News & Media

Latest Stories

195 results found
Filtered by Geothermal Energy, Human Health, National Security, Reactor Licensing, Transmission, Visual Analytics, Waste Processing, and Weapons of Mass Effect
MARCH 31, 2020
Web Feature

Scientists Take Aim at the Coronavirus Toolkit

A PNNL scientist is studying the structures of the proteins on the surface of the novel coronavirus, using NMR spectroscopy to reveal information about the molecular toolkit that holds the keys to a vaccine or treatment.

When a pinch is problematic: Detecting pertechnetate in groundwater

pertechnetate

A PNNL researcher holds a redox sensor in the project’s lab in the Radiochemical Processing Laboratory.  Andrea Starr | PNNL

PNNL develops an effective tool for measuring a tricky contaminant

March 30, 2020
March 30, 2020
Highlight

Imagine trying to detect and measure a pinch of salt in an Olympic-size swimming pool. Now pretend the tools you are using don’t work well. Some can detect the salt but can’t tell you how much is in there, and others confuse salt with chlorine.

Now swap the swimming pool for a source of groundwater and the salt for a radioactive contaminant called pertechnetate.

ACS Journal Pertechnetate
The future of groundwater contamination measurement? The large thiol claws of PNNL’s subsurface probe with custom gold tips detect and measure pertechnetate in aqueous environments. Cover illustration by Rose Perry, PNNL

Pertechnetate is a byproduct of nuclear waste. If it ends up where it is not supposed to be—like, in groundwater—it could impact human health, which is why researchers and regulators keep a close lookout for it. The environmental safety limits for pertechnetate are roughly equivalent to a pinch of salt in an Olympic pool. And there are only a few technologies to measure it, each with limitations.

PNNL research tackles this challenge with new technology to detect and accurately measure pertechnetate at super low levels in groundwater. This research, “Redox-Based Electrochemical Affinity Sensor for Detection of Aqueous Pertechnetate Anion,” was the cover article for the March 2020 edition of ACS Sensors (DOI: 10.1021/acssensors.9b01531). 

Why it matters: The Environmental Protection Agency drinking water standard for pertechnetate is 0.000000052 grams per liter (that’s roughly 1/6000th the weight of a single poppy seed). While techniques exist for detection of pertechnetate in the environment, many have their drawbacks. PNNL’s technology can accurately measure low levels of pertechnetate in groundwater. Additionally, this proof of concept has the potential to be applied to other target contaminants simultaneously, increasing efficiency for environmental sensing.

Summary: The new technology acts like a coin counter, but at a microscopic level. It sorts one type of chemical from another, providing the total amount of a target chemical at the end. The tool uses custom probes with a gold electrode that only allows the target groundwater contaminants to stick while the other chemicals bounce off.

Sulfur likes to bind to gold and it also tends to react with pertechnetate, making sulfur-containing compounds an ideal intermediate in tool development. The sulfur sticks to the gold probe, then reacts with the pertechnetate, which forms a precipitate. The precipitate inhibits an electric current pulsing through the probe, providing an inverse measurement of pertechnetate concentration.

What’s Next: While this work was specifically focused on pertechnetate, there is potential to expand the technology to simultaneous multiple targets with the goal of increasing the efficiency of environmental measurements.

Sponsors: This research was funded by the Laboratory Directed Research and Development program at PNNL and by the Deep Vadose Zone program under the U.S. Department of Energy’s (DOE’s) Office of Environmental Management. Part of this research was performed at the Environmental Molecular Sciences Laboratory, a national user facility at PNNL managed by the DOE Office of Biological and Environmental Research.

PNNL Research Team: Sayandev Chatterjee, Meghan S. Fujimoto, Yingge Du, Gabriel B. Hall, Nabajit Lahiri, Eric D. Walter, Libor Kovarik. ACS Sensors cover illustration by Rose Perry, PNNL.

 

March 27, 2020

Solving an ergonomic problem to enable safeguards research

WSU engineering students demonstrate their detector lifting device.

WSU engineering students (from left background) Jacob Lazaro, Darin Malihi , Martin Gastelum, and Jared Oshiro demonstrate their detector lifting device for PNNL Physicist Mike Cantaloub (left front).

PNNL-WSU collaboration develops the future workforce

February 24, 2020
February 24, 2020
Highlight

Performing nuclear safeguards work safely and developing the next generation workforce are complementary goals of a longstanding program sponsored by the National Nuclear Security Administration’s Office of International Nuclear Safeguards. This program pairs PNNL research staff with Washington State University engineering students to provide solutions to enable nuclear safeguards research at PNNL.

In December, a team of WSU students delivered their solution to some ergonomic issues faced by PNNL physicist Mike Cantaloub and his team in a laboratory containing sensitive high-purity germanium detectors. These detectors are arranged in a tall fixture containing lead shielding to reduce the effects of naturally occurring atmospheric radiation and enable the accurate identification of radioactive isotopes in samples. Staff members using this instrument have to remove a 25-lb. plug detector, reach down to place samples, and then replace the plug detector. These activities have the potential for ergonomic injury to staff members and damage to the detectors.

WSU students Darin Malihi, Jared Oshiro, Martin Gastelum, Jacob Lazaro, Nicholas Takehara, and Saul Ramos designed and fabricated equipment that works similar to the weight training machines found in a gym—a lifting arm with a counter weight. The team also developed a solution to place the sample, a holder that is affixed to the bottom of the plug detector. Their solutions allow researchers to remove the detector quickly and efficiently and avoid reaching down to place the sample for detection.

“The solution devised by the team makes day-to-day operations in this laboratory safer and more efficient for the nuclear safeguards research team," said PNNL mechanical engineer and advisor to the WSU team, Patrick Valdez.

WSU engineering students assemble their lifting device.
WSU engineering students (from left) Jacob Lazaro, Saul Ramos, Jared Oshiro, and Nicholas Takehara assemble their lifting device and arrange the sample holders for a demonstration to PNNL research staff.

Improving nuclear waste storage models by studying the chemistry of material interactions

A female researcher wearing a blue lab coat and heat-resistant safety gloves pours molten glass out of a metal crucible onto a metal tray.

PNNL conducts research into glass, glass-ceramic, grout, metal, and metal-ceramic wasteforms that will withstand corrosion over geologic time.

PNNL | Andrea Starr

WastePD EFRC research on the glass-steel interface was published in Nature Materials

February 3, 2020
February 3, 2020
Highlight

New research unravels the chemistry of how materials in the waste packages used for the disposal of high-level radioactive waste interact in deep geologic repository environments. Having a better understanding of the interactions between materials under various conditions provides more information to make waste storage performance models more robust.

“Many performance models use conservative approaches such as assuming that the steel canister walls don’t even exist or that they dissolve very fast. This study provides the opportunity to better incorporate the canister barrier in the models,” said Joseph Ryan, a PNNL materials scientist and coauthor on the paper, “Self-accelerated corrosion of nuclear waste forms at material interfaces,” published in Nature Materials.

The United States is converting highly radioactive nuclear waste, also known as high-level waste, into glass. The molten glass is poured into steel canisters for long-term storage and ultimate disposal in a geologic repository. The goal is to design waste storage and disposal systems that would remain safe for hundreds of thousands of years to come, even if they are exposed to water. Because of the extensive time span of waste storage, researchers turn to cutting-edge science to project what will happen during that time period. The data is used to inform extensive safety analyses—helping make sure the system is engineered to be compatible with the natural system so that waste remains separate from the environment.

“We can’t just do a test on a material and say, ‘That material corroded this much in 30 days and extrapolate that to a million years.’ It doesn’t work that way,” Ryan said. “At the most basic level, we try to understand the underlying chemistry of corrosion. Then, we feed that information into computer models to calculate the expected release over time.”

In this study, led by the WastePD Energy Frontier Research Center based at Ohio State University, researchers unpacked the chemistry that occurs when two materials are close together, focusing on glass-steel along with ceramic-steel interactions. This chemical situation could occur when water has percolated into the repository and has breached the steel canister, exposing the glass-steel interface to water.

When water finally breaches the waste package container, it will fill the microscopic space that forms between the solid glass and the steel canister. Chemical reactions that happen in localized and tiny microenvironments such as these can be quite different than those happening in a more open setting. In this case, this localized area can have a different chemistry than the surrounding solution, causing more corrosion than would be expected.

The researchers tested their theory in the laboratory. They pressed glass and steel together in salty liquid and kept it at 90° C (194° F) for a month. At the end of the experiment, they found differences in the width of thin layers that indicated higher corrosion between the glass-steel couple interface than in a control sample.

Why it matters: This research allows scientists to improve models that project how a disposal canister could perform in a deep geologic environment. Having a better understanding of the interactions between materials under various conditions provides more information to make the models more robust. Currently, some models project what happens to waste under the assumption that the steel canister walls do not exist. Operating under this pretext can result in higher projections of waste degradation than would likely occur when taking a conservative approach. But better understanding the chemistry of how the solid waste and the steel canister interact allows a scientifically based understanding of how the canisters behave and interact with the glass to be included in performance assessment models.

Summary: High-level waste is immobilized as glass in stainless steel canisters. On cooling, a confined crevice space forms at the stainless steel-glass interface. If the disposal canister is breached and if water can enter the steel-glass interface, it could result in anodic dissolution of the stainless steel, generating metal cations, which hydrolyze to form protons and strongly increase the local acidity. This acidic environment may locally enhance the corrosion of both the stainless steel and the glass, which leads to the release of cations from the glass. Further, the coupled corrosion may trigger the precipitation of additional secondary phases that may impact subsequent canister corrosion or nuclear glass durability.

What’s Next: While this study sheds light on the chemical interactions that occur at the stainless steel-glass interface, there are more interactions to explore. Ultimately, a better understanding of different chemical mechanisms will improve the overall performance model.

Acknowledgements

Sponsors: This work was supported as part of the Center for Performance and Design of Nuclear Waste Forms and Containers, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award no. DESC0016584.

Research Team: Xiaolei Guo, Gerald S. Frankel, Gopal Viswanathan, Tianshu Li (Ohio State University); Stéphane Gin (CEA, France); Penghui Lei, Tiankai Yao, Jie Lian (Rensselaer Polytechnic Institute); Hongshen Liu, Dien Ngo, Seong H. Kim (Pennsylvania State University); Daniel K. Schreiber, John D. Vienna, Joseph V. Ryan (PNNL); Jincheng Du (University of North Texas)

January 27, 2020
JANUARY 21, 2020
Web Feature

Forensic Proteomics: Beyond DNA Profiling

A new book by PNNL biochemist Erick Merkley details forensic proteomics, a technique that directly analyzes proteins in unknown samples, in pursuit of making proteomics a widespread forensic method when DNA is missing or ambiguous.
JANUARY 20, 2020
News Release

Securing Radiological Sources on the Go

Radioactive materials are a critical tool in a number of industrial applications, particularly oil and gas drilling and welding. But, if they are lost or stolen, the materials could be used by terrorists to make dirty bombs.
JANUARY 10, 2020
Web Feature

Clark Recognized for Nuclear Chemistry Research

The world’s largest scientific society honored Sue B. Clark, a PNNL and WSU chemist, for contributions toward resolving our legacy of radioactive waste, advancing nuclear safeguards, and developing landmark nuclear research capabilities.