News & Media

Latest Stories

242 results found
Filtered by Building-Grid Integration, Catalysis, Emergency Response, Grid Architecture, Materials Science, Nuclear Nonproliferation, Plant Science, Precision Materials by Design, and Radiation Measurement
MARCH 16, 2020
Web Feature

Carving Out Quantum Space

The race toward the first practical quantum computer is in full stride. Scientists at PNNL are bridging the gap between today’s fastest computers and tomorrow’s even faster quantum computers.
FEBRUARY 25, 2020
Web Feature

Forces of Attraction

Weak forces are strong enough to align semiconductor nanoparticles; new understanding may help make more useful materials

Solving an ergonomic problem to enable safeguards research

WSU engineering students demonstrate their detector lifting device.

WSU engineering students (from left background) Jacob Lazaro, Darin Malihi , Martin Gastelum, and Jared Oshiro demonstrate their detector lifting device for PNNL Physicist Mike Cantaloub (left front).

PNNL-WSU collaboration develops the future workforce

February 24, 2020
February 24, 2020
Highlight

Performing nuclear safeguards work safely and developing the next generation workforce are complementary goals of a longstanding program sponsored by the National Nuclear Security Administration’s Office of International Nuclear Safeguards. This program pairs PNNL research staff with Washington State University engineering students to provide solutions to enable nuclear safeguards research at PNNL.

In December, a team of WSU students delivered their solution to some ergonomic issues faced by PNNL physicist Mike Cantaloub and his team in a laboratory containing sensitive high-purity germanium detectors. These detectors are arranged in a tall fixture containing lead shielding to reduce the effects of naturally occurring atmospheric radiation and enable the accurate identification of radioactive isotopes in samples. Staff members using this instrument have to remove a 25-lb. plug detector, reach down to place samples, and then replace the plug detector. These activities have the potential for ergonomic injury to staff members and damage to the detectors.

WSU students Darin Malihi, Jared Oshiro, Martin Gastelum, Jacob Lazaro, Nicholas Takehara, and Saul Ramos designed and fabricated equipment that works similar to the weight training machines found in a gym—a lifting arm with a counter weight. The team also developed a solution to place the sample, a holder that is affixed to the bottom of the plug detector. Their solutions allow researchers to remove the detector quickly and efficiently and avoid reaching down to place the sample for detection.

“The solution devised by the team makes day-to-day operations in this laboratory safer and more efficient for the nuclear safeguards research team," said PNNL mechanical engineer and advisor to the WSU team, Patrick Valdez.

WSU engineering students assemble their lifting device.
WSU engineering students (from left) Jacob Lazaro, Saul Ramos, Jared Oshiro, and Nicholas Takehara assemble their lifting device and arrange the sample holders for a demonstration to PNNL research staff.
JANUARY 10, 2020
Web Feature

Clark Recognized for Nuclear Chemistry Research

The world’s largest scientific society honored Sue B. Clark, a PNNL and WSU chemist, for contributions toward resolving our legacy of radioactive waste, advancing nuclear safeguards, and developing landmark nuclear research capabilities.
DECEMBER 11, 2019
Web Feature

PNNL to Lead New Grid Modernization Projects

PNNL will lead three new grid modernization projects funded by the Department of Energy. The projects focus on scalability and usability, networked microgrids, and machine learning for a more resilient, flexible and secure power grid.
NOVEMBER 26, 2019
Web Feature

Conquering Peak Power

PNNL’s Intelligent Load Control technology manages and adjusts electricity use in buildings when there’s peak demand on the power grid.
NOVEMBER 5, 2019
Web Feature

Magnesium Takes ShAPE™

Two forms of magnesium material were processed into tubing using PNNL’s Shear Assisted Processing and Extrusion™ technology. Both materials were found to have quite similar and improved properties—even though they began vastly different.