News & Media

Latest Stories

258 results found
Filtered by Chemistry, Energy Storage, Environmental Remediation, Fuel Cycle Research, Neutrino Physics, Reactor Operations, Secure & Adaptive Systems, and Transmission
MARCH 12, 2020
Web Feature

Tracking Toxics in the Salish Sea

With the help of a diagnostic tool called the Salish Sea Model, researchers found that toxic contaminant hotspots in the Puget Sound are tied to localized lack of water circulation and cumulative effects from multiple sources.
JANUARY 10, 2020
Web Feature

Clark Recognized for Nuclear Chemistry Research

The world’s largest scientific society honored Sue B. Clark, a PNNL and WSU chemist, for contributions toward resolving our legacy of radioactive waste, advancing nuclear safeguards, and developing landmark nuclear research capabilities.
DECEMBER 4, 2019
Web Feature

A More Painless Extraction

PNNL and Argonne researchers developed and tested a chemical process that successfully captures radioactive byproducts from used nuclear fuel so they could be sent to advanced reactors for destruction while also producing electrical power.
OCTOBER 31, 2019
Web Feature

The World’s Energy Storage Powerhouse

Pumped-storage hydropower offers the most cost-effective storage option for shifting large volumes of energy. A PNNL-led team wrote a report comparing cost and performance factors for 10 storage technologies.
AUGUST 30, 2019
Web Feature

Optimize, not Oversize

Energy storage is slowly shifting utility planning practices from the current paradigm, which ensures grid reliability by building reserve generation resources, to ensuring grid reliability by optimizing grid services.
AUGUST 20, 2019
Web Feature

Getting Clear about Clean Air

Nitrogen oxides, also known as NOx, form when fossil fuels burn at high temperatures. When emitted from industrial sources such as coal power plants, these pollutants react with other compounds to produce harmful smog.
JULY 23, 2019
Web Feature

Molecular Mayhem at Root of Battery Breakdown

PNNL researchers demonstrate how the excitation of oxygen atoms that contributes to better performance of a lithium-ion battery also triggers a process that leads to damage, explaining a phenomenon that has been a mystery to scientists.