ru}$ concentrations are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0700 or James Bramson at 372-0624

Lumetta Tc－99 Analysis

April 28， 1999

Results are reported in ng analyte／ml solution submitted．
The uncertainty of the results is estimated at $\pm 10 \%$ ．

Sample Number	ICP／MS Number	$\begin{aligned} & \mathrm{Tc}-99 \\ & \mathrm{ng} / \mathrm{ml} \end{aligned}$	$\begin{gathered} { }^{101} \mathrm{Ru} /{ }^{102} \mathrm{Ru} \\ (* .541) \end{gathered}$	$\dagger^{101} \mathrm{Ru}$ $\mathrm{ng} / \mathrm{ml}$
1\％HNO3	9428a1	＜1		
1\％HNO3	9428a4	＜1		
99－1161 AWIO1．AQ－100 D	9428a5	431	0.854	17
99－1161 Dup．	9428 a 7	443	1.166	18
99－1161＋spike	9428 a 8	629		
Spike Recovery		99\％		
5ppb Tc－99 CCV	9428a6	4.78		
10 ppb Co	9428a9	＜1		

—se6ed
MヨІ＾ヨコ Viṽ

DATA REVIEW

Foviewed b）：Rukivilomastoumer \mathbb{R}
DEO：30Hpr 99 P：～こう： 1 of／

AW 101 Tank Liquids and Wash Solutions (ASR 5275) Radiochemistry Analytical Results

Sample Preparation

Tank liquid and wash solution samples were analyzed from tank AW101. The samples were acid digested according to procedure PNL-ALO-128 in the laboratory prior to analysis.
Radiochemistry results are shown on the attached table along with 1 -sigma total uncertainties. All results are reported on a $u \mathrm{Ci}$ per ml of liquid. Samples labeled "duplicate" are independent analyses from separate aliquots of starting material in the hot cell; those labeled "replicate" are separate aliquots analyzed in the laboratory.

Gamma Energy Analysis

The acid digested samples were directly gamma counted following procedure PNL-ALO-450. Most of the gamma emission from these samples is from Cs -137. The only other detectable gamma emitters were Co-60 and Cs-134. The prep blank had a negligible amount of Cs-137.. All of the duplicate results agree within the expected uncertainties. Since gamma analyses do not involve chemical separations, no sample spiking is performed. Due to the high level of Cs -137 in these samples, it was not possible to detect all of the other analytes at the requested Minimum Reportable Quantity values. Detection limits are thus reported for Eu-154, Eu-155, and Am-241.

Gross Alpha

For gross alpha measurements, aliquots of the digested samples were evaporated on planchets for counting following procedures PNL-ALO-420 and 421. Weak alpha activity was only detectable in two of the wash solutions. All of the other samples had detection limits well below the requested MRQ values. Sample and blank spike recoveries were acceptable. No alpha activity was found in either the prep blank or the lab blank.

Strontium -90

The Sr-90 analyses were conducted according to procedures PNL-ALO-476, 484, and 450 using a $\mathrm{Sr}-85$ tracer to monitor the chemical yields. All of the samples had detectable levels of $\mathrm{Sr}-90 \mathrm{Sr}$. 90 was not detected in the hot cell blanks. The blank and sample spike recoveries were acceptable. Duplicate results were in acceptable agreement considering the uncertainties on the measurements.

Uranium

Uranium was measured directly in the digested samples by kinetic phosphorescence following procedure PNL-ALO-4014. Uranium was detectable in all of the samples with concentrations ranging from $1-4 \mathrm{ug} / \mathrm{ml}$. A negligible amount of uranium was seen in the prep blank; no uranium was detected in the lab blank. No uranium was detectable in the instrument blanks. The duplicate samples were in good agreement. All of the instrument check standards came out between 99% and 102%.

Determine the weight of the slurry

$$
\begin{equation*}
\text { Wt. Slurry }=1.14 \mathrm{~A}-1.11 \mathrm{~A}=18.7695 \mathrm{~g} \tag{1.14B}
\end{equation*}
$$

1.15 Equip Awlol -AQ-20 with a condenser, then place in an aluminum heating block at $85^{\circ} \mathrm{C}$

Stir the sample in Aw101-AQ-20 at $85^{\circ} \mathrm{C}$ for a minimum of 8 hours
Start date/time: $2 / 10 / 99 \quad 15500$
Stop date/time: 2/11/99 0751
1.17 Allow to cool to ambient temperature (1 hour)
1.18 Remove the condenser and replace the original cap on Aw|01 -AQ-20.

Weigh Awlol -AQ-20

$$
\begin{equation*}
\text { Wt. } A \omega 101-A Q-20=30,7198 \quad \mathrm{~g} \tag{1.18A}
\end{equation*}
$$

Determine mass loss due to evaporation

$$
\begin{equation*}
\text { Wt. Lost }=1.18 \mathrm{~A}-1.14 \mathrm{~A}=0.5277 \mathrm{~g} \tag{1.18B}
\end{equation*}
$$

1.19 Label a disposable filter unit (0.45- $\mu \mathrm{m}$ nylon) as Awlol -AQ-30

- 1.20 Weigh Awid -AQ-30

$$
\begin{equation*}
\text { Wt. } A W 101 \mathrm{AQ}-30=65.4860 \mathrm{~g} \tag{1.20A}
\end{equation*}
$$

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

$$
\begin{equation*}
\text { Wt. receiving bottle\&cap }=41.8178 \mathrm{~g} \tag{1.20B}
\end{equation*}
$$

1.21

Place the cap on the top of the filter unit and weigh Awlol -AQ-30
Place the cap on the top of the filter unit and weigh A wiol -AQ-30

$$
\begin{equation*}
\text { Wt. Aw101 } A Q-30=84.2648 \mathrm{~g} \tag{1.24~A}
\end{equation*}
$$

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

Wt. receiving bottle\&cap $=59.2792 \mathrm{~g}$
Transfer two $10-\mathrm{mL}$ aliquots of the filtered solution to clean 20-mL HDPE sample vials labeled as Awlo -AQ-30A and Awiol -AQ-30B.
Disconnect from the vacuum once the liquid has filtered od throgh with waccuum. Then procerded with stop 1.23 .

$$
\begin{gathered}
\text { Checked at } 12: 45 \text { on } 2 / 12 / 99 \\
\text { No evidumes of solids. } \\
\text { N.1.2. }
\end{gathered}
$$

Note: Monitor the solution after $\sim 24 \mathrm{~h}$ to determine if any solids form.
1.25 Determine the total weight of the slurry

$$
\begin{equation*}
\text { Wt. Slurry }=1.24 \mathrm{~A}-1.20 \mathrm{~A}=18.7788 \mathrm{~g} \tag{1.25A}
\end{equation*}
$$

Determine the weight of the filtered liquid

$$
\begin{equation*}
\text { Wt. Liquid }=1.24 \mathrm{~B}-1.20 \mathrm{~B}=17.4614 \mathrm{~g} \tag{1.25B}
\end{equation*}
$$

Determine the weight of the filtered solids

$$
\begin{equation*}
\text { Wt. Solids }=1.25 \mathrm{~A}-1.25 \mathrm{~B}=1.3174 \mathrm{~g} \tag{1.25C}
\end{equation*}
$$

1.26 Measure out the appropriate volume of $0.01 \underline{\mathrm{M} \mathrm{NaOH}}$ as instructed by the cognizant scientist into a plastic bottle

$$
\begin{equation*}
\text { Vol. Used }=20 \mathrm{~mL} \tag{1.26A}
\end{equation*}
$$

1.28 Weigh Awol -AQ-20

$$
\begin{equation*}
\text { Wt. Aw 101 - AQ-20 = } \quad \mathrm{g} \tag{1.28~A}
\end{equation*}
$$

1.29 Slurry the filtered solids using a portion of $0.01 \underline{\mathrm{M} \mathrm{NaOH}}$ (volume $=1.26 \overparen{\mathrm{~A}}+5$); transfer this slurry to AW101 -AQ-20 Note: solids were mach easier to slurry than before (c er step 1.12).
1.30 Repeat step 1.29 four times to ensure complete transfer of the solids to \qquad Aw 101 -AQ-20
1.31 Weigh \qquad
Wt. A W101 $-A Q-20=31.7050 \mathrm{~g}$
Determine the weight of the slurry

$$
\begin{equation*}
\text { Wt. Slurry }=1.31 \mathrm{~A}-1.28 \mathrm{~A}=19.2270 \mathrm{~g} \tag{1.31B}
\end{equation*}
$$

1.32 Equip Aw|01 -AQ-20 with a condenser, then place in an aluminum heating block at $85^{\circ} \mathrm{C}$
1.33 Stir the sample in AwIO1 -AQ-20 at $85^{\circ} \mathrm{C}$ for a minimum of 8 hours

Start date/time:
Stop date/time:

$2 / 11 / 99$	yr $16: 00$
$2-12-99$	$07: 42$

1.34 Allow to cool to ambient temperature 'looming
1.35 Remove the condenser and replace the original cap on Awol -AQ-20.

Weigh Awlol -AQ-20

$$
\begin{equation*}
\text { Wt. Aw /01-AQ-20 }=31.5136 \mathrm{~g} \tag{1.35A}
\end{equation*}
$$

Determine mass loss due to evaporation

$$
\begin{equation*}
\text { Wt. Lost }=1.35 \mathrm{~A}-1.31 \mathrm{~A}=0.1914 \mathrm{~g} \tag{1.36B}
\end{equation*}
$$

1.36 Label a disposable filter unit ($0.45-\mu \mathrm{m}$ nylon) as Awrol -AQ-50

- 1.37 Weigh Awlo1 -AQ-50

$$
\begin{equation*}
\text { Wt. Awlol AQ-50 }=65,1844 \mathrm{~g} \tag{1.37A}
\end{equation*}
$$

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

$$
\begin{equation*}
\text { Wt. receiving bottle\&cap }=41.9823 \mathrm{~g} \tag{1.37B}
\end{equation*}
$$

1.38 Connect Awol -AQ-50 to the vacuum line

```
</3/2/99}13.0
Again mashed stir bew with 0.01m NaOH as at step 1.22.
```

Disconnect from the vacuum once the liquid has filtered
1.41 Place the cap on the top of the filter unit and weigh Awlol -AQ-50

$$
\begin{equation*}
\text { Wt. } 4-101 \mathrm{AQ}-50=85.9188 \mathrm{~g} \tag{1.41A}
\end{equation*}
$$

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

$$
\begin{equation*}
\text { Wt. receiving bottle\&cap }=61.5064 \mathrm{~g} \tag{1.41B}
\end{equation*}
$$

Transfer two $10-\mathrm{mL}$ aliquots of the filtered solution to clean 20-mL HDPE sample vials labeled as Awiol-AQ-50A and Awlol-AQ-50B.

Pulled ample -50A at 13:40 on V12199, but left emesis solution in AQ. 50 , so that it
Note: Monitor the solution after $\sim 24 \mathrm{~h}$ to determine if any solids form. could h . monitored for
Determine the total weight of the slurry

$$
\begin{equation*}
\text { Wt. Slurry }=1.41 \mathrm{~A}-1.37 \mathrm{~A}=20.7344 \mathrm{~g} \tag{1.42~A}
\end{equation*}
$$

Determine the weight of the filtered liquid

$$
\text { Wt. Liquid }=1.41 \mathrm{~B}-1.37 \mathrm{~B}=19.5241 \mathrm{~g}
$$

Determine the weight of the filtered solids

$$
\begin{equation*}
\text { Wt. Solids }=1.42 \mathrm{~A}-1.42 \mathrm{~B}=1.2103 \mathrm{~g} \tag{1.42C}
\end{equation*}
$$

1.43 Measure out the appropriate volume of $0.01 \underline{\mathrm{M} \mathrm{NaOH}}$ as instructed by the cognizant scientist into a plastic bottle

$$
\begin{equation*}
\text { Vol. Used }=20 \quad \mathrm{~mL} \tag{1.43A}
\end{equation*}
$$

$$
\begin{aligned}
& 8.4^{2} . \\
& 2 / 12 / 94
\end{aligned}
$$

1.47 Repeat step 1.46 four times to ensure complete transfer of the solids to \qquad Aw 101 -AQ-20

Weigh Aw 101 -AQ-20

$$
\begin{equation*}
\text { Wt. } A W 101-A Q-20=31.8450 \mathrm{~g} \tag{1.48A}
\end{equation*}
$$

Determine the weight of the slurry

$$
\begin{equation*}
\text { Wt. Slurry }=1.48 \mathrm{~A}-1.45 \mathrm{~A}=19.2450 \mathrm{~g} \tag{1.48B}
\end{equation*}
$$

\rightarrow Stopped heme in 2/12/99; will resum mont week.
1.49 Equip Awiol -AQ-20 with a condenser, then place in an aluminum heating block at $85^{\circ} \mathrm{C}$
1.50 Stir the sample in AwIO1 -AQ-20 at $85^{\circ} \mathrm{C}$ for a minimum of 8 hours

Start date/time: 2 -16-99 11:13 am
Stop date/time: $\underline{2-17.99 \quad \text { 07,42 am }}$
1.51 Allow to cool to ambient temperature 2 hrs
1.52 Remove the condenser and replace the original cap on Awlol-AQ-20.

Weigh Awlol -AQ-20

$$
\begin{equation*}
\text { Wt. AWIO1 -AQ-20 }=31.6388 \mathrm{~g} \tag{1.52~A}
\end{equation*}
$$

Determine mass loss due to evaporation

$$
\begin{equation*}
\text { Wt. Lost }=1.52 \mathrm{~A}-1.48 \mathrm{~A}=0.2062 \mathrm{~g} \tag{1.52B}
\end{equation*}
$$

1.53 Label a disposable filter unit (0.45- $\mu \mathrm{m}$ nylon) as Awlol -AQ-70

- 1.54 Weigh Awlor -AQ-70

$$
\begin{equation*}
\text { Wt. AW101-AQ-70 }=65.2459 \mathrm{~g} \tag{1.54~A}
\end{equation*}
$$

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap
Wt. receiving bottle\&cap $=42,1154 \mathrm{~g}$
1.55 Connect AwIO1-AQ-70 to the vacuum line

$$
\begin{aligned}
& \text { Agcin, sti- bar rinced with } \\
& \text { a fen ml } 0.01 \mathrm{ma} \mathrm{mH} \text {. }
\end{aligned}
$$

1.57 Disconnect from the vacuum once the liquid has filtered

Place the cap on the top of the filter unit and weigh Awlol -AQ-70

$$
\begin{equation*}
\text { Wt. Awlor } A Q-70=85.5126 \mathrm{~g} \tag{1.58A}
\end{equation*}
$$

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

$$
\begin{equation*}
\text { Wt. receiving bottle \&cap }=61.0580 \mathrm{~g} \tag{1.58B}
\end{equation*}
$$

Transfer two $10-\mathrm{mL}$ aliquots of the filtered solution to clean 20-mL HDPE sample vials labeled as AwiO1-AQ-70A and Awiol-AQ-70B. (Again, left nome wind in ter-70 (4) observation.)

Note: Monitor the solution after $\sim 24 \mathrm{~h}$ to determine if any solids form. $\quad 2 / 4 / 99$ 8:40 No solids
Determine the total weight of the slurry

$$
\begin{equation*}
\text { Wt. Slurry }=1.58 \mathrm{~A}-1.54 \mathrm{~A}=20.2667 \mathrm{~g} \tag{1.59A}
\end{equation*}
$$

Determine the weight of the filtered liquid

$$
\begin{equation*}
\text { Wt. Liquid }=1.58 \mathrm{~B}-1.54 \mathrm{~B}=18.9526 \mathrm{~g} \tag{1.59B}
\end{equation*}
$$

Determine the weight of the filtered solids

$$
\begin{equation*}
\text { Wt. Solids }=1.59 \mathrm{~A}-1.59 \mathrm{~B}=1.3141 \mathrm{~g} \tag{1.59C}
\end{equation*}
$$

1.60 Measure out the appropriate volume of $0.01 \underline{\mathrm{M} \mathrm{NaOH}}$ as instructed by the cognizant scientist into a plastic bottle

$$
\begin{equation*}
\text { Vol. Used }=20 \quad \mathrm{~mL} \tag{1.60~A}
\end{equation*}
$$

Weigh Aw |O| -AQ-20

$$
\begin{equation*}
\text { Wt. Aw 101 }-\mathrm{AQ}-20=12.59 / 5 \mathrm{~g} \tag{1.62A}
\end{equation*}
$$

$$
5 \times 4 \mathrm{~mL}
$$

Slurry the filtered solids using a portion of $0.01 \underline{\mathrm{M} \mathrm{NaOH}}$ (volume $=1.60 \mathrm{~A}+5$); transfer this slurry to Awlol -AQ-20
1.64 Repeat step 1.63 four times to ensure complete transfer of the solids to \qquad AXIOM -AQ-20

Weigh Awol -AQ-20

$$
\begin{equation*}
\text { Wt. AW101 -AQ-20 }=31.9706 \mathrm{~g} \tag{1.65A}
\end{equation*}
$$

Determine the weight of the slurry

$$
\begin{equation*}
\text { Wt. Slurry }=1.65 \mathrm{~A}-1.62 \mathrm{~A}=19.3791 \mathrm{~g} \tag{1.65B}
\end{equation*}
$$

1.66 Equip Aw |01 -AQ-20 with a condenser, then place in an aluminum heating block at $85^{\circ} \mathrm{C}$
1.67 Stir the sample in AWIO1-AQ-20 at $85^{\circ} \mathrm{C}$ for a minimum of 8 hours

Start date/time: $3 / 17 / 99 \quad 11: 05$

Stop date/time: | $2-18-99$ | $07: 42$ |
| ---: | ---: |

1.68 Allow to cool to ambient temperature 1 hr .
1.69 Remove the condenser and replace the original cap on AW |0|-AQ-20.

Weigh Awol -AQ-20

$$
\begin{equation*}
\text { Wt. AWIDI -AQ-20 }=31.7471 \mathrm{~g} \tag{1.69A}
\end{equation*}
$$

Determine mass loss due to evaporation

$$
\begin{equation*}
\text { Wt. Lost }=1.65 \mathrm{~A}-1.69 \mathrm{~A}=0.2235^{-} \mathrm{g} \tag{1.69B}
\end{equation*}
$$

1.70 Label a disposable filter unit ($0.45-\mu \mathrm{m}$ nylon) as Aw /01-AQ-90

- 1.71 Weigh Aw /0) -AQ-90

$$
\begin{equation*}
\text { Wt. AW 101-AQ-90 }=65,2234 \mathrm{~g} \tag{1.71A}
\end{equation*}
$$

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

$$
\begin{equation*}
\text { Wt. receiving bottle \&cap }=42,0873 \mathrm{~g} \tag{1.71B}
\end{equation*}
$$

Connect $A w 101$. -AQ-90 to the vacuum line

Place the cap on the top of the filter unit and weigh AwIOI -AQ-90

$$
\begin{equation*}
\mathrm{Wt}_{\mathrm{t}} A \omega 101-\mathrm{AQ}-90=84.2158 \mathrm{~g} \tag{1.75A}
\end{equation*}
$$

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

$$
\begin{equation*}
\text { Wt. receiving bottle\&cap }=59.95-14 \mathrm{~g} \tag{1.75B}
\end{equation*}
$$

Transfer two $10-\mathrm{mL}$ aliquots of the filtered solution to clean $20-\mathrm{mL}$ HDPE sample vials labeled as Awol -AQ-90A and Awlol -AQ-90B.

Note: Monitor the solution after $\sim 24 \mathrm{~h}$ to determine if any solids form.
Determine the total weight of the slurry

$$
\text { Wt. Slurry }=1.75 \mathrm{~A}-1.71 \mathrm{~A}=18.9424 \mathrm{~g}
$$

Determine the weight of the filtered liquid

$$
\begin{equation*}
\text { Wt. Liquid }=1.75 \mathrm{~B}-1.71 \mathrm{~B}=17.8641 \mathrm{~g} \tag{1.76B}
\end{equation*}
$$

Determine the weight of the filtered solids

$$
\begin{equation*}
\text { Wt. Solids }=1.76 \mathrm{~A}-1.76 \mathrm{~B}=1.1283 \mathrm{~g} \tag{1.76C}
\end{equation*}
$$

1.77 Label a glass vial as Awlol -AQ-100

Weigh Awlo1 -AQ-100

$$
\begin{equation*}
\text { Wt. } A w 1 a-A Q-100=16.8270 \mathrm{~g} \tag{1.80~A}
\end{equation*}
$$

$$
5 \times 4 \mathrm{~mL}
$$

1.81 Using several portions of deionized water, quantitatively transfer the washed solids from the filter membrane to Aw101-AQ-100 Not: First two aliswots of wath wase used

Weigh Aw $101-A Q-100$ to rince vin 4 w101 $-4 Q-20$, so that

Heat Awlol-AQ-100 at $80^{\circ} \mathrm{C}$ to evaporate excess water
1.83 Heat Awiol-AQ-100 at $105^{\circ} \mathrm{C}$ overnight 2-2;-99 remued fiom oucrnizht heat.
1.84 Cool Aw|O1-AQ-100 to ambient temperature in a desiccator
1.85 Weigh Antor -AQ-100

$$
\begin{equation*}
\text { Wt. } A^{w 10}-A Q-100=16.8847 \mathrm{~g}^{(a)} \tag{1.85A}
\end{equation*}
$$

1.86 Determine the dry weight of the washed solids

$$
\text { Wt. Dry Solids }=1.85 \mathrm{~A}-1.82 \mathrm{~A}=0.05770 \mathrm{~g}(1.86 \mathrm{~A})
$$

1.87 The washed solids are to be submitted for analysis. The cognizant scientist will prepare the required ASR.

Appendix B. Raw Data

Requester - Please Complete All Fields In This Section. Unless Specified "Optional" or ASR is a Revision

Additional QA Requirements: __No, or
Reference Doc.: \qquad

ACL COC Req'd (PNL-ALO-010): __No XYes

Sample Storage Requirements: X No __Refrigerate, or Other (specify): \qquad

Date Sampled (optional):
Time Sampled (optional):

Matrix: χ Samples vary (specify on Request Page), or
Liquid: _Aqueous _Organic _Multi-phasic
Solid: __Soil _Sludge _ Sediment _ Glass
_ Filter __Smear _Metal __Organic __Other Solids Solid/Liquid Mixture: _ Gas: _

Biological: _Tissue _Urine __Feces

Process Knowledge: \Sample Information Check List, or Reference Doc.: \qquad
PCBs Present:
__No __Yes

Sample Disposition ...

$$
\begin{aligned}
& \text { Untreated Sample(s): _Return _Dispose XStore, or } \\
& \text { Reference Doc.: } \\
& \text { Prep'd Sample(s): _Dispose __Return XStore, or } \\
& \text { Reference Doc.: }
\end{aligned}
$$

Additional Instructions: Х No, or
Reference Doc.: \qquad

Date Report Req'd:
(b)

Send Report to: G.J. Lumetta

MSIN: P7-25 Phone: \qquad
Fax (optional):

For ACL Use Only ... Do Not Complete This Section

AW101 Samples

Sample ID	Description	Acid Digestion	KOH Fusion	$\mathrm{Na}_{2} \mathrm{O}_{2}$ Fusion	ICP/AES	$\begin{gathered} \text { IC } \\ \text { (anions) } \\ \hline \end{gathered}$	TOC	TIC	$\begin{gathered} \text { ICP-MS } \\ \binom{99}{\hline} \\ \hline \end{gathered}$	GEA	${ }^{90} \mathrm{Sr}$	Total Alpha	Laser Fluorimetry (U)
AW101-SOL-30A1	AW101 Liquid	X			X	X	X	X	X	X	X	X	X
AW101-SOL-30A2	AW101 Liquid	X			X	X	X	X	X	X	X	X	X
AW101-SOL-40A1	AW101 Liquid	X			X	X	X	X	X	X	X	X	x
AW101-SOL-40A2	AW101 Liquid	X			X	X	X	X	X	X	X	X	X
AW101-SOL-50A1	AW101 Liquid	X			X	X	X	X	X	X	X	X	X
AW101-SOL-50A2	AW101 Liquid	X			X	X	X	X	X	X	X	X	X
AW101-AQ-30A	AW101 Wash Solution	X			X	X	X	X	X	X	X	X	X
AW101-AQ-30B	AW101-Wash Solution	X			X	X	X	X	X	X	X	X	X
AW101-AQ-50A	AW101 Wash Solution	X			X	X	X	X	X	X	X	X	X
AWH01-AQ-50B	AW101-Wash-Solution	-			X	X	X	*	X	X	X	*	X
AW101-AQ-70A	AW101 Wash Solution	X			X	X	X	X	X	X	X	X	X
AW 101 -AQ-70B	AW101-Wash Sotution	X			X		X	*	X	X	X	*	$\mathrm{X} \longrightarrow$
AW101-AQ-90A	AW101 Wash Solution	X			X	X	X	X	X	X	X	X	X
AW101-AQ-90B	AW101 Wash Solution	X					-	X	X	X	X	X	$\mathrm{X} \longrightarrow$
AW101-AQ-100	Washed AW101 Solids		X	X	X	X	X	X	X	X	X	X	X

(a) Archive these samples for now, per instructions
from. Paul Townson on 2/18/99
M.1.1. $2 / \pi / 99$

ASR 5275 Addendum

Gregg Lumetta
March 16, 1999

Sample AW101-AQ-100 has been dissolved in acid for analysis. The solution with the dissolved solids is labeled as AW101-AQ-100D. The sample matrix is $0.1 \underline{\mathrm{M}} \mathrm{HCl}$.

AW101-AQ-100D needs to be subjected to the following analyses:

```
ICP
ICP-MS ( \({ }^{99} \mathrm{Tc}\) )
GEA
\({ }^{90} \mathrm{Sr}\)
Total alpha
Laser fluorimetry (U)
```

Lumetta, Gregg J
From: MJohnson@bnflinc.com
Sent: \quad Monday, March 01, 1999 7:45 AM
To: Lumetta, Gregg J; PTownson@bnflinc.com
Subject: Fwd[2]:AW-101 Testing
Gregg - I concur with your recommendation for analyzing the ~ 0.058 grams of AW-101 solids remaining after washing.
Please proceed with dissolution of the solids in acid and conducting analyses for metals and radionuclides per Table 6-1 from BNFL letter 000749 (Revision to Ultrafiltration / Solids Dissolution Test Specification. I understand there is insufficient solids to accomplish these analyses in duplicate. I also understand there is insufficient solids conduct the requested anion analyses.

Michael Johnson

> Forward Header

Subject: AW-101 Testing
Author: "Lumetta Gregg J" qregg.lumetta@pnl.gov
Date: $\quad 2 / 23 / 99$ 2:23 PM

Paul:

This message is to update you on progress made and to seek your counsel on a technical issue we've encountered.
First, the solubility versus temperature test with the AW-101 LAW sample was completed. This test proceeded according to plan (test plan BNFL-TP-29953-7) with no problems encountered. The samples from this test have been submitted for analysis.
Second, the washing test with the AW-101 LAW entrained solids was also completed. Again, the test when according to plan (test plan BNFL-TP-29953-9). Samples of the washing solutions have been submitted for analysis.
However, here's where the problem comes in. There is only a small amount (0.058 g) of residual solids remaining. With this small amount of material, we cannot perform all the analyses originally planned, much less do them in duplicate. So the question is: How should we proceed with analyzing the solids?
My recommendation would be to dissolve the solids in acid (HCl with perhaps HNO3 or HF added, as needed). The resulting solution could then be analyzed, but we could not analyze for the following constituents: TOC, TIC, CI, F, NO3, SO4, PO4 (although we would get the total P concentration by ICP).
I'll await your advice on this matter.
Gregg
管
RFC822.TXT

Protocol for Dissolving Sample AW101-AQ-100

Purpose

The quantity of residual solids from the AW-101 LAW entrained solids washing test was such that the full suite of analyses requested by BNFL could not be completed. There was not enough material to do the KOH and $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusions. The purpose of this protocol is to dissolve the residual AW-101 solids for ICP/AES and radiochemical analysis.

Instructions

$315 / 99\left(\begin{array}{l}\text { 1. Heat AW101-AQ-100 at } 105^{\circ} \mathrm{C} \text { for } 1 \mathrm{~h} \text { start } 11: 19 \mathrm{am}-12: 45 \mathrm{pm} \\ 2 . \\ \text { Cool AW101-AQ-100 in a desiccator, then weigh }\end{array}\right.$ Wt. AW 101-AQ-100 $=16.8796 \mathrm{~g}$

Add 5 mL of concentrated ($12 \underline{\mathrm{M}}$) HCl (Ultrex-grade) to AW101-AQ-100
4. Place the cap loosely on AW101-AQ-100 and heat in the aluminum heating block at start $c_{1045}^{0938} 1100$ $90^{\circ} \mathrm{C}$.

Occasionally, tighten the cap and swirl the vial to contact the acid with the solids on the wall of the vial. Loosen the cap and continue to heat.
5. Continue to heat until all solids dissolved. If solids are not dissolved after 1 hour, consult with GJ Lumetta.

$$
\begin{aligned}
& \text { After } \sim 1.5 \mathrm{~h} \text { most of the solids Lad resolved, but there was still some. Added Imp } \\
& \text { of conc. } \mathrm{HaO}_{3} \text { (at } 11: 00 \text {). Repent step Y. Anew } 1.75 \mathrm{~h} \text {, a white solid hand formed. This } \\
& \text { solid timed to collect avowed the thenenls of the ump. vt this point, we procealed } \\
& \text { with step } b \text { to verponts the acid. }
\end{aligned}
$$

6. Once all solids dissolved, remove the cap from AW101-AQ-100 and evaporate to dryness $\begin{aligned} & 16 c 4 \\ & \text { done. }\end{aligned}$ 3-5.99 at $90^{\circ} \mathrm{C}$.
ex
7. Add 4 mL of $Q 1 \mathrm{M} \mathrm{HCl}$ to $\mathrm{AW} 101-\mathrm{AQ}-100$ to dissolve the sample.
8. Transfer the solution to a $25-\mathrm{mL}$ volumetric flask.
9. Add another 4 mL of 0.1 M HCl to $A W 101-A Q-100$ to rinse the vial; transfer this rinse liquid to the volumetric flask.
10. Repeat step 8 three times for a total of 4 rinses of AW101-AQ-100. Note: Do not discard vial AW101-AQ-100.

$$
\begin{aligned}
& \text { steps } 7-10 \text { revised } \\
& \text { us on ont pay. } \\
& \text { M.1. hun th } \\
& 3 / 12999
\end{aligned}
$$

Note: Take measures to ensure bottle AW101-AQ-100C is free of external removable contamination when removed from the hot cell.
7. Use five $5-\mathrm{mL}$ aliquots of 0.1 M HCl to quantitatively transfer the material from 的 $3.12-99$ AW 101-AQ-100 to AW 101-AQ-100C (a 30-mL HDPE vial).
8. Remove AW101-AQ-100C from the hot cell.
9. Provided the dose rate (at 6') is less than $3000 \mathrm{mrem} / \mathrm{h}$, transfer AW 101-AQ-100C to lab 511. 1725 mr
10. Heat AW 101-AQ-100 at $105^{\circ} \mathrm{C}$ for 1 h start $1: 30 \mathrm{pm} z-12-49$

$$
\text { stop } 3: 30 \mathrm{pm}
$$

11. Cool AW101-AQ-100 in a desiccator, then weigh

$$
\begin{equation*}
\text { Wt. AW 101-AQ-100 }=16,7787 \mathrm{~g} \tag{15a}
\end{equation*}
$$

12. Determine the weight of the solids

$$
\begin{equation*}
\text { Wt. solids }=2 a-15 a=0.10040 \quad g \tag{15b}
\end{equation*}
$$

M.1. Lentic 3/16/99

Battelle PNNL/325 Bldg/RPG/Inorganic Analysis ... ICPAES Data Report

Project:	29953
Client:	G. J. Lumetta

ACL Numbers): 99-1161, 99-1458-Zr \& 99-1458-Ni
Client ID: "AW101-AQ-100d", "AN107-AQ-100"(Zr) \& "AN107-AQ-100"(Ni)
ASR Number: 5275 \& 5319

Total Samples: 3

Procedure: PNL-ALO-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICP-AES).

Analyst: J. J. Wagner
Analysis Date (Filename): 4-22-99 (A0524) and 4-27-99 (A0525)

See system file: "ICP-325-405-1" for traceability to Calibration, Quality Control, Verification, and Raw Data.

M\&TE Number: ICPAES instrument -- WB73520
Mettle AT400 Balance -- Ser.No. 360-06-01-029

Battelle PNNL/325 Bldg/RPG/Inorganic Analysis ... ICPAES Data Report

One radioactive solid sample AN107-AQ-100 (ASR 5319) was analyzed by ICPAES after preparation by the 325 Shielded Analytical Laboratory (SAL) using two fusion preparation procedures: PNNL-ALO-114 Na2O2-NaOH/Zr and PNNL-ALO-115 KOH/Ni.
Approximately 0.05 to 0.06 -gram aliquots were used for each procedure. After samples were fused they were diluted to a final volume of 50 ml . Additional dilution, up to $\mathbf{1 0}$ fold, was performed during ICPAES analysis. All measurement results reported have been corrected for preparation and analytical dilution. Because of limited sample material, duplicates were not prepared. Analytes of interest include $\mathrm{Ag}, \mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}$, $\mathrm{Fe}, \mathrm{K}, \mathrm{La}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Si}, \mathrm{Ti}, \mathrm{U}, \mathrm{Zn}$ and Zr .

Sample AW101-AQ-100d (ASR 5275) was prepared by the client and analyzed by ICPAES without further processing other than necessary analytical dilution up to $\mathbf{5}$-fold. Analytes of interest are the same as those listed above. Measurement results have been corrected for analytical dilution only. Results are reported as $\mu \mathrm{g} / \mathrm{ml}$ as agreed upon by the client.

All quality control checks met tolerance requirements for analytes of interest except as noted below. Following is a list of quality control check measurement results relative to ICPAES analysis tolerance requirements under MCS-033.

Five fold serial dilution:

(Solid samples)
(Aqueous samples) All results were within tolerance limit of $\leq \mathbf{1 0 \%}$ after correcting for dilution except Mg in sample AW101-AQ-100d @ 5 and AW101-AQ-100d @1. Mg concentration was recovered within 13% after dilution correction. All other analytes of interest in the above sample were within 4% after dilution correction.

Duplicate RPD (Relative Percent Difference):
(Solid samples) No duplicates were prepared because of limited sample material. (Aqueous samples) No duplicates were provided.

Post-Spiked Samples (Group A):
(Solid samples)
All analytes of interest were recovered within tolerance of 75 to 125\%.
(Aqueous samples) All analytes of interest were recovered within tolerance of $\mathbf{7 5}$ to 125\%.

5/4/99

Battelle PNNL/325 BIdg/RPG/Inorganic Analysis ...

 ICPAES Data Report
Post-Spiked Samples (Group B):

(Solid samples) All analytes of interest were recovered within tolerance of $\mathbf{7 5}$ to
(Aqueous samples) All analytes of interest were recovered within tolerance of $\mathbf{7 5}$ to 125\%.

Blank Spike:
(Solid samples)
A blank spike was not prepared.
(Aqueous samples) A blank spike was not provided.
Matrix Spiked Sample:
(Solid samples)
A matrix spike was not prepared.
(Aqueous samples) A matrix spike was not provided.
Quality Control Check Standards:
Concentration of all analytes of interest, except for Si , was recovered within tolerance of $\pm 10 \%$ accuracy in the standards: QC_MCVA, QC_MCVB, and QC_SSTMCV. Calibration Blank (ICP98.0) concentration was less than two times IDL. Silicon was slightly high (about 14%) in one determination of QC_SSTMCV. Silicon in QC_MCVA check standard was within 5% of the true value of $20 \mu \mathrm{~g} / \mathrm{ml}$, which was run several times during the analysis, thus, measurement results for Silicon in the samples are not likely to be affected.

High Calibration Standard Check:

Verification of the high-end calibration concentration for all analytes of interest was within tolerance of $\pm 5 \%$ accuracy except for Ca, Fe, and U . These three analytes were slightly high, between 6% and 7%, in the high-end cal. check standard. Measurement results for these analytes in the samples were closer to mid-range concentrations like those found in QC_MCVA. Therefore, sample measurement results are not likely to be affected by the slightly high recovery for Ca, Fe, and U .

Battelle PNNL/325 BIdg/RPG/Inorganic Analysis ... ICPAES Data Report

Process Blank:

(Solid samples)
All analytes of interest were within tolerance limit of $\leq \mathrm{EQL}$ or $<$ 5% of sample concentration except Ca in ALO-114 prepared samples and Na in ALO-115 prepared samples. Concentration of Ca in the process blank for sample AN107-AQ-100 (Zr) was about 52% of that in the sample. Concentration of Na in the process blank for sample AN107-AQ-100 (Ni) was about 12% of that in the sample.
(Aqueous samples) No preparation blank provided.

Laboratory Control Standard:

(Solid samples) All analytes of interest at a concentration equal to or greater than EQL were recovered within tolerance of $\mathbf{7 5 \%}$ to 125% in both fusion prepared LCS standards. SRM-2710 Montana Soil was used for the LCS in both ALO-114 and ALO-115 fusion preparations.
(Aqueous samples) No LCS provided.
Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
2) Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
3) Routine precision and bias is typically $\pm \mathbf{1 5 \%}$ or better for samples in dilute, acidified water (e.g. $2 \% \mathrm{v} / \mathrm{v} \mathrm{HNO}_{3}$ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than $5000 \mathrm{\mu g} / \mathrm{mL}$ (0.5 per cent by weight).
4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
5) The maximum number of significant figures for all ICP measurements is 2 .

Note: 1) Overall error greater than 10-times detection limit is estimated to be within $+/-15 \%$.
2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15\%.
3) "--" indicate measurement is below detection. Sample detection limit may be found by
multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Note: 1) Overall error greater than 10-times detection limit is estimated to be within $+1-15 \%$.
2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.
3) "--" indicate measurement is below detection. Sample detection limit may be found by
multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNL/RPG/Inorganic Analysis ... ICPAES Data Report ${ }^{\text {Page } 1 \text { of } 1}$

Note: 1) Overall error greater than 10 -times detection limit is estimated to be within $+/-15 \%$.
2) Values in brackets $[$ are within 10 -times detection limit with errors likely to exceed 15%
3) "--" indicate measurement is below detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNLRPG/Inorganic Analysis --- IC Report

WO/Project:
Client:

W48481\&W48482/29953
G. Lumetta

ALL $\operatorname{Nmbr}(\mathrm{s}):$ 99-1151 through 99-1160

Client ID: AW101 SOL and AW101 AQ series
ASR Nmbr 5275
Total Samples: 10 liquids

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography" (IC).

Analyst: MJ Steele
Analysis Date: March 30-31, 1999 and Reruns April 12-13, 1999

See Chemical Measurement Center 98620: IC File for Calibration and Maintenance Records.

M\&TE Number: IC instrument -- WD25214
Mettle AT400 Balance - Cal. No. 360-06-01-031

Analyst:

Approval:

Battelle PNNL/RPG/Inorganic Analysis --. IC Report

Final Results:

Ten liquid samples were analyzed by ion chromatography (IC) for inorganic anions as specified in ASR 5275. The liquid samples were diluted 5 -fold to 12.25 -fold during the preparation of the samples prior to distribution to the IC workstation, and were diluted at the IC workstation up to 200 -fold to ensure that all anions were within the calibration range. The samples were initially analyzed on March 30-31, 1999. From this run, the verification standards for many analytes were below the 90% recovery acceptance criteria. Therefore the samples were reanalyzed on April 12-13, 1999. Only results from the final analysis run are provided in this report. The results from the initial analysis run are included in the data package for information only.

Based on client communications the nitrate result for AW101-SOL-40A2 appears to be about a factor of two higher than expected. The only other analyte in this sample at a high enough concentration to provide reliable results nitrite, and the nitrite for sample AW101-SOL-40A2 is only slightly higher than sample AW101-SOL-40A1. To provide sufficient sample for all analyses requested, AW101-SOL samples had to be diluted 10-12 fold; it is possible that the small volume sample was contaminated during the initial dilution. Both the initial run (which failed QC) and the final run measured nitrate above $200,000 \mu \mathrm{~g} / \mathrm{ml}$.

The results for the samples from the April 12-13, 1999 run are presented in the table below.

\qquad	Client	Factor		Cl $\mu \mathrm{g} / \mathrm{ml}$	NO 2 y $\mathrm{Hg} / \mathrm{ml}$	$\begin{gathered} \mathrm{Br} \\ \mathrm{~s} \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$		$\begin{aligned} & \mathrm{PO} \\ & \mu \mathrm{~g} / \mathrm{m} 1 \end{aligned}$	$\begin{aligned} & \text { SOO4 } \\ & \text { Hg/mi } \end{aligned}$	
99-1151 PB	PROCESS BLANK	5	<1.4	<1.4	<2.8	<1.4	<2.8	<2.8	<2.8	<2.8
	\% RECOVERY		91	97	100	97	96	94	95	98
99-1151	AW101-SOL-30A1	12.25	1,300	3,600	69,400	<600	118,000	<1200	<1200	<1200
99-1152	AW101-SOL-30A2	10	1,300	4,100	.62,300	<500	120,000	<1000	<1000	<1000
	\% RECOVERY		91	115	110	105	111	100	103	107
99-1153 \#1	AW101-SOL-40A1	12.25	1,600	4,400	75,300	<600	122,000	<1200	<1200	<1200
99-1153 \#1 REPLICATE	AW101-SOL-40A1	12.25	1,400	5,000	80,000	<300	154,000	<613	1,752	<613
	RPD (\%)		15	14	6	n/a	24	n/a	n/a	n/a
99-1153 \#2	AW101-SOL-40A1	12.25	1,100	3,000	65,400	<300	124,000	1,400	1,400	<600
99-1153 \#2 REPLICATE	AW101-SOL-40A1	12.25	1,200	3,800	64,600	<300	125,000	1,400	1,600	<600
	RPD (\%)		6	22	1	n/a	0	4	11	n/a
99-1154	AW101-SOL-40A2	12.25	1,600	4,200	72,700	<600	227,000	<1200	<1200	<1200
99-1155	AW101-SOL-50A1	10	1,600	4,100	65,200	<500	126,000	<1000	<1000	<1000
99-1156	AW101-SOL-50A2	10	1,500	4,100	63,500	<500	122,000	<1000	<1000	<1000
99-1157	AW101-AQ-30A	5	100	250	3,800	<25	7,300	<50	120	6,400
99-1158	AW101-AQ-50A	5	6.0	11	170	<1.4	360	<2.8	6.5	210
99-1159	AW101-AQ-70A	5	<1.4	3.0	8.0	<1.4	34	<2.8	<2.8	<2.8
99-1160	AW101-AQ-90A	5	<1.4	2.5	<2.8	<1.4	2.7	<2.8	<2.8	<2.8
	\% RECOVERY		98	110	108	107	103	101	104	86

: RPD = Relative Percent Difference (between sample and duplicate)

Client: Lumetta

Date: $3 / 30 / 99$
Date Uranium

Battelle Pacific Northwest Laboratory
$\begin{array}{ll}\text { Radiochemical Processing Group-325 Building } & 99-1161 \\ \text { Radioanalytical Applications Team } & 5 / 5 / 99\end{array}$
Client: Lumetta

Measured Activities (uCi/ml)

ALO ID Client ID	Alpha Error \%	$\mathrm{Sr}-90$ Error \%	Uranium ug/ml Error \%	$\begin{aligned} & \text { Co-60 } \\ & \text { Error \% } \end{aligned}$	$\begin{aligned} & \text { Sb-125 } \\ & \text { Error \% } \end{aligned}$	Cs-137 Error \%	Eu-154 Error \%	$\begin{aligned} & \text { Eu-155 } \\ & \text { Error \% } \end{aligned}$	Am-241 Error \%
99-1161	$1.04 \mathrm{E}-2$	$4.51 \mathrm{E}+0$	$4.05 \mathrm{E}+2$	$3.64 \mathrm{E}-3$	4.03E-3	8.07E-2	$1.46 \mathrm{E}-3$	1.80E-3	$5.60 \mathrm{E}-3$
AW101-AQ-100	3\%	3\%	3\%	2\%	3\%	2\%	3\%	6\%	5\%
Matrix Spike	102\%	127\%							
Blank Spike	103\%	96\%	$\begin{gathered} 96 \% \\ \text { 102\% } \end{gathered}$						
Blank	<5.E-5	<8.E-6	<2.E-5						

\qquad
\qquad

Dose rete in AN107, AQ -30A (hottest simple) \qquad Contact: $195 \beta \quad 23 \gamma$ wadi Sheets $6^{\prime \prime}$
" : 45β 5γ RET

Shielded Analytical Laboratory Bench Sheet
Client: Lumetta, Gregg
ri\#/asr: E-mod dated 4-9-99
WP Number: \qquad w444 procedure:

$$
S F O S O P P 35-5 A C-i D S=1
$$

Aw 101 Sludge Wash Samples
SAMPLE IDENTIFICATION

- transfer the following to clean vials, then to rm 511 :
- removed from arclieve rack 4 slots $1,2,3$, and 4, Awlol-AQ-30B/50B/70B/90i
- AN 107-AQ-30A/50A/70A/90A.
(placed into like labeled 20 ml vials.)

Lettau, Ralph C

From:	Kelly, Elizabeth F
Sent:	'Friday, April 09, 1999 1:41 PM
To:	Lettau, Ralph C
Subject:	Transfer of Samples (Lumetta)

Ralph,
Welcome back!
Per Gregg Lumetta, he needs the following samples put into clean vials and transferred to lab 511. You have been scheduled to do this work on Monday, April 12th.

The work should be charged to W48481.
The samples are:
$\left.\begin{array}{l}\text { AW101-AQ-30B } \\ \text { AW101-AQ-50B } \\ \text { AW101-AQ-70B } \\ \text { AW101-AQ-90B }\end{array}\right\} \operatorname{rack} 4$ siot $1-4$
AN107-AQ-30A
AN107-AQ-50A
AN107-AQ-70A
AN107-AQ-90A

Elizabeth Kelly
509/373-4146 (-9675 fax)
elizabeth.kelly@pnl.gov

DATA SHEET FOR PIPETTOR CALIBRATION

Procedure Number: PCS-TP-511-2 Revision Number: 1

1. Date Performed: \qquad
2. Pipettor ID: 1141166 ($1-\mathrm{ml}$ capacity)
3. Balance Calibration Code:
4. Balance Calibration Due Date:
$\frac{384 \cdot 06-0 i-005}{8 / 99}$
5. Thermometer Control Number:

$$
384.74-04-065
$$

6.
7.
8.

$$
\begin{aligned}
& \text { Volume } 1=\frac{0.20}{0.50} \\
& \text { Volume } 2=\frac{1.00}{\text { Volume } 3=}
\end{aligned}
$$

9. Ainbient Temperature at Start of Procedure:
$23{ }^{\circ} \mathrm{C}$
Aliquot No. $=$
10. Mass Volume $1, \mathrm{~g}$
11. Mass Voluine 2, E
12. Mass Voluine 3, g

13. Ambient Temperature at End of Procedure: \qquad ${ }^{\circ} \mathrm{C}$

Perforined by:
Reviewed by:

Date: \qquad
Date: $\quad 8-10-99$

CALCULATION SHEET FOR PIPETTOR CALIBRATION

Procedure Number: PCS-TP-511-2

1. Mean Temperature: $\quad 23{ }^{\circ} \mathrm{C}$
2. Density of Water: $0.9976 \mathrm{~g} / \mathrm{mL}$

Precision, $\%$
± 1.51
± 0.81
0.1 .4.

Appendix C. Calculations

\qquad 1 \qquad

Prepared By:	D.1. Lumets	Date: $4 / 26 / 99$	Project: 29953	
Titie/Subject:	Awlol wash/Leach			Reveweld by

Exul spradskents were used to pertorm the ryvired calculutions. As an exampl of thise calculations, we consider the case of Alumimm.

Sumple Awlor-AQ-50A \rightarrow ICP was peformed in duplisato. The weng velve from there duplicutas was

$$
\frac{1080+1100}{2}=1090^{\circ} \mathrm{mg} / \mathrm{mL}
$$

Sample

$$
\begin{aligned}
A W 101-42-50 A & \rightarrow 89.6 \mathrm{ss} / \mathrm{ml} \\
-704 & \rightarrow 49.6 \\
-504 & \rightarrow 38.5
\end{aligned}
$$

To determin the amount of Al in each wash solttion, the mensurad concentration is maltiplied by the volum of the solution. The solution volumes were detwmind from the solution densities an the weights:

$$
\begin{aligned}
& -50 \quad(\text { reog } \quad \text { fint }(19.5241 \mathrm{~g}) /(1.005 \mathrm{~g} / \mathrm{ml})=19.427 \mathrm{~mL} \\
& \rightarrow 0 \quad \text { Le01 } \mathrm{g} \text { (} 18.9526 \mathrm{~g}) /(1.001 \mathrm{~g} / \mathrm{ml})=18.934 \mathrm{~mL} \\
& -90 \quad(17.8641 \mathrm{~g}) /(1.004 \mathrm{~g} / \mathrm{ml})=17.793 \mathrm{~mL}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { AN001-AQ-30 }(16.887 \mathrm{ml})(1090 \mathrm{ys} / \mathrm{ml})=18,407 \mathrm{ys} A 1 \\
& -50(14.427 \mathrm{ml})(89.6 \mathrm{~m} / \mathrm{ml})=1,241 \mathrm{~m} 41 \\
& -70 \quad(18.434 \mathrm{~mL})(49.6 \mathrm{~m} / \mathrm{ml})=939 \mathrm{~m} 41 \\
& -40(17.243 \mathrm{mc})(3 \mathrm{r} .5 \mathrm{mg} / \mathrm{ml})=685 \mathrm{myAl}
\end{aligned}
$$

The weasted solids weve dissolved in acid ad dilutad to a volum of 25 ml (bamp 6 Aw101-AQ-100D). The resultivg solution wens foond to cortain $67.3 \mathrm{~g} / \mathrm{ml}$ Al.
$(67.3 \mathrm{mg} / \mathrm{mL})(25 \mathrm{~mL})=1682.5 \mathrm{mg}$ Al: in the wasted solids
\qquad

S.1. Lumens

Date

4/26/99 Project: 24553

Awiol wash/Lach

Causent: A curtin pamant of the washed solids did not dissolve in acid. Th above voles assume that all the solids weer dissolved for analysis.

See the attached \& Printouts for the resorts of the other calculations done within Excl.

\qquad of \qquad

Total wht. Sampl uned in test $=110.2016 \mathrm{~g}$ (1.8 A)

Hence.

$$
(110.2016 \mathrm{~g})(12 \times 39 \mathrm{~g} / \mathrm{s})=1370798 \text { y } 41^{\circ} \text { in totol smmp6 used. }
$$

But 108.1266 s of supininto seganate (1.8 B).
$\rightarrow(108.1266 \mathrm{~g})(12386 \mathrm{y} / \mathrm{g})=1339256 \mathrm{yy}$ takm out
So,

$$
1370798-1339256=31542 \text { ay Al into expewiment }
$$

\qquad
\qquad

Poosod By: M.4. hemeth $\quad |$| Date: $5 / 17 / 43$ | Proiect: |
| :--- | :--- |

Tib/Subiect: awiO1 warh/leash: Mass Betance Comsilenations
Reviexed by

The adjosted Al concentution, assumin "1ast"A1 is it the subssolocel soi:ds is given on the prowius page (16.9 wion).

This colvultion is repental for othen kes components below.
Chromium

$$
\text { tonl in found }=1098+104+33+8+2018=3261 \mathrm{My} \text { (from Tabl } 2 \text {) }
$$

$$
100(3261) / 4435=7450 \text { recovery } \quad 4435-3261=1174 \text { as } C 0
$$

4djerted co wonc. in wicted sw):Us: $(2018+1174) / 0.0177=55320 \mathrm{y} / \mathrm{s}$

Iron

$$
\begin{aligned}
& \text { Surame }(s: 1+4.3) / 2=4.7 \xrightarrow{2.32} 3.6 \mathrm{ys} / \mathrm{s} \\
& \text { solids }(1350+1 \times 30) / 2=1390 \mathrm{7} / 4 \\
& ((57.5)(3.6)+(2.5)(1390)) / 100=38.263 / 2: \mathrm{i} \text { sampl } \\
& (38.26)(110.2016)=4216 \\
& \text { (3.6) (108.1266) }=\frac{351}{3827 \mathrm{ys} \mathrm{fe} \mathrm{in} .} \\
& \text { Total Fe found: } 7.4+12.3+11.9+2425=285717 \\
& 100(2857) / \underset{3827}{+\infty 0}=750_{0} \text { recameny } \\
& \left(\begin{array}{c}
2825 \\
2+83
\end{array}+90\right) / 0.0577=65,721 \mathrm{~m} / \mathrm{g} \Rightarrow 6.6 \mathrm{w}+9
\end{aligned}
$$

$$
\begin{aligned}
& \text { solits }(16-0+1600) / 2=1620 \mathrm{~m} / \mathrm{s} \\
& \frac{(92.5)(42.5 \mathrm{yy} / 4)+(2.5)(1620 \mathrm{mg/s})}{100}=81.94 \mathrm{yy} / \mathrm{g} \text { :- the } \mathrm{J} \text {. } 6 \mathrm{smot} \\
& (81.94 \mathrm{mg} / \mathrm{s})(110.2016 \mathrm{~s})=9030 \mathrm{mg} \mathrm{Cr} \\
& (425 \mathrm{yg})(108.1266 \mathrm{~s})=\frac{4595 \mathrm{gco}}{4435 \mathrm{ych}} \text { into expopt. in soment) }
\end{aligned}
$$

Mangarise
Supemati $\longrightarrow 0$
Solids $\quad(1390+1440) / 2=1415 \mathrm{y} / 9$

$$
\begin{aligned}
& \frac{(2.5)(1415)}{1000}=35.4 \mathrm{~m} / 4 \\
& (35.4 \mathrm{mg} / \mathrm{s})(110.2016)=3901 \mathrm{cy} \mathrm{Mas}_{\mathrm{m}} \\
& \text { totml } \mathrm{Mn} \text { fond }=1.5+8.1+6.8+2625=2642 \mathrm{Mg} \mathrm{Mn} \\
& 100(26 \cdot 12) / 3901=6890.2 c o v e r y \\
& (2625+1255) / 0.0572=67,310 \Rightarrow \\
& 6.7 \text { atwo. }
\end{aligned}
$$

Uranium
Sopmate $(3.22+3.12) / 2=3.22 \xrightarrow{\div 1.32} 2.4 \mathrm{H} / \mathrm{s}$
solids $(5+20+54(0) / 2=54 \times 0 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& ((97.15)(2.4)+(2.5)(5.490)) / 100=138.34 \mathrm{3} / \mathrm{s} \\
& (138.34 \mathrm{ag} / \mathrm{g})(110.2016 \mathrm{~g})=15245^{-7} \\
& (2.4 \mathrm{Mg} / \mathrm{g})(108.1266 \mathrm{~g})=\frac{260}{14985 \mathrm{my}} \mathrm{im}
\end{aligned}
$$

$$
\begin{aligned}
& 100(1034 x) / 14985=6990 \text { recovery } \\
& \frac{10116+4637}{0.0577}=255685 \mathrm{~m} / \mathrm{g} \Rightarrow 25.6 \omega+9_{0}
\end{aligned}
$$

\qquad 6 \qquad

The filtered solids apparantly retuined considuribl lisuid. How mulh of the componente
 result from

Consider the first wash step.
2.0750 g of filterad solils (1.90)

So acsum wor had 2 g of intentitiol ligui.l.
(Let's say 2 m)
Let's consilen ${ }^{133} \mathrm{cs}$.
From PNWD-2y63 (Urie at al 1848): Tir Liluted Aw.10) soportatent lis,oid containd

$$
(250+210) / 2=230 \mu 0 . / m \mathrm{~L}
$$

The volum of the first mosh solution was $16.9 \mathrm{~m}($ (ine p.1)
So,

$$
\begin{aligned}
(230-c i / m l)(2 \mathrm{~mL}) / 16.9 \mathrm{ml}= & 27.2 \text { uci/ml experted } \\
& \text { for dilotion. }
\end{aligned}
$$

mensure :- the first was $\rightarrow 17.0 \mathrm{nci} / \mathrm{ml}$
Similaly fo AI:

$$
\begin{aligned}
\text { PNWD. } 2463 \rightarrow(17800+14400) / 2 & =16350 \mathrm{mg} / \mathrm{ml} \\
(1630 \mathrm{~ms} / \mathrm{ml})(2 \mathrm{ml}) / 16.5 \mathrm{ml} & =1935 \mathrm{ag} / \mathrm{ml} \text { Lructed dilution }
\end{aligned}
$$

Found 1090 y $/ \mathrm{ml}$
Let's try to get a Letter assumption here. Assume that inas in concentration in first wesh solstion is due to dilution of intestitial lii,uid $+0.01 \pm \mathrm{NaOH}$ aded $\rightarrow(230 \mathrm{mg} / \mathrm{l})$
$12150 \mathrm{mg} / \mathrm{ml}$ found i- first lach solution.
$12150-230=11920 \mathrm{~m} / \mathrm{ml}$ due to dilation

Pacific Northwest Laboratorics
ENGINEERING WORKSHEET

Propared By:	n.1. humath	Date : 8/6/99	Project:		
Titie/Subject:	Aw/01 wash/lent			Reviewed ly	
				ns Brooks	fixix

