News & Media

Latest Stories

180 results found
Filtered by Advanced Reactors, Building-Grid Integration, Coastal Science, Computational Mathematics & Statistics, Emergency Response, Environmental Remediation, Explosives Detection, Precision Materials by Design, Secure & Adaptive Systems, Situational Awareness & Consequence Prediction, Stakeholder Engagement, and Water Power
SEPTEMBER 14, 2020
Web Feature

VOLTTRON™ Goes to School

The PNNL-developed VOLTTRON™ software platform’s advancement has benefited from a community-driven approach. The technology has been used in buildings nationwide, including most recently on a university campus.

Secretary of Energy Advisory Board (SEAB) Report Recognizes PNNL Contributions

ML and AI

Report features how PNNL’s computing capabilities are affecting the nation’s security, science, and energy missions

August 25, 2020
August 25, 2020
Highlight

Contributions from researchers across Pacific Northwest National Laboratory (PNNL) were recognized in the preliminary findings of a Secretary of Energy Advisory Board (SEAB) report from a working group dedicated to the U.S. Department of Energy’s (DOE’s) capabilities and future in artificial intelligence (AI) and machine learning. PNNL researchers’ expertise is prominent throughout DOE’s AI efforts, particularly in the areas of data sciences and national security.

Based largely on input from DOE sponsors, the report features how PNNL’s computing capabilities are affecting the nation’s security, science, and energy missions. Key highlights include:

  • Studying how AI affects the global landscape for securing nuclear materials, potentially using deep learning to enhance physical and digital protections against material concealment, delivery, theft, and sabotage.
  • Describing how the United States and its partners might employ deep learning to combat attack efforts for enhanced nuclear security.
  • Designing advanced deep learning models to characterize operations with buildings, using electrical signatures on power lines, enabling new designs for energy-efficient buildings in addition to enhanced security features for nuclear facilities.
  • Leading the nuclear explosive monitoring project with data scientists working to significantly lower detection thresholds of low-yield, evasive underground nuclear explosions without increasing time-to-detection or the amount of human analysis.
  • Co-design of advanced accelerator, memory and data movement concepts to support convergence of AI and machine learning methods with other forms of data analytics and traditional scientific high performance computing (HPC). 

The report highlights PNNL’s support to the National Nuclear Security Administration, featuring joint laboratory collaborations between PNNL and others, including the Y-12 National Security Complex, Sandia National Laboratories, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Oak Ridge National Laboratory. Additionally, PNNL is working as part of DOE’s comparative advantages in AI, providing the Office of Energy Efficiency and Renewable Energy access to AI subject matter experts.

View full preliminary findings of the Secretary of Energy Advisory Board (SEAB) report.

For more information about PNNL’s research contributions, contact Aaron Luttman

Study Shows Coastal Wetlands Aid in Carbon Sequestration

data collection in marsh

PNNL scientist, Amy Borde collects data in a marsh on the Columbia River estuary.

Photo: Heida Diefenderfer

Sea-level rise impacts will likely decrease ecosystem carbon stocks

August 13, 2020
August 13, 2020
Highlight

Tidal marshes, seagrass beds, and tidal forests are exceptional at absorbing and storing carbon. They are referred to as total ecosystem carbon stocks, yet little data exists quantifying how much carbon is absorbed and stored by tidal wetlands in the Pacific Northwest (PNW). Knowing this information is valuable, particularly in the context of sea level rise and with the associated need for Earth system modeling to predict changes at the coast.

The Science

Researchers found that the average total ecosystem carbon stock in the PNW is higher than in other areas of the U.S. and other parts of the world. Marsh carbon stocks, in particular, are twice the global average. Researchers found progressive increases in total ecosystem carbon stocks along the elevation gradient of coastal wetland types common in the PNW: seagrass, low marshes, high marshes, and tidal forests. Total carbon also increased along the salinity gradient, with more carbon occurring in lower salinity areas.

Additionally, this research showed that common methods used to estimate soil carbon actually underestimate soil carbon stocks in coastal wetlands. Soil carbon storage below the depth of 100 centimeters proved to be an important carbon pool in PNW tidal wetlands.

The Impact

The results suggest that long-term sea-level rise impacts, such as tidal inundation and increased soil salinity, will likely decrease ecosystem carbon stocks. This is a concern if wetlands can’t migrate with increased sea level due to being bound by topography and human development.  

Summary

This research arose from the Pacific Northwest Blue Carbon Working Group, of which Amy Borde and Heida Diefenderfer of Pacific Northwest National Laboratory’s Coastal Sciences Division are members. The team studied 28 tidal ecosystems across the PNW coast, from Humboldt Bay, California, to Padilla Bay, Washington. They sampled common coastal wetland types that occur along broad gradients of elevation, salinity, and tidal influences, collecting the data necessary to calculate total carbon stocks in both above ground biomass and the soil profile.

In three years of study, the researchers found that most carbon is in the wetland soils not aboveground, and much of it is deeper than one meter—a typical lower limit of sampling. Total ecosystem carbon stocks progressively increased along the terrestrial-aquatic gradient of coastal wetland ecosystems common in the temperate zone including seagrass, low marshes, high marshes, and tidal forests. The findings were reported in “Total Ecosystem Carbon Stocks at the Marine-Terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, USA,” published in the August 2020 online edition of Global Change Biology (DOI: 10.1111/gcb.15248).

Research Team: PNNL’s Amy Borde and Heida Diefenderfer, along with J. Boone Kauffman, Leila Giovanonni, James Kelly, Nicholas Dunstan, and Christopher Janousek (Oregon State University); Craig Cornu and Laura Brophy (Institute for Applied Ecology/Estuary Technical Group); and Jude Apple (Padilla Bay National Estuarine Research Reserve).

Funding

The grant award was administered by the Institute of Applied Ecology, and other partners included Oregon State University and the Padilla Bay National Estuarine Research Reserve. This research was supported by the National Oceanic and Atmospheric Administration, through a cooperative agreement with the University of Michigan. 

10.1111/gcb.15248

Kauffman, J Boone, Leila Giovanonni, James Kelly, Nicholas Dunstan, Amy Borde, Heida Diefenderfer, Craig Cornu, Christopher Janousek, Jude Apple, and Laura Brophy. “Total Ecosystem Carbon Stocks at the Marine‐terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, United States.” Global change biology, no. 0 (August 11, 2020). DOI: 10.1111/GCB.15248

August 11, 2020

NWRTC Notes From the Field (June 2020)

Interviews with public health professionals who are helping to keep us safe

July 20, 2020
July 20, 2020
Highlight

PNNL's Northwest Regional Technology Center interviews Assistant Chief of Resource Management for Seattle Fire Department Willie Barrington about how his team faced the unknown when the COVID-19 pandemic hit Seattle, Washington.

Research topics

June 25, 2020
JULY 14, 2020
Web Feature

Turning the Tides

Their consistency and predictability makes tidal energy attractive, not only as a source of electricity but, potentially, as a mechanism to provide reliability and resilience to regional or local power grids.

Physical and Ecological Evaluation of a Fish-Friendly Surface Spillway

January 1, 2018
May 11, 2020
Journal Article

Abstract

Spillway passage is one of the commonly accepted dam passage alternatives for downstream-migrating salmonids and other species. Fish passing in spill near the water surface have improved chances of survival than fish that pass deeper in the water column near spillway structure. In this study, an autonomous sensor device (Sensor Fish) was deployed in 2005 to evaluate fish passage conditions through the Removable Spillway Weir (RSW) at Ice Harbor Dam on the Snake River in south-central Washington State. RSWs enable fish to pass in spill nearer the water surface compared to conventional spillways where spill discharge is controlled using tainter gates. The RSW study was undertaken concurrently with a separate live fish injury and survival study. Conditions at the RSW–Spillway transition and deflector region were found to be potentially detrimental to fish. As a result, the spillway slope and deflector radius were modified, and the efficacy of the modifications was evaluated in 2015. The frequency of severe acceleration events (acceleration =95 G) during passage decreased significantly (from 51% to 35%; p-value = 0.049), and collisions with structures decreased from 47% to 27% (p-value = 0.015). Pressures observed in the Spillway–Deflector region and pressure rates of change decreased as well. Overall, the modifications resulted in improved hydraulic and fish passage conditions, which contributed to increased fish survival.
10.1016/j.ecoleng.2017.10.012

Research topics

Citation

Duncan J.P., Z. Deng, J.L. Arnold, T. Fu, B.A. Trumbo, T.J. Carlson, and D. Zhou. 2018. "Physical and Ecological Evaluation of a Fish-Friendly Surface Spillway." Ecological Engineering 110. PNNL-SA-126408. doi:10.1016/j.ecoleng.2017.10.012
APRIL 28, 2020
Web Feature

The Quantum Gate Hack

PNNL quantum algorithm theorist and developer Nathan Wiebe is applying ideas from data science and gaming hacks to quantum computing
APRIL 21, 2020
Web Feature

Beneath It All

At PNNL, subsurface science inhabits two separate but interlocking worlds. One looks at basic science, the other at applied science and engineering. Both are funded by the U.S. Department of Energy (DOE).

When a pinch is problematic: Detecting pertechnetate in groundwater

pertechnetate

A PNNL researcher holds a redox sensor in the project’s lab in the Radiochemical Processing Laboratory.  Andrea Starr | PNNL

PNNL develops an effective tool for measuring a tricky contaminant

March 30, 2020
March 30, 2020
Highlight

Imagine trying to detect and measure a pinch of salt in an Olympic-size swimming pool. Now pretend the tools you are using don’t work well. Some can detect the salt but can’t tell you how much is in there, and others confuse salt with chlorine.

Now swap the swimming pool for a source of groundwater and the salt for a radioactive contaminant called pertechnetate.

ACS Journal Pertechnetate
The future of groundwater contamination measurement? The large thiol claws of PNNL’s subsurface probe with custom gold tips detect and measure pertechnetate in aqueous environments. Cover illustration by Rose Perry, PNNL

Pertechnetate is a byproduct of nuclear waste. If it ends up where it is not supposed to be—like, in groundwater—it could impact human health, which is why researchers and regulators keep a close lookout for it. The environmental safety limits for pertechnetate are roughly equivalent to a pinch of salt in an Olympic pool. And there are only a few technologies to measure it, each with limitations.

PNNL research tackles this challenge with new technology to detect and accurately measure pertechnetate at super low levels in groundwater. This research, “Redox-Based Electrochemical Affinity Sensor for Detection of Aqueous Pertechnetate Anion,” was the cover article for the March 2020 edition of ACS Sensors (DOI: 10.1021/acssensors.9b01531). 

Why it matters: The Environmental Protection Agency drinking water standard for pertechnetate is 0.000000052 grams per liter (that’s roughly 1/6000th the weight of a single poppy seed). While techniques exist for detection of pertechnetate in the environment, many have their drawbacks. PNNL’s technology can accurately measure low levels of pertechnetate in groundwater. Additionally, this proof of concept has the potential to be applied to other target contaminants simultaneously, increasing efficiency for environmental sensing.

Summary: The new technology acts like a coin counter, but at a microscopic level. It sorts one type of chemical from another, providing the total amount of a target chemical at the end. The tool uses custom probes with a gold electrode that only allows the target groundwater contaminants to stick while the other chemicals bounce off.

Sulfur likes to bind to gold and it also tends to react with pertechnetate, making sulfur-containing compounds an ideal intermediate in tool development. The sulfur sticks to the gold probe, then reacts with the pertechnetate, which forms a precipitate. The precipitate inhibits an electric current pulsing through the probe, providing an inverse measurement of pertechnetate concentration.

What’s Next: While this work was specifically focused on pertechnetate, there is potential to expand the technology to simultaneous multiple targets with the goal of increasing the efficiency of environmental measurements.

Sponsors: This research was funded by the Laboratory Directed Research and Development program at PNNL and by the Deep Vadose Zone program under the U.S. Department of Energy’s (DOE’s) Office of Environmental Management. Part of this research was performed at the Environmental Molecular Sciences Laboratory, a national user facility at PNNL managed by the DOE Office of Biological and Environmental Research.

PNNL Research Team: Sayandev Chatterjee, Meghan S. Fujimoto, Yingge Du, Gabriel B. Hall, Nabajit Lahiri, Eric D. Walter, Libor Kovarik. ACS Sensors cover illustration by Rose Perry, PNNL.

 

March 27, 2020