News & Media

Latest Stories

146 results found
Filtered by Chemical & Biological Signatures Science, Ecosystem Science, Energy Efficiency, Nuclear Nonproliferation, Radiological & Nuclear Detection, Reactor Operations, Secure & Adaptive Systems, and Solid Phase Processing
JANUARY 21, 2020
Web Feature

Forensic Proteomics: Beyond DNA Profiling

A new book by PNNL biochemist Erick Merkley details forensic proteomics, a technique that directly analyzes proteins in unknown samples, in pursuit of making proteomics a widespread forensic method when DNA is missing or ambiguous.
JANUARY 10, 2020
Web Feature

Clark Recognized for Nuclear Chemistry Research

The world’s largest scientific society honored Sue B. Clark, a PNNL and WSU chemist, for contributions toward resolving our legacy of radioactive waste, advancing nuclear safeguards, and developing landmark nuclear research capabilities.
NOVEMBER 26, 2019
Web Feature

Conquering Peak Power

PNNL’s Intelligent Load Control technology manages and adjusts electricity use in buildings when there’s peak demand on the power grid.
NOVEMBER 13, 2019
Web Feature

Let There Be (Acceptable) Light

Advancements such as LEDs have changed consumers’ experience with lighting. Whereas there was once a simple choice of how much light a consumer desired, there’s now a variety of choices to be made about the appearance of light.
NOVEMBER 5, 2019
Web Feature

Magnesium Takes ShAPE™

Two forms of magnesium material were processed into tubing using PNNL’s Shear Assisted Processing and Extrusion™ technology. Both materials were found to have quite similar and improved properties—even though they began vastly different.

Protecting climate-sensitive soil ecosystems

Image of permafrost landscape

Review paper summarizes the effects of climate change on soil microorganisms and the ecosystem services they provide, and evaluates potential mitigation measures.

October 14, 2019
October 14, 2019
Highlight

The Science
Researchers from Pacific Northwest National Laboratory reviewed the current state of knowledge about the impacts of climate change on soil microorganisms in different climate-sensitive soil ecosystems. They also examined the possibilities of using soil microorganisms to store carbon or inoculate plants to help mitigate the negative consequences of climate change. Based on their review, the authors recommend an integrated approach that combines beneficial properties of soil microorganisms with sustainable soil management practices to support plant production, maintain a clean water supply, sustain biodiversity, store carbon, and increase resilience in the face of a changing climate.

Research showed that microbial physiology largely determines the ability of soil ecosystems to adapt to climate change, and that some microbiomes may be suitable for mitigation measures such as carbon sequestration and plant inoculation.
Research showed that microbial physiology largely determines the ability of soil ecosystems to adapt to climate change, and that some microbiomes may be suitable for mitigation measures such as carbon sequestration and plant inoculation.

The Impact
The effects of climate change on soil microbial communities have potentially large consequences for Earth's soil ecosystems and the beneficial services that soil microbiomes provide. This review highlights the need to connect the fine-scale details arising from microbiome studies to the landscape-scale resolution of many Earth system climate models in the search for climate change mitigation measures.

Summary
On Earth’s terrestrial surface, the soil microbiome cycles nutrients to sustain plant and animal life. While this microbial community is innately connected to environmental conditions, impacts on the soil microbiome due to climate change vary depending on the ecosystem. Different aspects of climate change impact soil microbial communities and their important ecosystem functions, such as cycling of carbon and supporting plant growth. But the molecular details of soil biochemical reactions responsible for these key functions are largely unknown.

Researchers synthesized existing knowledge of climate change impacts across a range of soil environments—permafrost, forests, grassland, wetlands, and deserts—to examine how the microbiome responds. They looked at microbial changes coinciding with different climate change variables including increases in carbon dioxide levels, temperatures, drought, flooding, and fires. Their review showed that microbial physiology largely determines the ability of soil ecosystems to adapt, and that some microbiomes may be suitable for climate change mitigation measures such as carbon sequestration and promoting plant growth. The review sets the stage for future research on soil microbiomes and challenges to overcome in order to connect to larger-scale predictive models of climate change.

Contacts
Janet Jansson, Lab Fellow, janet.jansson@pnnl.gov
Kirsten Hofmockel, Earth Scientist, kirsten.hofmockel@pnnl.gov

Funding
This research was supported by the Department of Energy Office of Biological and Environmental Research (BER) Genomic Science Program and is a contribution of the Scientific Focus Area "Phenotypic response of the soil microbiome to environmental perturbations." PNNL is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO1830. A portion of the research was performed using the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility sponsored by BER and located at PNNL.

J. Jansson and K.Hofmockel, “Soil microbiomes and climate changeNature Reviews Microbiology, 04 October 2019. [DOI: 10.1038/s41579-019-0265-7]

Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions

Image of Peatland forest

Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures.

October 3, 2019
October 3, 2019
Highlight

The Science
As atmospheric temperatures and carbon dioxide concentrations rise, photosynthesis by plants is expected to increase, leading to more photosynthate released by roots to the soil microbial community. Researchers from Pacific Northwest Northwest National Laboratory and Iowa State University examined the response of boreal peatland soils under future high temperatures. The team found that the peatland’s soil microbial communities allocated more carbon to enzyme production in search of phosphorus as temperatures climbed. This diversion of carbon resources could reduce future carbon losses by microbial respiration from the peatland.

The Impact
As boreal peatlands face warmer and drier conditions, it is expected that more carbon will be lost from these carbon-rich soils through increased microbial activity. This study showed that enhanced respiration and concomitant loss of carbon is potentially constrained by nutrient demands of the microorganisms. This tradeoff may help the peatland ecosystem retain soil carbon as temperatures warm.

Summary
Root exudates are carbon compounds, such as sugars and organic acids, which are easily consumed by soil microorganisms. With a warming climate, science suggests that increased photosynthesis by plants could lead to more photosynthate released as root exudates to the soil microbial community. To examine this question, researchers used laboratory incubations to control both temperature and moisture and simulate belowground substrate additions under an accelerated growing season. Results showed that with a moderate increase in temperature, the addition of common root exude compounds in peatlands initially increased carbon lost through microbial respiration above those treatments receiving water only. However, when pushed to future expected high temperatures, additional exudate compounds dampened the amount of additional carbon respired as compared to treatments receiving water only. This reduction in respiration suggests the microorganisms allocated carbon compounds to enzyme production to mine for limited resources instead of respiring carbon. The data also support the idea that boreal peatland microbial communities maintain a more narrow range in function, measured as respiration, across a range in climate conditions. A wide climatic niche in addition to reallocation of carbon resources dampens the magnitude of change in carbon respiration with increasing temperatures.

Contact
Kirsten Hofmockel
Biological and Environmental Scienes Directorate
kirsten.hofmockel@pnnl.gov

Funding
This material is based upon work supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science (TES) Program, under grant ER65430 to Iowa State University.

Keiser, A.D., Smith, M., Bell, S. & Hofmockel, K.S. Peatland microbial community response to altered climate tempered by nutrient availability. Soil Biology and Biochemistry 137, 1-9, (2019).

Improving Ukraine’s Energy Security: the Role of Energy Efficiency

October 31, 2018
September 26, 2019
Report

This report analyzes the link between energy security and energy efficiency in Ukraine. The paper explores the roots of high energy intensity of the Ukrainian economy and its dependence on imported energy resources. In recent years, the Government of Ukraine has linked energy security with energy efficiency, which indicates a paradigm shift in the country’s energy strategy. Using broad statistical data, the report explores the major options for Ukraine in improving its energy efficiency. Special attention is paid to energy consumption in the residential sector and district heating. The report analyzes recent economic, legislative, and institutional measures to promote energy efficiency and strengthen energy security. The analysis shows that Ukraine can significantly reduce its dependence on imported energy resources and avoid major energy security risks by creating an enabling environment for large-scale energy efficiency improvements in all sectors of the Ukrainian economy.

Kholod N., A. Denysenko, M. Evans, and V. Roshchanka. 2018. Improving Ukraine’s Energy Security: the Role of Energy Efficiency. PNNL-27447. Richland, WA: Pacific Northwest National Laboratory.

A New Role for Microbes in Peatland Nitrogen Supply

Peatland

Research reveals that bacteria contribute to peatland nitrogen availability through organic nitrogen breakdown.

September 9, 2019
September 6, 2019
Highlight

The Science
Nitrogen is a critical nutrient regulating productivity in many ecosystems and influences nutrient availability by affecting organic matter decomposition rates. Nitrogen fixation—converting atmospheric nitrogen into biologically available compounds—by microorganisms has historically been considered the primary nitrogen source in peatlands. However, recent work shows that nitrogen fixation alone cannot meet nitrogen requirements. Researchers at Pacific Northwest National Laboratory and Iowa State University evaluated the genetic potential of microorganisms to supply nitrogen in peatlands via the breakdown of large organic molecules. Results show bacterial potential for cleaving amino acids from organic inputs from plants. This finding contrasts with the paradigm that fungi are genetically superior in their capacity to release nitrogen from organic molecules.

The Impact
Understanding the processes that govern carbon and nutrient dynamics in northern peatlands is critical to predicting future biogeochemical cycles. These ecosystems account for 15‒30% of global soil carbon storage. This study expands the understanding of coupled carbon and nitrogen cycles in northern peatlands, with results indicating that understudied bacterial and archaeal lineages may be central in these ecosystems’ response to environmental change. This project leverages DOE’s one-of-a-kind SPRUCE infrastructure to address mechanisms underlying ecosystem responses to climate change and contribute to the broader goals of the Terrestrial Ecosystem Science Scientific Focus Area.

Summary

Nitrogen is a common limitation in plant productivity and its source remains unresolved in northern peatlands, which are vulnerable to environmental change. Decomposition of complex organic matter into free amino acids has been proposed as an important nitrogen source, but the genetic potential of microorganisms catalyzing this process has not been examined.

Researchers evaluated the microbial—fungal, bacterial, and archaeal—genetic potential for organic nitrogen break down in peatlands at Marcell Experimental Forest in northern Minnesota. The team investigated the abundance and diversity of protease genes involved in the release of nitrogen from organic matter across depths and in two distinct peatland environments—bogs and fens. Analysis of shotgun metagenomic data demonstrates high genetic potential for production of free amino acids across a diverse range of microbial guilds.

Researchers also found a high abundance of protease genes compared with nitrogen-fixation genes typically thought to provide nitrogen in peatlands. Bacterial genes encoding proteolytic activity suggested a predominant role for bacteria in regulating productivity, which contrasted with the paradigm of fungal dominance of organic nitrogen decomposition. This research is foundational to understanding the mechanisms by which carbon cycling is linked to ecosystem nutrient status in the face of changing climate.

Contacts
Emily Graham, Pacific Northwest National Laboratory, emily.graham@pnnl.gov
Kirsten S. Hofmockel, Pacific Northwest National Laboratory, kirsten.hofmockel@pnnl.gov

Funding
This research is supported by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science SFA.

E.B. Graham, F. Yang, S. Bell, K.S. Hofmockel, “High Genetic Potential for Proteolytic Decomposition in Northern Peatland Ecosystems.” Applied and Environmental Microbiology 85, e02851-18 (2019).