News & Media

Latest Stories

138 results found
Filtered by Distribution, Emergency Response, Grid Architecture, Precision Materials by Design, Renewable Energy, Software Engineering, Solar Energy, and Vehicle Energy Storage
FEBRUARY 25, 2020
Web Feature

Forces of Attraction

Weak forces are strong enough to align semiconductor nanoparticles; new understanding may help make more useful materials
DECEMBER 11, 2019
Web Feature

PNNL to Lead New Grid Modernization Projects

PNNL will lead three new grid modernization projects funded by the Department of Energy. The projects focus on scalability and usability, networked microgrids, and machine learning for a more resilient, flexible and secure power grid.

PNNL Launches Marine Renewable Energy Database

Logo of Tethys Engineering

PNNL created an online database to share information related to the marine renewable energy industry.

Tethys Engineering addresses industry’s technical and engineering challenges

November 18, 2019
November 18, 2019
Highlight

Marine renewable energy (MRE) has the potential to provide 90 gigawatts of power in the United States through waves and tidal and ocean currents.

To harness the ocean’s energy, the MRE industry needs to understand how to address technical and engineering challenges such as efficient power takeoff, device survivability, and grid integration.

PNNL developed Tethys Engineering in September 2019 to allow sharing resources around the deployment of devices in corrosive, high-energy marine environments. The recently launched Tethys Engineering online database includes collected and curated documents surrounding the technical and engineering development of MRE devices. Users can search and filter results to intuitively identify information relevant to developers, researchers, and regulators.

Tethys Engineering includes more than 3,000 journal articles, conference papers, reports, and presentations related to wave, current, salinity gradient, and ocean thermal energy conversion technologies. The database contains information from around the world.

The Tethys Engineering database was created as a companion to the already established Tethys website, which focuses on the environmental effects of the MRE industry.

November 18, 2019
OCTOBER 31, 2019
Web Feature

The World’s Energy Storage Powerhouse

Pumped-storage hydropower offers the most cost-effective storage option for shifting large volumes of energy. A PNNL-led team wrote a report comparing cost and performance factors for 10 storage technologies.

Data Assimilation Impact of In Situ and Remote Sensing Meteorological Observations on Wind Power Forecasts during the First Wind Forecast Improvement Project (WFIP)

July 1, 2019
September 26, 2019
Journal Article

During the first Wind Forecast Improvement Project (WFIP) new meteorological observations were collected from a large suite of instruments, including wind velocities measured on networks of tall towers provided by wind industry partners, wind speeds measured by cup anemometers mounted on the nacelles of wind turbines, and by networks of Doppler sodars and radar wind profilers. Previous data denial studies found a significant improvement of up to 6% RMSE reduction for short-term wind power forecasts due to the assimilation of all of these observations into the NOAA Rapid Refresh (RAP) forecast model using a 3dvar GSI data assimilation scheme. As a follow-on study, we now investigate the impacts of assimilating into the RAP model either the additional remote sensing observations (sodars and wind profiling radars) alone, or assimilating the industry provided in situ observations (tall towers and nacelle anemometers) alone, in addition to the standard meteorological data sets that are routinely available. The more numerous tall tower/nacelle observations provide a relatively large improvement through the first 3-4 hours of the forecasts, which however decays to a negligible impact by forecast hour 6. In comparison the less numerous vertical profiling sodars/radars provide an initially smaller impact that decays at a much slower rate, with a positive impact present through the first 12 hours of the forecast. Large positive assimilation impacts for both sets of instruments are found during daytime hours, while small or even negative impacts are found during nighttime hours.

Wilczak J.M., J. Olson, I. Djalaova, L. Bianco, L.K. Berg, W.J. Shaw, and R.L. Coulter, et al. 2019. "Data Assimilation Impact of In Situ and Remote Sensing Meteorological Observations on Wind Power Forecasts during the First Wind Forecast Improvement Project (WFIP)." Wind Energy 22, no. 7:932-944. PNNL-SA-132499. doi:10.1002/we.2332

JULY 23, 2019
Web Feature

Molecular Mayhem at Root of Battery Breakdown

PNNL researchers demonstrate how the excitation of oxygen atoms that contributes to better performance of a lithium-ion battery also triggers a process that leads to damage, explaining a phenomenon that has been a mystery to scientists.