News & Media

Latest Stories

167 results found
Filtered by Data Analytics & Machine Learning, Explosives Detection, Geothermal Energy, High-Performance Computing, Plant Science, Science of Interfaces, Technical Training, Transportation, Vehicle Energy Storage, and Wind Energy
SEPTEMBER 17, 2020
Web Feature

Not Your Average Refinery

In a new review, PNNL researchers outline how to convert stranded biomass to sustainable fuel using electrochemical reduction reactions in mini-refineries powered by renewable energy.

Secretary of Energy Advisory Board (SEAB) Report Recognizes PNNL Contributions

ML and AI

Report features how PNNL’s computing capabilities are affecting the nation’s security, science, and energy missions

August 25, 2020
August 25, 2020

Contributions from researchers across Pacific Northwest National Laboratory (PNNL) were recognized in the preliminary findings of a Secretary of Energy Advisory Board (SEAB) report from a working group dedicated to the U.S. Department of Energy’s (DOE’s) capabilities and future in artificial intelligence (AI) and machine learning. PNNL researchers’ expertise is prominent throughout DOE’s AI efforts, particularly in the areas of data sciences and national security.

Based largely on input from DOE sponsors, the report features how PNNL’s computing capabilities are affecting the nation’s security, science, and energy missions. Key highlights include:

  • Studying how AI affects the global landscape for securing nuclear materials, potentially using deep learning to enhance physical and digital protections against material concealment, delivery, theft, and sabotage.
  • Describing how the United States and its partners might employ deep learning to combat attack efforts for enhanced nuclear security.
  • Designing advanced deep learning models to characterize operations with buildings, using electrical signatures on power lines, enabling new designs for energy-efficient buildings in addition to enhanced security features for nuclear facilities.
  • Leading the nuclear explosive monitoring project with data scientists working to significantly lower detection thresholds of low-yield, evasive underground nuclear explosions without increasing time-to-detection or the amount of human analysis.
  • Co-design of advanced accelerator, memory and data movement concepts to support convergence of AI and machine learning methods with other forms of data analytics and traditional scientific high performance computing (HPC). 

The report highlights PNNL’s support to the National Nuclear Security Administration, featuring joint laboratory collaborations between PNNL and others, including the Y-12 National Security Complex, Sandia National Laboratories, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Oak Ridge National Laboratory. Additionally, PNNL is working as part of DOE’s comparative advantages in AI, providing the Office of Energy Efficiency and Renewable Energy access to AI subject matter experts.

View full preliminary findings of the Secretary of Energy Advisory Board (SEAB) report.

For more information about PNNL’s research contributions, contact Aaron Luttman

JULY 9, 2020
Web Feature

Building a Better Battery—Faster

Researchers at PNNL have developed a software tool that helps universities, small business, and corporate developers to design better batteries with new materials that hold more energy.

Digging into the Details of Phosphorus Availability

Photo of plant with roots under ground

Courtesy of Shutterstock

New root blotting technique visualizes relationship between root growth, microbial activity, and soil nutrients.

July 7, 2020
July 7, 2020

The Science

Phosphorous is an important nutrient for plants. However, the mechanisms used by plants to extract phosphorus from soil and incorporate it into their biomass are not well understood. Now, researchers developed a new technique to visualize the activity and distribution of enzymes that mobilize phosphate around plant roots. Tracking the location of these enzymes can help researchers better understand the chemical dynamics between roots, microbes, and soil that influence how plants get nutrients. The approach could also be applied to other nutrient-cycling enzymes.

Diagram showing rhizosphere blotting nondestructive process
A new root blotting technique produces an imprint of plant roots growing in flat slabs. The paper imprints can then be probed with different fluorescent indicators to visualize both the distribution and activity of phosphate-mobilizing enzymes surrounding the roots.

The Impact

Phosphorus is an essential nutrient for plants and therefore, global demand for phosphorus fertilizers is expected to grow to accommodate the world’s growing population. However, most of these fertilizers are made from rock phosphorus, a non-renewable resource. This research provides new insights into the complex dynamics of phosphorous exchange between soil, microbes, and plant roots. Knowledge from this newly developed approach will help scientists identify strategies to improve phosphorus use efficiency for bioenergy crop production in marginal environments, as well as for agriculture in general.


Soil bacteria, fungi, and plants produce enzymes called phosphatases, which convert organic sources of phosphorus into a form that plants can absorb. Researchers have studied the microbial activity in bulk soil samples, providing information about the overall functional potential of the environment. But to better understand the dynamics between soil, plants, and microbes, more detail is needed. To accomplish that, a team of researchers developed a new technique based on root blotting to reveal phosphatase activity and distribution around plant roots. They grew switchgrass in flat pots or “rhizoboxes” containing soil with pellets of root matter as sources of organic phosphorus. Then, they applied a nitrocellulose membrane to capture proteins around the roots. Finally, the researchers stained the membrane with fluorescent indicators for phosphatase activity and protein concentration. This revealed the spatial distribution of phosphatase around the roots of plants, and highlighted regions of increased phosphatase activity.

This approach could be used to study phosphatase activity over time, as well as other nutrient-cycling enzymes. The combination of membrane extraction, with rapid analysis via fluorescent probes to reveal localization of phosphatase activity in the rhizosphere, offers a new technique for environmental applications. Expanding this approach could enable simultaneous visualization of multiple enzyme types in soil systems.


Development of this method was funded by DOE’s Office of Science, Biological and Environmental Research Program by the Early Career Research Award program (PI: Jim Moran).


V.S. Lin, et al. “Non-destructive spatial analysis of phosphatase activity and total protein distribution in the rhizosphere using a root blotting method.” Soil Biology and Biochemistry, 146 (2020). DOI: 10.1016/j.soilbio.2020.107820

JUNE 30, 2020
Web Feature

'Rooting' for Brachypodium Genes

Plant scientists at Pacific Northwest National Laboratory have garnered the most comprehensive—and first ever—genetic level dataset of the rooting process in a flowering model grass.

Distributed Wind Representation in Modeling and Simulation Tools

May 13, 2020
May 13, 2020

Pacific Northwest National Laboratory (PNNL) compiled, characterized, and evaluated the inclusion of distribution wind in a number of modeling and simulation tools for the U.S. Department of Energy (DOE) Microgrids, Infrastructure Resilience, and Advanced Controls Launchpad (MIRACL) project. This work also benefits the international community participating in International Energy Agency (IEA) Wind Task 41: Enabling Wind to Contribute to a Distributed Energy Future. Tools were assessed based on a survey of publicly available and readily accessible information. The evaluation approach, methodology, key takeaways, and next steps are presented below, and the evaluation table is attached to this PDF.  

Research topics

APRIL 28, 2020
News Release

A Leap in Using Silicon for Battery Anodes

Researchers at PNNL have come up with a novel way to use silicon as an energy storage ingredient, replacing the graphite in electrodes. Silicon can hold 10 times the electrical charge per gram, but it comes with problems of its own.
APRIL 28, 2020
Web Feature

The Quantum Gate Hack

PNNL quantum algorithm theorist and developer Nathan Wiebe is applying ideas from data science and gaming hacks to quantum computing