News & Media

Latest Stories

139 results found
Filtered by Coastal Science, Electric Grid Modernization, Emergency Response, Environmental Remediation, Graph Analytics, Neutrino Physics, Plant Science, Solid Phase Processing, and Vehicle Energy Storage
APRIL 28, 2020
News Release

A Leap in Using Silicon for Battery Anodes

Researchers at PNNL have come up with a novel way to use silicon as an energy storage ingredient, replacing the graphite in electrodes. Silicon can hold 10 times the electrical charge per gram, but it comes with problems of its own.
APRIL 21, 2020
Web Feature

Beneath It All

At PNNL, subsurface science inhabits two separate but interlocking worlds. One looks at basic science, the other at applied science and engineering. Both are funded by the U.S. Department of Energy (DOE).
MARCH 12, 2020
Web Feature

Tracking Toxics in the Salish Sea

With the help of a diagnostic tool called the Salish Sea Model, researchers found that toxic contaminant hotspots in the Puget Sound are tied to localized lack of water circulation and cumulative effects from multiple sources.
DECEMBER 11, 2019
Web Feature

PNNL to Lead New Grid Modernization Projects

PNNL will lead three new grid modernization projects funded by the Department of Energy. The projects focus on scalability and usability, networked microgrids, and machine learning for a more resilient, flexible and secure power grid.
DECEMBER 6, 2019
Web Feature

Converging on Coastal Science

Advancing a more collective understanding of coastal systems dynamics and evolution is a formidable scientific challenge. PNNL is meeting the challenge head on to inform decisions for the future.
NOVEMBER 26, 2019
Web Feature

Conquering Peak Power

PNNL’s Intelligent Load Control technology manages and adjusts electricity use in buildings when there’s peak demand on the power grid.
NOVEMBER 5, 2019
Web Feature

Magnesium Takes ShAPE™

Two forms of magnesium material were processed into tubing using PNNL’s Shear Assisted Processing and Extrusion™ technology. Both materials were found to have quite similar and improved properties—even though they began vastly different.