News & Media

Latest Stories

144 results found
Filtered by Chemical & Biological Signatures Science, Computational Research, Cybersecurity, Data Analytics & Machine Learning, Distribution, Environmental Remediation, Graph Analytics, Integrative Omics, Solid Phase Processing, and Visual Analytics
SEPTEMBER 9, 2020
Web Feature

When Nano Meets Bio

Pacific Northwest National Laboratory (PNNL) is part of a continuing National Science Foundation (NSF) team investigating the environmental impact of nanoparticles at the molecular level.

Secretary of Energy Advisory Board (SEAB) Report Recognizes PNNL Contributions

ML and AI

Report features how PNNL’s computing capabilities are affecting the nation’s security, science, and energy missions

August 25, 2020
August 25, 2020
Highlight

Contributions from researchers across Pacific Northwest National Laboratory (PNNL) were recognized in the preliminary findings of a Secretary of Energy Advisory Board (SEAB) report from a working group dedicated to the U.S. Department of Energy’s (DOE’s) capabilities and future in artificial intelligence (AI) and machine learning. PNNL researchers’ expertise is prominent throughout DOE’s AI efforts, particularly in the areas of data sciences and national security.

Based largely on input from DOE sponsors, the report features how PNNL’s computing capabilities are affecting the nation’s security, science, and energy missions. Key highlights include:

  • Studying how AI affects the global landscape for securing nuclear materials, potentially using deep learning to enhance physical and digital protections against material concealment, delivery, theft, and sabotage.
  • Describing how the United States and its partners might employ deep learning to combat attack efforts for enhanced nuclear security.
  • Designing advanced deep learning models to characterize operations with buildings, using electrical signatures on power lines, enabling new designs for energy-efficient buildings in addition to enhanced security features for nuclear facilities.
  • Leading the nuclear explosive monitoring project with data scientists working to significantly lower detection thresholds of low-yield, evasive underground nuclear explosions without increasing time-to-detection or the amount of human analysis.
  • Co-design of advanced accelerator, memory and data movement concepts to support convergence of AI and machine learning methods with other forms of data analytics and traditional scientific high performance computing (HPC). 

The report highlights PNNL’s support to the National Nuclear Security Administration, featuring joint laboratory collaborations between PNNL and others, including the Y-12 National Security Complex, Sandia National Laboratories, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Oak Ridge National Laboratory. Additionally, PNNL is working as part of DOE’s comparative advantages in AI, providing the Office of Energy Efficiency and Renewable Energy access to AI subject matter experts.

View full preliminary findings of the Secretary of Energy Advisory Board (SEAB) report.

For more information about PNNL’s research contributions, contact Aaron Luttman

Study Shows Coastal Wetlands Aid in Carbon Sequestration

data collection in marsh

PNNL scientist, Amy Borde collects data in a marsh on the Columbia River estuary.

Photo: Heida Diefenderfer

Sea-level rise impacts will likely decrease ecosystem carbon stocks

August 13, 2020
August 13, 2020
Highlight

Tidal marshes, seagrass beds, and tidal forests are exceptional at absorbing and storing carbon. They are referred to as total ecosystem carbon stocks, yet little data exists quantifying how much carbon is absorbed and stored by tidal wetlands in the Pacific Northwest (PNW). Knowing this information is valuable, particularly in the context of sea level rise and with the associated need for Earth system modeling to predict changes at the coast.

The Science

Researchers found that the average total ecosystem carbon stock in the PNW is higher than in other areas of the U.S. and other parts of the world. Marsh carbon stocks, in particular, are twice the global average. Researchers found progressive increases in total ecosystem carbon stocks along the elevation gradient of coastal wetland types common in the PNW: seagrass, low marshes, high marshes, and tidal forests. Total carbon also increased along the salinity gradient, with more carbon occurring in lower salinity areas.

Additionally, this research showed that common methods used to estimate soil carbon actually underestimate soil carbon stocks in coastal wetlands. Soil carbon storage below the depth of 100 centimeters proved to be an important carbon pool in PNW tidal wetlands.

The Impact

The results suggest that long-term sea-level rise impacts, such as tidal inundation and increased soil salinity, will likely decrease ecosystem carbon stocks. This is a concern if wetlands can’t migrate with increased sea level due to being bound by topography and human development.  

Summary

This research arose from the Pacific Northwest Blue Carbon Working Group, of which Amy Borde and Heida Diefenderfer of Pacific Northwest National Laboratory’s Coastal Sciences Division are members. The team studied 28 tidal ecosystems across the PNW coast, from Humboldt Bay, California, to Padilla Bay, Washington. They sampled common coastal wetland types that occur along broad gradients of elevation, salinity, and tidal influences, collecting the data necessary to calculate total carbon stocks in both above ground biomass and the soil profile.

In three years of study, the researchers found that most carbon is in the wetland soils not aboveground, and much of it is deeper than one meter—a typical lower limit of sampling. Total ecosystem carbon stocks progressively increased along the terrestrial-aquatic gradient of coastal wetland ecosystems common in the temperate zone including seagrass, low marshes, high marshes, and tidal forests. The findings were reported in “Total Ecosystem Carbon Stocks at the Marine-Terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, USA,” published in the August 2020 online edition of Global Change Biology (DOI: 10.1111/gcb.15248).

Research Team: PNNL’s Amy Borde and Heida Diefenderfer, along with J. Boone Kauffman, Leila Giovanonni, James Kelly, Nicholas Dunstan, and Christopher Janousek (Oregon State University); Craig Cornu and Laura Brophy (Institute for Applied Ecology/Estuary Technical Group); and Jude Apple (Padilla Bay National Estuarine Research Reserve).

Funding

The grant award was administered by the Institute of Applied Ecology, and other partners included Oregon State University and the Padilla Bay National Estuarine Research Reserve. This research was supported by the National Oceanic and Atmospheric Administration, through a cooperative agreement with the University of Michigan. 

10.1111/gcb.15248

Kauffman, J Boone, Leila Giovanonni, James Kelly, Nicholas Dunstan, Amy Borde, Heida Diefenderfer, Craig Cornu, Christopher Janousek, Jude Apple, and Laura Brophy. “Total Ecosystem Carbon Stocks at the Marine‐terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, United States.” Global change biology, no. 0 (August 11, 2020). DOI: 10.1111/GCB.15248

August 11, 2020

Making Sense of the 2018 National Biodefense Strategy

July 23, 2020
July 23, 2020
Journal Article

Following the release of the 2018 National Biodefense Strategy, PNNL released a second-generation, publicly available tool—free for use at https://bplat.pnnl.gov—that maps out current biodefense responsibilities and brings clarity to the tangle of laws, directives, and agencies that together protect US citizens. The Biodefense Policy Landscape Analysis Tool, or B-PLAT, is affectionately called the “spaghetti monster,” because it visualizes information using spaghetti-like strands to demonstrate relationships between agencies, their specific responsibilities, and the degree of complexity and interconnectedness of the biodefense policy domain.

RA Bartholomew and KM Omberg.  “Making Sense of the 2018 National Biodefense Strategy.” Bulletin of the Atomic Scientists.  January 2019.  https://thebulletin.org/2019/01/making-sense-of-the-2018-national-biodefense-strategy/ 

January 18, 2019

A Publicly Available Landscape Analysis Tool for Biodefense Policy

July 23, 2020
July 23, 2020
Journal Article

In 2017, Pacific Northwest National Laboratory chartered an internal effort to capture relevant federal biodefense policy directives and laws in a format conducive to visualization and to better understanding the current state of the US biodefense enterprise.The resulting Biodefense Policy Landscape Analysis Tool (B-PLAT) is publicly available and captures more than 200 enduring biodefense responsibilities assigned by the following directives and laws.

10.1089/hs.2017.0088

KM Omberg, LR Franklin, DR Jackson, KL Taylor, KL Wahl, A Lesperance,  EM Wynkoop, JAS Gray, OP Leiser, SL Frazar, RM Ozanich , and RA Bartholomew. “A Publicly Available Landscape Analysis Tool for Biodefense.” Health Security. February 16(1): 2018.  DOI:  10.1089/hs.2017.0088

February 1, 2018
JULY 21, 2020
Web Feature

A Remarkable Rate of Return with Catalytic Bias

A multi-institution research team found how the protein environment surrounding some enzymes can alter the direction of a cellular reaction, as well as its rate—up to six orders of magnitude—in a phenomenon referred to as catalytic bias.
APRIL 21, 2020
Web Feature

Beneath It All

At PNNL, subsurface science inhabits two separate but interlocking worlds. One looks at basic science, the other at applied science and engineering. Both are funded by the U.S. Department of Energy (DOE).