News & Media

Latest Stories

295 results found
Filtered by Chemical & Biological Signatures Science, Coastal Science, Dark Matter, Earth System Science, Explosives Detection, Secure & Adaptive Systems, Terrestrial Aquatics, and Transportation

When a pinch is problematic: Detecting pertechnetate in groundwater

pertechnetate

A PNNL researcher holds a redox sensor in the project’s lab in the Radiochemical Processing Laboratory.  Andrea Starr | PNNL

PNNL develops an effective tool for measuring a tricky contaminant

March 30, 2020
March 30, 2020
Highlight

Imagine trying to detect and measure a pinch of salt in an Olympic-size swimming pool. Now pretend the tools you are using don’t work well. Some can detect the salt but can’t tell you how much is in there, and others confuse salt with chlorine.

Now swap the swimming pool for a source of groundwater and the salt for a radioactive contaminant called pertechnetate.

ACS Journal Pertechnetate
The future of groundwater contamination measurement? The large thiol claws of PNNL’s subsurface probe with custom gold tips detect and measure pertechnetate in aqueous environments. Cover illustration by Rose Perry, PNNL

Pertechnetate is a byproduct of nuclear waste. If it ends up where it is not supposed to be—like, in groundwater—it could impact human health, which is why researchers and regulators keep a close lookout for it. The environmental safety limits for pertechnetate are roughly equivalent to a pinch of salt in an Olympic pool. And there are only a few technologies to measure it, each with limitations.

PNNL research tackles this challenge with new technology to detect and accurately measure pertechnetate at super low levels in groundwater. This research, “Redox-Based Electrochemical Affinity Sensor for Detection of Aqueous Pertechnetate Anion,” was the cover article for the March 2020 edition of ACS Sensors (DOI: 10.1021/acssensors.9b01531). 

Why it matters: The Environmental Protection Agency drinking water standard for pertechnetate is 0.000000052 grams per liter (that’s roughly 1/6000th the weight of a single poppy seed). While techniques exist for detection of pertechnetate in the environment, many have their drawbacks. PNNL’s technology can accurately measure low levels of pertechnetate in groundwater. Additionally, this proof of concept has the potential to be applied to other target contaminants simultaneously, increasing efficiency for environmental sensing.

Summary: The new technology acts like a coin counter, but at a microscopic level. It sorts one type of chemical from another, providing the total amount of a target chemical at the end. The tool uses custom probes with a gold electrode that only allows the target groundwater contaminants to stick while the other chemicals bounce off.

Sulfur likes to bind to gold and it also tends to react with pertechnetate, making sulfur-containing compounds an ideal intermediate in tool development. The sulfur sticks to the gold probe, then reacts with the pertechnetate, which forms a precipitate. The precipitate inhibits an electric current pulsing through the probe, providing an inverse measurement of pertechnetate concentration.

What’s Next: While this work was specifically focused on pertechnetate, there is potential to expand the technology to simultaneous multiple targets with the goal of increasing the efficiency of environmental measurements.

Sponsors: This research was funded by the Laboratory Directed Research and Development program at PNNL and by the Deep Vadose Zone program under the U.S. Department of Energy’s (DOE’s) Office of Environmental Management. Part of this research was performed at the Environmental Molecular Sciences Laboratory, a national user facility at PNNL managed by the DOE Office of Biological and Environmental Research.

PNNL Research Team: Sayandev Chatterjee, Meghan S. Fujimoto, Yingge Du, Gabriel B. Hall, Nabajit Lahiri, Eric D. Walter, Libor Kovarik. ACS Sensors cover illustration by Rose Perry, PNNL.

 

March 27, 2020
MARCH 12, 2020
Web Feature

Tracking Toxics in the Salish Sea

With the help of a diagnostic tool called the Salish Sea Model, researchers found that toxic contaminant hotspots in the Puget Sound are tied to localized lack of water circulation and cumulative effects from multiple sources.
JANUARY 21, 2020
Web Feature

Forensic Proteomics: Beyond DNA Profiling

A new book by PNNL biochemist Erick Merkley details forensic proteomics, a technique that directly analyzes proteins in unknown samples, in pursuit of making proteomics a widespread forensic method when DNA is missing or ambiguous.
DECEMBER 6, 2019
Web Feature

Converging on Coastal Science

Advancing a more collective understanding of coastal systems dynamics and evolution is a formidable scientific challenge. PNNL is meeting the challenge head on to inform decisions for the future.
NOVEMBER 5, 2019
Web Feature

Magnesium Takes ShAPE™

Two forms of magnesium material were processed into tubing using PNNL’s Shear Assisted Processing and Extrusion™ technology. Both materials were found to have quite similar and improved properties—even though they began vastly different.

Moments Matter When It Comes to Modeling Rain

Rain

Getting rain properties correct in atmospheric models is critical for accurately representing the structure and evolution of cloud systems.

Improved representation of rain microphysics led to more accurate simulations of surface precipitation

March 12, 2019
October 22, 2019
Highlight

The Science
In atmospheric models, raindrop properties such as rainfall rate are usually described based on the raindrop size distribution. For example, heavy rain rates may have a wider raindrop size distribution than light rain. To improve predictions of rain that reaches the surface, the primary question has been, how can models better represent the evolution of raindrop size distribution in space and time in the atmosphere? A team led by researchers at the U.S. Department of Energy’s (DOE) Pacific Northwest National Laboratory improved the representation of rain microphysics by predicting the shape parameter of raindrop size distributions in a recently developed cloud microphysics scheme. They found that under a wide range of atmospheric conditions, their advanced representation delivered surface rain properties similar to those produced by a benchmark scheme, but with less computational resources.

The Impact
Because raindrops play a major role in the vertical redistribution of heat and moisture in the atmosphere, they are a critical component for modeling the structure and evolution of cloud systems such as mesoscale convective systems. These systems are major sources of heavy rain in the central United States. A proper representation of rain in numerical models is not only vital to predict surface precipitation, but also to accurately simulate environmental conditions and circulation patterns. The advanced rain microphysics representation from this study improves simulations of rain properties under various atmospheric conditions, and it can be used to increase accuracy of weather and climate models. The scheme will be implemented in DOE’s Energy Exascale Earth System Model (E3SM).

Summary
Cloud microphysics schemes in weather and climate models usually predict two moments—the total number and mass—of the raindrop size distribution. Researchers upgraded the Predicted Particle Properties (P3) cloud scheme by adding another predicted variable—shape parameter—for raindrop size distribution, turning the two-moment scheme into a three-moment scheme for raindrop representation. They also developed and incorporated a new parameterization for drop-drop collisions—when two drops collide—and the breakup of large drops into smaller ones. 
To evaluate those new developments, the research team tested them with an idealized rain model. The model simulated 450 rain scenarios that were initialized by different raindrop size distributions and environmental conditions. Researchers compared the simulated surface rain properties against those from a detailed and computationally costly reference scheme. The team found that, depending on initial rain intensity, up to 95 percent of simulations with the new developments produced raindrop sizes and surface rain rates within ±20 percent biases from the reference results. This was a considerable improvement from the original two-moment scheme, which only reached 4 percent using the same criteria for comparisons with the reference results. Sensitivity tests showed that both the added degree of freedom—the additional variable for raindrop size distribution—and the new process parameterization contributed to the improvements.

PI Contact
Jiwen Fan, Pacific Northwest National Laboratory, jiwen.fan@pnnl.gov  

Funding
This research was supported by the Climate Model Development and Validation program funded by the Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science. Model simulations were performed using PNNL Institutional Computing.

Paukert M, J Fan, PJ Rasch, H Morrison, JA Milbrandt, J Shpund, and A. Khain. 2019. “Three-Moment Representation of Rain in a Bulk Microphysics Model.” Journal of Advances in Modeling Earth Systems 11(1):257−277, https://doi.org/10.1029/2018MS001512.

Influence of Groundwater Extraction Costs and Resource Depletion Limits on Simulated Global Nonrenewable Water Withdrawals over the 21st Century

Groundwater

Recent PNNL research suggests that rising groundwater extraction costs will force users to turn to other sources of water.

Global groundwater depletion is projected to peak and then decline during this century as costs of using it change

April 16, 2019
October 22, 2019
Highlight

The Science
Because water is a fundamental human need, estimating future supplies is important. Researchers at the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) coupled regionally varying groundwater availability and extraction cost estimates with continually adjusted demands for water in a simulation that covered multiple sectors around the world. As groundwater levels dropped, imposing greater capital and energy costs to bring water to the surface, modeled water use sectors responded by drawing from other water resources. These behaviors resulted in a marked peak and decline in the rate of global groundwater depletion.

The Impact
Previously it was assumed that the rate of global groundwater depletion would increase steadily over the 21st century as humans demanded more water—particularly for crop production. This work suggests that groundwater depletion may actually decline, because the increasing costs of pumping will force water users to adapt by turning to less expensive sources, which are often in regions where renewable water remains plentiful.

Summary
In many regions of the world, groundwater reserves are being depleted rapidly. This raises concerns for the sustainability of irrigated agriculture and global food supplies. It is therefore important to study groundwater depletion and possible exhaustion of water resources at a global scale. A problem for such analysis is the lack of detailed understanding of when a depleting resource becomes unviable for further exploitation. The question is not simply how much water is physically available; we need to know when the financial costs and environmental effects of extracting more groundwater render the resource unviable for human applications. To study these effects, PNNL researchers employed a global, gridded data set that specifies the cost of groundwater extraction as a function of depletion. Then, using the Global Change Assessment Model (GCAM), they simulated water users as economic decision makers to understand how they would adapt as extraction costs increased. Results indicated that future rates of global groundwater depletion would be heavily moderated by increasing extraction costs. Regions that depleted water to costly levels lost competitive advantage for crop production, which shifted to regions where water resources were less costly and more plentiful. The team concluded that extraction costs must be included in simulations for projections of global groundwater depletion to be reliable.

PI Contact
Leon Clarke, Pacific Northwest National Laboratory, leon.clarke@pnnl.gov

PNNL Contact
Mohamad Hejazi, Pacific Northwest National Laboratory, Mohamad.Hejazi@pnnl.gov  

Funding
This research was supported by the U.S. Department of Energy Office of Science, Biological and Environmental Research through the Multisector Dynamics, Earth and Environmental System Modeling Program. 

Turner SWD, M Hejazi, C Yonkofski, SH Kim, and P Kyle. 2019. “Influence of Groundwater Extraction Costs and Resource Depletion Limits on Simulated Global Nonrenewable Water Withdrawals Over the Twenty-First Century.” Earth’s Future 7(2):123−135. https://doi.org/10.1029/2018ef001105.

Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning

Bend

The BEND model can combine information on building technologies, climate, and population to forecast hourly building energy demand for regions the size of electric power balancing authorities. This calibration aligns the results with historical data to make them more accurate.

A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in building energy demand

June 6, 2019
October 22, 2019
Highlight

The Science
Aggregated building energy demand models, which are based on combining the outcomes of many individual building simulations, are an emerging tool for long-term energy planning at multiple spatial scales. They can be used to understand and project changes in building energy demand due to changes in population, climate, and building technologies. However, these models can be hard to calibrate because real-world data availability at the appropriate temporal, spatial, and sectoral scales is often limited. A new approach developed at the U.S. Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) allows these aggregate models to be calibrated at multiple scales. Researchers used this new method to calibrate PNNL’s Building ENergy Demand (BEND) aggregate model. Once calibrated, BEND successfully captured year-to-year changes in building energy demand due to changes in weather.

The Impact
Unlike more traditional statistical methods, physically based aggregate models such as BEND can fully capture the dynamic relationships between hourly building energy demand and population, climate, and building technologies. As a result, these models are valuable tools for understanding multisectoral dynamics. The new approach allows BEND and other aggregate models to be calibrated at the scale at which they will be applied, overcoming a key limitation of this class of models. Models such as BEND will improve model projections of future building energy demand at different scales and refine long-term energy planning through integration with grid operations and resource planning models.

Summary
PNNL’s BEND model is one of an emerging class of models designed to capture total and hourly building energy demand resulting from the aggregation of tens to hundreds of thousands of individual building simulations. Historically, these aggregate models have proven difficult to calibrate because there is a limited amount of target data available at relevant space, time, and sectoral scales. Researchers developed and demonstrated a novel approach to calibrate BEND, using approximately 100,000 individual simulations of DOE’s EnergyPlus model, against the best available data at the geographic scale of balancing authorities (electricity management subregions). Once calibrated, BEND captured year-to-year changes in total and peak building energy demand due to variations in weather within these areas. The study applied PNNL’s new calibration approach to the western United States, but the method can be applied to regions across the world with similar data and scale challenges. Researchers also suggested areas in which improved data collection and sharing would help to further refine these emerging models.

PI Contact
Jennie Rice, Pacific Northwest National Laboratory, jennie.rice@pnnl.gov
Ian Kraucunas, Pacific Northwest National Laboratory, ian.kraucunas@pnnl.gov 

Funding
This research was supported by the DOE Office of Science as part of research in the MultiSector Dynamics, Earth and Environmental System Modeling Program. A portion of the research was performed using PNNL’s Institutional Computing resources. 

Taylor ZT, Y Xie, CD Burleyson, N Voisin, and I Kraucunas. 2019. “A multi-scale calibration approach for process-oriented aggregated building energy demand models.” Energy and Buildings 191:82‒94. https://doi.org/10.1016/j.enbuild.2019.02.018.