News & Media

Latest Stories

97 results found
Filtered by Computational Mathematics & Statistics, Data Analytics & Machine Learning, Emergency Response, Federal Buildings, Fossil Energy, Hydrogen & Fuel Cells, Reactor Licensing, and Visual Analytics

Oxide interfaces in disarray

Microscope image, bright blue background with bright green oxides

Atomic-scale imaging informs interface models for oxygen defect formation during disordering of oxides used in energy and computing.


Exploration of disorder at material interfaces could lead to better device performance

March 3, 2020
March 3, 2020

The structure of an interface at which two materials meet helps determine the performance of the computers and other devices we use every day. However, understanding and controlling interface disorder at the atomic level is a difficult materials science challenge.

A research team at PNNL and Texas A&M University combined cutting edge imaging and numerical simulations to examine disordering processes in widely used oxide materials. They found that certain oxide interface configurations remain stable in extreme environments, suggesting ways to build better performing, more reliable devices for fuel cells, space-based electronics, and nuclear energy.

Visualizing the disordering process

As reported in Advanced Materials Interfaces (Asymmetric Lattice Disorder Induced at Oxide Interfaces,” DOI: 10.1002/admi.201901944) the team set out to examine interfaces between pyrochlore-like and perovskite oxides, two common classes of functional materials used in energy and computing technologies. While most past work has focused on individual bulk materials, less attention has been paid to interfaces connecting them, as would be the case in a device. In particular, it is not clear how interface features, such as composition, bonding, and possible defects, govern disordering processes.

Funded by PNNL’s Nuclear Process Science Initiative (NPSI), the team employed experimental and theoretical methods to study the interface at different stages of disorder introduced through ion irradiation. They imaged the local structure of the material using high-resolution scanning transmission electron microscopy and convergent beam electron diffraction, which showed that the bulk of the two materials disordered (amorphized) before the interface. After further irradiating the material, they found that a band region near the interface had remained crystalline, while the rest of the structure had become amorphous.

To understand this behavior, the team turned to a technique called electron energy loss spectroscopy, which allowed them to examine the atomic-scale chemistry and defects formed at the interface. Their measurements revealed the presence of substantial amounts of defects called oxygen vacancies, which can greatly affect properties such as magnetism and conductivity. Based on these observations, the team constructed a theoretical model of the interface and explored the effect of different interface configurations on the tendency to form vacancies.

“In our model we are able to systematically vary interface features, such as crystal structure, intermixing, and strain, to see their effect on defect formation. We found that the structure of the materials on both sides of the interface can influence where defects are likely to form first,” explained Steven R. Spurgeon, a PNNL materials scientist. “Our model suggests that by selecting appropriate crystal structures and controlling how they connect, it may be possible to dictate the sequence of defect formation, which would allow us to enhance the properties of these materials.”

The team is exploring other interface structures and chemistries, with an eye toward improving the performance of oxides used in extreme environments.

The study was conducted as part of the NPSI project, “Damage Mechanisms and Defect Formation in Irradiated Model Systems,” led by Spurgeon.

Research Team

Steven Spurgeon (PNNL), Tiffany Kaspar (PNNL), Vaithiyalingam Shutthanandan (Environmental Molecular Sciences Laboratory at PNNL), Jonathan Gigax (Texas A&M), Lin Shao (Texas A&M), Michel Sassi (PNNL).
February 20, 2020

Creating better models to predict subsurface water flow and transport

river soil

New framework improves the predictions of subsurface sediment permeability

February 19, 2020
February 17, 2020

The Science
Co-authors of a paper in Water Resources Research led by PNNL researchers developed a new iterative data assimilation framework to more accurately describe the permeability of subsurface sediments in numerical models when using facies, a system that classifies dissimilar sediments into distinct geological units that share important features of interest to modelers. The iterative framework applies data from field observations and experiments to inform the delineation of facies at the start of each model run. Further refinements are achieved at each iteration through the application of statistical constraints that maintain geologic continuity among adjacent locations.

Distribution of Facies
Spatial distribution of three facies (red, yellow and blue colors) in a 2D vertical cross section of a 3D case. Figures show the new method provides a more accurate and continuous estimation of facies distribution compared to the conventional method. White colors in the figures are bore samples and black dots are the conditioning points selected by the new method.

The Impact
Spatial distribution of three facies (red, yellow and blue colors) in a 2D vertical cross section of a 3D case. Figures show the new method provides a more accurate and continuous estimation of facies distribution compared to the conventional method. White colors in the figures are bore samples and black dots are the conditioning points selected by the new method.

More realistic numerical representations of the permeability of subsurface sediments lead to improved predictions of groundwater flow and the concentration of constituents that are transported with the flow. The data assimilation framework can also be applied to estimate other subsurface properties from field measurements, or from data from other systems such as watersheds, as long as they can be categorized into a few discrete representative units.

Observational data on subsurface permeability is limited for most watersheds because of the impracticality of digging enough boreholes or wells to capture the heterogeneous nature of the subsurface environment. To solve for this limitation, researchers have widely adopted approaches that estimate permeability from field experiments such as a) measuring how water levels at a cluster of wells change when water is pumped at a nearby well, or b) monitoring how quickly a tracer released at one well reaches other wells in the aquifer. The U.S. Department of Energy’s Hanford 300 Area Integrated Field Research Challenge site, for example, is well characterized from data assimilation methods that were used to understand the long-term persistence of nuclear fuel fabrication wastes disposal from 1943 to 1975.

The use of a facies approach to segment the subsurface reduces complexity in numerical models by grouping heterogeneous sediments into distinct homogenous units defined by hydraulic, physical and or chemical properties. A major difficulty with existing facies-based approaches in numerical models is that each facies is treated as its own, independent unit. Therefore, these models fail to capture the spatial continuity of subsurface sediments. The authors of this paper developed a framework that maintains continuity between neighboring facies in numerical models and thus better reflects true subsurface geology, and thereby groundwater movement. The improvements come from an iterative data assimilation approach that incorporates direct and indirect data about subsurface permeability gathered from field observations and experiments at the start of each model run as well as the application of statistical constraints about subsurface geology. The data assimilation and statistical constraint steps are re-imposed for each iteration, leading to refined facies delineation. This framework reduces uncertainty about the spatial distribution of sediment types in the subsurface, which results in more accurate predictions of groundwater flow and constituent transport.

The authors evaluated the performance of the new framework on a two-dimensional, two-facies model and a three-dimensional, three-facies model of DOE’s well-characterized Hanford 300 Area that were conceptualized from borehole and field tracer experiments. The results of the research shows that the framework can identify facies spatial patterns and reproduce tracer breakthrough curves with much improved accuracy over facies-based approaches that lack spatial continuity constraints. With additional data, the authors say that the framework can also be used to categorize biogeochemical reactive units in an aquifer.

Xingyuan Chen, Earth Scientist,

Funding for this research came from DOE Office of Science BER, PNNL Subsurface Biogeochemical Research SFA.

Song, X., Chen, X., Ye, M., Dai, Z., Hammond, G., And Zachara, J.M. (2019). Delineating facies spatial distribution by integrating ensemble data assimilation and Indicator Geostatistics with level-set transformation. Water Resources Research, 55.

March 9, 2019
JANUARY 21, 2020
Web Feature

Forensic Proteomics: Beyond DNA Profiling

A new book by PNNL biochemist Erick Merkley details forensic proteomics, a technique that directly analyzes proteins in unknown samples, in pursuit of making proteomics a widespread forensic method when DNA is missing or ambiguous.