News & Media

Latest Stories

135 results found
Filtered by Bioenergy Technologies, Chemical & Biological Signatures Science, Nuclear Nonproliferation, Precision Materials by Design, Science of Interfaces, Secure & Adaptive Systems, Subsurface Science, and Transportation
APRIL 28, 2020
News Release

A Leap in Using Silicon for Battery Anodes

Researchers at PNNL have come up with a novel way to use silicon as an energy storage ingredient, replacing the graphite in electrodes. Silicon can hold 10 times the electrical charge per gram, but it comes with problems of its own.
APRIL 28, 2020
Web Feature

The Quantum Gate Hack

PNNL quantum algorithm theorist and developer Nathan Wiebe is applying ideas from data science and gaming hacks to quantum computing
APRIL 21, 2020
Web Feature

Beneath It All

At PNNL, subsurface science inhabits two separate but interlocking worlds. One looks at basic science, the other at applied science and engineering. Both are funded by the U.S. Department of Energy (DOE).
FEBRUARY 25, 2020
Web Feature

Forces of Attraction

Weak forces are strong enough to align semiconductor nanoparticles; new understanding may help make more useful materials
JANUARY 21, 2020
Web Feature

Forensic Proteomics: Beyond DNA Profiling

A new book by PNNL biochemist Erick Merkley details forensic proteomics, a technique that directly analyzes proteins in unknown samples, in pursuit of making proteomics a widespread forensic method when DNA is missing or ambiguous.
JANUARY 10, 2020
Web Feature

Clark Recognized for Nuclear Chemistry Research

The world’s largest scientific society honored Sue B. Clark, a PNNL and WSU chemist, for contributions toward resolving our legacy of radioactive waste, advancing nuclear safeguards, and developing landmark nuclear research capabilities.
NOVEMBER 5, 2019
Web Feature

Magnesium Takes ShAPE™

Two forms of magnesium material were processed into tubing using PNNL’s Shear Assisted Processing and Extrusion™ technology. Both materials were found to have quite similar and improved properties—even though they began vastly different.