News & Media

Latest Stories

153 results found
Filtered by Data Analytics & Machine Learning, Fossil Energy, Grid Architecture, Materials in Extreme Environments, Plant Science, Radiation Measurement, Reactor Operations, Software Engineering, Technical Training, and Transportation
SEPTEMBER 17, 2020
Web Feature

Not Your Average Refinery

In a new review, PNNL researchers outline how to convert stranded biomass to sustainable fuel using electrochemical reduction reactions in mini-refineries powered by renewable energy.

Study Shows Coastal Wetlands Aid in Carbon Sequestration

data collection in marsh

PNNL scientist, Amy Borde collects data in a marsh on the Columbia River estuary.

Photo: Heida Diefenderfer

Sea-level rise impacts will likely decrease ecosystem carbon stocks

August 13, 2020
August 13, 2020

Tidal marshes, seagrass beds, and tidal forests are exceptional at absorbing and storing carbon. They are referred to as total ecosystem carbon stocks, yet little data exists quantifying how much carbon is absorbed and stored by tidal wetlands in the Pacific Northwest (PNW). Knowing this information is valuable, particularly in the context of sea level rise and with the associated need for Earth system modeling to predict changes at the coast.

The Science

Researchers found that the average total ecosystem carbon stock in the PNW is higher than in other areas of the U.S. and other parts of the world. Marsh carbon stocks, in particular, are twice the global average. Researchers found progressive increases in total ecosystem carbon stocks along the elevation gradient of coastal wetland types common in the PNW: seagrass, low marshes, high marshes, and tidal forests. Total carbon also increased along the salinity gradient, with more carbon occurring in lower salinity areas.

Additionally, this research showed that common methods used to estimate soil carbon actually underestimate soil carbon stocks in coastal wetlands. Soil carbon storage below the depth of 100 centimeters proved to be an important carbon pool in PNW tidal wetlands.

The Impact

The results suggest that long-term sea-level rise impacts, such as tidal inundation and increased soil salinity, will likely decrease ecosystem carbon stocks. This is a concern if wetlands can’t migrate with increased sea level due to being bound by topography and human development.  


This research arose from the Pacific Northwest Blue Carbon Working Group, of which Amy Borde and Heida Diefenderfer of Pacific Northwest National Laboratory’s Coastal Sciences Division are members. The team studied 28 tidal ecosystems across the PNW coast, from Humboldt Bay, California, to Padilla Bay, Washington. They sampled common coastal wetland types that occur along broad gradients of elevation, salinity, and tidal influences, collecting the data necessary to calculate total carbon stocks in both above ground biomass and the soil profile.

In three years of study, the researchers found that most carbon is in the wetland soils not aboveground, and much of it is deeper than one meter—a typical lower limit of sampling. Total ecosystem carbon stocks progressively increased along the terrestrial-aquatic gradient of coastal wetland ecosystems common in the temperate zone including seagrass, low marshes, high marshes, and tidal forests. The findings were reported in “Total Ecosystem Carbon Stocks at the Marine-Terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, USA,” published in the August 2020 online edition of Global Change Biology (DOI: 10.1111/gcb.15248).

Research Team: PNNL’s Amy Borde and Heida Diefenderfer, along with J. Boone Kauffman, Leila Giovanonni, James Kelly, Nicholas Dunstan, and Christopher Janousek (Oregon State University); Craig Cornu and Laura Brophy (Institute for Applied Ecology/Estuary Technical Group); and Jude Apple (Padilla Bay National Estuarine Research Reserve).


The grant award was administered by the Institute of Applied Ecology, and other partners included Oregon State University and the Padilla Bay National Estuarine Research Reserve. This research was supported by the National Oceanic and Atmospheric Administration, through a cooperative agreement with the University of Michigan. 


Kauffman, J Boone, Leila Giovanonni, James Kelly, Nicholas Dunstan, Amy Borde, Heida Diefenderfer, Craig Cornu, Christopher Janousek, Jude Apple, and Laura Brophy. “Total Ecosystem Carbon Stocks at the Marine‐terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, United States.” Global change biology, no. 0 (August 11, 2020). DOI: 10.1111/GCB.15248

August 11, 2020
JULY 9, 2020
Web Feature

Building a Better Battery—Faster

Researchers at PNNL have developed a software tool that helps universities, small business, and corporate developers to design better batteries with new materials that hold more energy.

Digging into the Details of Phosphorus Availability

Photo of plant with roots under ground

Courtesy of Shutterstock

New root blotting technique visualizes relationship between root growth, microbial activity, and soil nutrients.

July 7, 2020
July 7, 2020

The Science

Phosphorous is an important nutrient for plants. However, the mechanisms used by plants to extract phosphorus from soil and incorporate it into their biomass are not well understood. Now, researchers developed a new technique to visualize the activity and distribution of enzymes that mobilize phosphate around plant roots. Tracking the location of these enzymes can help researchers better understand the chemical dynamics between roots, microbes, and soil that influence how plants get nutrients. The approach could also be applied to other nutrient-cycling enzymes.

Diagram showing rhizosphere blotting nondestructive process
A new root blotting technique produces an imprint of plant roots growing in flat slabs. The paper imprints can then be probed with different fluorescent indicators to visualize both the distribution and activity of phosphate-mobilizing enzymes surrounding the roots.

The Impact

Phosphorus is an essential nutrient for plants and therefore, global demand for phosphorus fertilizers is expected to grow to accommodate the world’s growing population. However, most of these fertilizers are made from rock phosphorus, a non-renewable resource. This research provides new insights into the complex dynamics of phosphorous exchange between soil, microbes, and plant roots. Knowledge from this newly developed approach will help scientists identify strategies to improve phosphorus use efficiency for bioenergy crop production in marginal environments, as well as for agriculture in general.


Soil bacteria, fungi, and plants produce enzymes called phosphatases, which convert organic sources of phosphorus into a form that plants can absorb. Researchers have studied the microbial activity in bulk soil samples, providing information about the overall functional potential of the environment. But to better understand the dynamics between soil, plants, and microbes, more detail is needed. To accomplish that, a team of researchers developed a new technique based on root blotting to reveal phosphatase activity and distribution around plant roots. They grew switchgrass in flat pots or “rhizoboxes” containing soil with pellets of root matter as sources of organic phosphorus. Then, they applied a nitrocellulose membrane to capture proteins around the roots. Finally, the researchers stained the membrane with fluorescent indicators for phosphatase activity and protein concentration. This revealed the spatial distribution of phosphatase around the roots of plants, and highlighted regions of increased phosphatase activity.

This approach could be used to study phosphatase activity over time, as well as other nutrient-cycling enzymes. The combination of membrane extraction, with rapid analysis via fluorescent probes to reveal localization of phosphatase activity in the rhizosphere, offers a new technique for environmental applications. Expanding this approach could enable simultaneous visualization of multiple enzyme types in soil systems.


Development of this method was funded by DOE’s Office of Science, Biological and Environmental Research Program by the Early Career Research Award program (PI: Jim Moran).


V.S. Lin, et al. “Non-destructive spatial analysis of phosphatase activity and total protein distribution in the rhizosphere using a root blotting method.” Soil Biology and Biochemistry, 146 (2020). DOI: 10.1016/j.soilbio.2020.107820

JUNE 30, 2020
Web Feature

'Rooting' for Brachypodium Genes

Plant scientists at Pacific Northwest National Laboratory have garnered the most comprehensive—and first ever—genetic level dataset of the rooting process in a flowering model grass.
APRIL 28, 2020
News Release

A Leap in Using Silicon for Battery Anodes

Researchers at PNNL have come up with a novel way to use silicon as an energy storage ingredient, replacing the graphite in electrodes. Silicon can hold 10 times the electrical charge per gram, but it comes with problems of its own.
APRIL 28, 2020
Web Feature

The Quantum Gate Hack

PNNL quantum algorithm theorist and developer Nathan Wiebe is applying ideas from data science and gaming hacks to quantum computing

Oxide interfaces in disarray

Microscope image, bright blue background with bright green oxides

Atomic-scale imaging informs interface models for oxygen defect formation during disordering of oxides used in energy and computing.


Exploration of disorder at material interfaces could lead to better device performance

March 3, 2020
March 3, 2020

The structure of an interface at which two materials meet helps determine the performance of the computers and other devices we use every day. However, understanding and controlling interface disorder at the atomic level is a difficult materials science challenge.

A research team at PNNL and Texas A&M University combined cutting edge imaging and numerical simulations to examine disordering processes in widely used oxide materials. They found that certain oxide interface configurations remain stable in extreme environments, suggesting ways to build better performing, more reliable devices for fuel cells, space-based electronics, and nuclear energy.

Visualizing the disordering process

As reported in Advanced Materials Interfaces (Asymmetric Lattice Disorder Induced at Oxide Interfaces,” DOI: 10.1002/admi.201901944) the team set out to examine interfaces between pyrochlore-like and perovskite oxides, two common classes of functional materials used in energy and computing technologies. While most past work has focused on individual bulk materials, less attention has been paid to interfaces connecting them, as would be the case in a device. In particular, it is not clear how interface features, such as composition, bonding, and possible defects, govern disordering processes.

Funded by PNNL’s Nuclear Process Science Initiative (NPSI), the team employed experimental and theoretical methods to study the interface at different stages of disorder introduced through ion irradiation. They imaged the local structure of the material using high-resolution scanning transmission electron microscopy and convergent beam electron diffraction, which showed that the bulk of the two materials disordered (amorphized) before the interface. After further irradiating the material, they found that a band region near the interface had remained crystalline, while the rest of the structure had become amorphous.

To understand this behavior, the team turned to a technique called electron energy loss spectroscopy, which allowed them to examine the atomic-scale chemistry and defects formed at the interface. Their measurements revealed the presence of substantial amounts of defects called oxygen vacancies, which can greatly affect properties such as magnetism and conductivity. Based on these observations, the team constructed a theoretical model of the interface and explored the effect of different interface configurations on the tendency to form vacancies.

“In our model we are able to systematically vary interface features, such as crystal structure, intermixing, and strain, to see their effect on defect formation. We found that the structure of the materials on both sides of the interface can influence where defects are likely to form first,” explained Steven R. Spurgeon, a PNNL materials scientist. “Our model suggests that by selecting appropriate crystal structures and controlling how they connect, it may be possible to dictate the sequence of defect formation, which would allow us to enhance the properties of these materials.”

The team is exploring other interface structures and chemistries, with an eye toward improving the performance of oxides used in extreme environments.

The study was conducted as part of the NPSI project, “Damage Mechanisms and Defect Formation in Irradiated Model Systems,” led by Spurgeon.

Research Team

Steven Spurgeon (PNNL), Tiffany Kaspar (PNNL), Vaithiyalingam Shutthanandan (Environmental Molecular Sciences Laboratory at PNNL), Jonathan Gigax (Texas A&M), Lin Shao (Texas A&M), Michel Sassi (PNNL).
February 20, 2020

Improving nuclear waste storage models by studying the chemistry of material interactions

A female researcher wearing a blue lab coat and heat-resistant safety gloves pours molten glass out of a metal crucible onto a metal tray.

PNNL conducts research into glass, glass-ceramic, grout, metal, and metal-ceramic wasteforms that will withstand corrosion over geologic time.

PNNL | Andrea Starr

WastePD EFRC research on the glass-steel interface was published in Nature Materials

February 3, 2020
February 3, 2020

New research unravels the chemistry of how materials in the waste packages used for the disposal of high-level radioactive waste interact in deep geologic repository environments. Having a better understanding of the interactions between materials under various conditions provides more information to make waste storage performance models more robust.

“Many performance models use conservative approaches such as assuming that the steel canister walls don’t even exist or that they dissolve very fast. This study provides the opportunity to better incorporate the canister barrier in the models,” said Joseph Ryan, a PNNL materials scientist and coauthor on the paper, “Self-accelerated corrosion of nuclear waste forms at material interfaces,” published in Nature Materials.

The United States is converting highly radioactive nuclear waste, also known as high-level waste, into glass. The molten glass is poured into steel canisters for long-term storage and ultimate disposal in a geologic repository. The goal is to design waste storage and disposal systems that would remain safe for hundreds of thousands of years to come, even if they are exposed to water. Because of the extensive time span of waste storage, researchers turn to cutting-edge science to project what will happen during that time period. The data is used to inform extensive safety analyses—helping make sure the system is engineered to be compatible with the natural system so that waste remains separate from the environment.

“We can’t just do a test on a material and say, ‘That material corroded this much in 30 days and extrapolate that to a million years.’ It doesn’t work that way,” Ryan said. “At the most basic level, we try to understand the underlying chemistry of corrosion. Then, we feed that information into computer models to calculate the expected release over time.”

In this study, led by the WastePD Energy Frontier Research Center based at Ohio State University, researchers unpacked the chemistry that occurs when two materials are close together, focusing on glass-steel along with ceramic-steel interactions. This chemical situation could occur when water has percolated into the repository and has breached the steel canister, exposing the glass-steel interface to water.

When water finally breaches the waste package container, it will fill the microscopic space that forms between the solid glass and the steel canister. Chemical reactions that happen in localized and tiny microenvironments such as these can be quite different than those happening in a more open setting. In this case, this localized area can have a different chemistry than the surrounding solution, causing more corrosion than would be expected.

The researchers tested their theory in the laboratory. They pressed glass and steel together in salty liquid and kept it at 90° C (194° F) for a month. At the end of the experiment, they found differences in the width of thin layers that indicated higher corrosion between the glass-steel couple interface than in a control sample.

Why it matters: This research allows scientists to improve models that project how a disposal canister could perform in a deep geologic environment. Having a better understanding of the interactions between materials under various conditions provides more information to make the models more robust. Currently, some models project what happens to waste under the assumption that the steel canister walls do not exist. Operating under this pretext can result in higher projections of waste degradation than would likely occur when taking a conservative approach. But better understanding the chemistry of how the solid waste and the steel canister interact allows a scientifically based understanding of how the canisters behave and interact with the glass to be included in performance assessment models.

Summary: High-level waste is immobilized as glass in stainless steel canisters. On cooling, a confined crevice space forms at the stainless steel-glass interface. If the disposal canister is breached and if water can enter the steel-glass interface, it could result in anodic dissolution of the stainless steel, generating metal cations, which hydrolyze to form protons and strongly increase the local acidity. This acidic environment may locally enhance the corrosion of both the stainless steel and the glass, which leads to the release of cations from the glass. Further, the coupled corrosion may trigger the precipitation of additional secondary phases that may impact subsequent canister corrosion or nuclear glass durability.

What’s Next: While this study sheds light on the chemical interactions that occur at the stainless steel-glass interface, there are more interactions to explore. Ultimately, a better understanding of different chemical mechanisms will improve the overall performance model.


Sponsors: This work was supported as part of the Center for Performance and Design of Nuclear Waste Forms and Containers, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award no. DESC0016584.

Research Team: Xiaolei Guo, Gerald S. Frankel, Gopal Viswanathan, Tianshu Li (Ohio State University); Stéphane Gin (CEA, France); Penghui Lei, Tiankai Yao, Jie Lian (Rensselaer Polytechnic Institute); Hongshen Liu, Dien Ngo, Seong H. Kim (Pennsylvania State University); Daniel K. Schreiber, John D. Vienna, Joseph V. Ryan (PNNL); Jincheng Du (University of North Texas)

January 27, 2020