News & Media

Latest Stories

182 results found
Filtered by Emergency Response, Grid Analytics, Integrative Omics, Materials in Extreme Environments, Radiological & Nuclear Detection, Renewable Energy, Science of Interfaces, Situational Awareness & Consequence Prediction, and Water Power
SEPTEMBER 17, 2020
Web Feature

Not Your Average Refinery

In a new review, PNNL researchers outline how to convert stranded biomass to sustainable fuel using electrochemical reduction reactions in mini-refineries powered by renewable energy.
Web Feature

When Nano Meets Bio

Pacific Northwest National Laboratory (PNNL) is part of a continuing National Science Foundation (NSF) team investigating the environmental impact of nanoparticles at the molecular level.

NWRTC Notes From the Field (June 2020)

Interviews with public health professionals who are helping to keep us safe

July 20, 2020
July 20, 2020

PNNL's Northwest Regional Technology Center interviews Assistant Chief of Resource Management for Seattle Fire Department Willie Barrington about how his team faced the unknown when the COVID-19 pandemic hit Seattle, Washington.

Research topics

June 25, 2020
JULY 14, 2020
Web Feature

Turning the Tides

Their consistency and predictability makes tidal energy attractive, not only as a source of electricity but, potentially, as a mechanism to provide reliability and resilience to regional or local power grids.

Physical and Ecological Evaluation of a Fish-Friendly Surface Spillway

January 1, 2018
May 11, 2020
Journal Article


Spillway passage is one of the commonly accepted dam passage alternatives for downstream-migrating salmonids and other species. Fish passing in spill near the water surface have improved chances of survival than fish that pass deeper in the water column near spillway structure. In this study, an autonomous sensor device (Sensor Fish) was deployed in 2005 to evaluate fish passage conditions through the Removable Spillway Weir (RSW) at Ice Harbor Dam on the Snake River in south-central Washington State. RSWs enable fish to pass in spill nearer the water surface compared to conventional spillways where spill discharge is controlled using tainter gates. The RSW study was undertaken concurrently with a separate live fish injury and survival study. Conditions at the RSW–Spillway transition and deflector region were found to be potentially detrimental to fish. As a result, the spillway slope and deflector radius were modified, and the efficacy of the modifications was evaluated in 2015. The frequency of severe acceleration events (acceleration =95 G) during passage decreased significantly (from 51% to 35%; p-value = 0.049), and collisions with structures decreased from 47% to 27% (p-value = 0.015). Pressures observed in the Spillway–Deflector region and pressure rates of change decreased as well. Overall, the modifications resulted in improved hydraulic and fish passage conditions, which contributed to increased fish survival.

Research topics


Duncan J.P., Z. Deng, J.L. Arnold, T. Fu, B.A. Trumbo, T.J. Carlson, and D. Zhou. 2018. "Physical and Ecological Evaluation of a Fish-Friendly Surface Spillway." Ecological Engineering 110. PNNL-SA-126408. doi:10.1016/j.ecoleng.2017.10.012