News & Media

Latest Stories

105 results found
Filtered by Advanced Reactors, Computational Research, Cybersecurity, Dark Matter, Plant Science, Terrestrial Aquatics, Visual Analytics, and Wind Energy
MARCH 16, 2020
Web Feature

Carving Out Quantum Space

The race toward the first practical quantum computer is in full stride. Scientists at PNNL are bridging the gap between today’s fastest computers and tomorrow’s even faster quantum computers.
DECEMBER 4, 2019
Web Feature

A More Painless Extraction

PNNL and Argonne researchers developed and tested a chemical process that successfully captures radioactive byproducts from used nuclear fuel so they could be sent to advanced reactors for destruction while also producing electrical power.

PNNL Launches Marine Renewable Energy Database

Logo of Tethys Engineering

PNNL created an online database to share information related to the marine renewable energy industry.

Tethys Engineering addresses industry’s technical and engineering challenges

November 18, 2019
November 18, 2019
Highlight

Marine renewable energy (MRE) has the potential to provide 90 gigawatts of power in the United States through waves and tidal and ocean currents.

To harness the ocean’s energy, the MRE industry needs to understand how to address technical and engineering challenges such as efficient power takeoff, device survivability, and grid integration.

PNNL developed Tethys Engineering in September 2019 to allow sharing resources around the deployment of devices in corrosive, high-energy marine environments. The recently launched Tethys Engineering online database includes collected and curated documents surrounding the technical and engineering development of MRE devices. Users can search and filter results to intuitively identify information relevant to developers, researchers, and regulators.

Tethys Engineering includes more than 3,000 journal articles, conference papers, reports, and presentations related to wave, current, salinity gradient, and ocean thermal energy conversion technologies. The database contains information from around the world.

The Tethys Engineering database was created as a companion to the already established Tethys website, which focuses on the environmental effects of the MRE industry.

November 18, 2019

Data Assimilation Impact of In Situ and Remote Sensing Meteorological Observations on Wind Power Forecasts during the First Wind Forecast Improvement Project (WFIP)

July 1, 2019
September 26, 2019
Journal Article

During the first Wind Forecast Improvement Project (WFIP) new meteorological observations were collected from a large suite of instruments, including wind velocities measured on networks of tall towers provided by wind industry partners, wind speeds measured by cup anemometers mounted on the nacelles of wind turbines, and by networks of Doppler sodars and radar wind profilers. Previous data denial studies found a significant improvement of up to 6% RMSE reduction for short-term wind power forecasts due to the assimilation of all of these observations into the NOAA Rapid Refresh (RAP) forecast model using a 3dvar GSI data assimilation scheme. As a follow-on study, we now investigate the impacts of assimilating into the RAP model either the additional remote sensing observations (sodars and wind profiling radars) alone, or assimilating the industry provided in situ observations (tall towers and nacelle anemometers) alone, in addition to the standard meteorological data sets that are routinely available. The more numerous tall tower/nacelle observations provide a relatively large improvement through the first 3-4 hours of the forecasts, which however decays to a negligible impact by forecast hour 6. In comparison the less numerous vertical profiling sodars/radars provide an initially smaller impact that decays at a much slower rate, with a positive impact present through the first 12 hours of the forecast. Large positive assimilation impacts for both sets of instruments are found during daytime hours, while small or even negative impacts are found during nighttime hours.

Wilczak J.M., J. Olson, I. Djalaova, L. Bianco, L.K. Berg, W.J. Shaw, and R.L. Coulter, et al. 2019. "Data Assimilation Impact of In Situ and Remote Sensing Meteorological Observations on Wind Power Forecasts during the First Wind Forecast Improvement Project (WFIP)." Wind Energy 22, no. 7:932-944. PNNL-SA-132499. doi:10.1002/we.2332

STAR Workshop: Terrestrial-Aquatic Research in Coastal Systems

August 9, 2019
August 8, 2019
Report

From September 24–26, 2018, Pacific Northwest National Laboratory hosted a System for Terrestrial–Aquatic Research (STAR) workshop to discuss terrestrial–aquatic interface (TAI) research needs. The purpose of this workshop was to continue discussion initiated at the 2016 Department of Energy (DOE)-Biological and Environmental Research (BER) workshop: Research Priorities to Incorporate Terrestrial–Aquatic Interfaces in Earth System Models. Specifically, this workshop focused on terrestrial–aquatic interfaces near the coastline, which have been identified as a major gap in Earth system models (ESMs) and observational networks, important ecosystems that are vulnerable to disturbances from both the land and sea, as well as hubs for human habitation and commerce.

STAR Workshop Report

PNNL – Pacific Northwest National Laboratory. 2019.  STAR Workshop: Terrestrial-Aquatic Research in Coastal Systems. PNNL-28611, Pacific Northwest National Laboratory, Richland, Washington.

April 15, 2019