News & Media

Latest Stories

237 results found
Filtered by Catalysis, Fossil Energy, Nuclear & Particle Physics, Secure & Adaptive Systems, Solar Energy, Stakeholder Engagement, Transportation, Water Power, and Wind Energy
SEPTEMBER 17, 2020
Web Feature

Not Your Average Refinery

In a new review, PNNL researchers outline how to convert stranded biomass to sustainable fuel using electrochemical reduction reactions in mini-refineries powered by renewable energy.

Study Shows Coastal Wetlands Aid in Carbon Sequestration

data collection in marsh

PNNL scientist, Amy Borde collects data in a marsh on the Columbia River estuary.

Photo: Heida Diefenderfer

Sea-level rise impacts will likely decrease ecosystem carbon stocks

August 13, 2020
August 13, 2020

Tidal marshes, seagrass beds, and tidal forests are exceptional at absorbing and storing carbon. They are referred to as total ecosystem carbon stocks, yet little data exists quantifying how much carbon is absorbed and stored by tidal wetlands in the Pacific Northwest (PNW). Knowing this information is valuable, particularly in the context of sea level rise and with the associated need for Earth system modeling to predict changes at the coast.

The Science

Researchers found that the average total ecosystem carbon stock in the PNW is higher than in other areas of the U.S. and other parts of the world. Marsh carbon stocks, in particular, are twice the global average. Researchers found progressive increases in total ecosystem carbon stocks along the elevation gradient of coastal wetland types common in the PNW: seagrass, low marshes, high marshes, and tidal forests. Total carbon also increased along the salinity gradient, with more carbon occurring in lower salinity areas.

Additionally, this research showed that common methods used to estimate soil carbon actually underestimate soil carbon stocks in coastal wetlands. Soil carbon storage below the depth of 100 centimeters proved to be an important carbon pool in PNW tidal wetlands.

The Impact

The results suggest that long-term sea-level rise impacts, such as tidal inundation and increased soil salinity, will likely decrease ecosystem carbon stocks. This is a concern if wetlands can’t migrate with increased sea level due to being bound by topography and human development.  


This research arose from the Pacific Northwest Blue Carbon Working Group, of which Amy Borde and Heida Diefenderfer of Pacific Northwest National Laboratory’s Coastal Sciences Division are members. The team studied 28 tidal ecosystems across the PNW coast, from Humboldt Bay, California, to Padilla Bay, Washington. They sampled common coastal wetland types that occur along broad gradients of elevation, salinity, and tidal influences, collecting the data necessary to calculate total carbon stocks in both above ground biomass and the soil profile.

In three years of study, the researchers found that most carbon is in the wetland soils not aboveground, and much of it is deeper than one meter—a typical lower limit of sampling. Total ecosystem carbon stocks progressively increased along the terrestrial-aquatic gradient of coastal wetland ecosystems common in the temperate zone including seagrass, low marshes, high marshes, and tidal forests. The findings were reported in “Total Ecosystem Carbon Stocks at the Marine-Terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, USA,” published in the August 2020 online edition of Global Change Biology (DOI: 10.1111/gcb.15248).

Research Team: PNNL’s Amy Borde and Heida Diefenderfer, along with J. Boone Kauffman, Leila Giovanonni, James Kelly, Nicholas Dunstan, and Christopher Janousek (Oregon State University); Craig Cornu and Laura Brophy (Institute for Applied Ecology/Estuary Technical Group); and Jude Apple (Padilla Bay National Estuarine Research Reserve).


The grant award was administered by the Institute of Applied Ecology, and other partners included Oregon State University and the Padilla Bay National Estuarine Research Reserve. This research was supported by the National Oceanic and Atmospheric Administration, through a cooperative agreement with the University of Michigan. 


Kauffman, J Boone, Leila Giovanonni, James Kelly, Nicholas Dunstan, Amy Borde, Heida Diefenderfer, Craig Cornu, Christopher Janousek, Jude Apple, and Laura Brophy. “Total Ecosystem Carbon Stocks at the Marine‐terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, United States.” Global change biology, no. 0 (August 11, 2020). DOI: 10.1111/GCB.15248

August 11, 2020
JULY 21, 2020
Web Feature

A Remarkable Rate of Return with Catalytic Bias

A multi-institution research team found how the protein environment surrounding some enzymes can alter the direction of a cellular reaction, as well as its rate—up to six orders of magnitude—in a phenomenon referred to as catalytic bias.
JULY 9, 2020
Web Feature

Building a Better Battery—Faster

Researchers at PNNL have developed a software tool that helps universities, small business, and corporate developers to design better batteries with new materials that hold more energy.

Distributed Wind Representation in Modeling and Simulation Tools

May 13, 2020
May 13, 2020

Pacific Northwest National Laboratory (PNNL) compiled, characterized, and evaluated the inclusion of distribution wind in a number of modeling and simulation tools for the U.S. Department of Energy (DOE) Microgrids, Infrastructure Resilience, and Advanced Controls Launchpad (MIRACL) project. This work also benefits the international community participating in International Energy Agency (IEA) Wind Task 41: Enabling Wind to Contribute to a Distributed Energy Future. Tools were assessed based on a survey of publicly available and readily accessible information. The evaluation approach, methodology, key takeaways, and next steps are presented below, and the evaluation table is attached to this PDF.  

Research topics

Physical and Ecological Evaluation of a Fish-Friendly Surface Spillway

January 1, 2018
May 11, 2020
Journal Article


Spillway passage is one of the commonly accepted dam passage alternatives for downstream-migrating salmonids and other species. Fish passing in spill near the water surface have improved chances of survival than fish that pass deeper in the water column near spillway structure. In this study, an autonomous sensor device (Sensor Fish) was deployed in 2005 to evaluate fish passage conditions through the Removable Spillway Weir (RSW) at Ice Harbor Dam on the Snake River in south-central Washington State. RSWs enable fish to pass in spill nearer the water surface compared to conventional spillways where spill discharge is controlled using tainter gates. The RSW study was undertaken concurrently with a separate live fish injury and survival study. Conditions at the RSW–Spillway transition and deflector region were found to be potentially detrimental to fish. As a result, the spillway slope and deflector radius were modified, and the efficacy of the modifications was evaluated in 2015. The frequency of severe acceleration events (acceleration =95 G) during passage decreased significantly (from 51% to 35%; p-value = 0.049), and collisions with structures decreased from 47% to 27% (p-value = 0.015). Pressures observed in the Spillway–Deflector region and pressure rates of change decreased as well. Overall, the modifications resulted in improved hydraulic and fish passage conditions, which contributed to increased fish survival.

Research topics


Duncan J.P., Z. Deng, J.L. Arnold, T. Fu, B.A. Trumbo, T.J. Carlson, and D. Zhou. 2018. "Physical and Ecological Evaluation of a Fish-Friendly Surface Spillway." Ecological Engineering 110. PNNL-SA-126408. doi:10.1016/j.ecoleng.2017.10.012
APRIL 28, 2020
News Release

A Leap in Using Silicon for Battery Anodes

Researchers at PNNL have come up with a novel way to use silicon as an energy storage ingredient, replacing the graphite in electrodes. Silicon can hold 10 times the electrical charge per gram, but it comes with problems of its own.