News & Media

Latest Stories

92 results found
Filtered by Advanced Lighting, Environmental Remediation, Explosives Detection, Grid Analytics, Precision Materials by Design, and Transportation
MARCH 12, 2020
Web Feature

Tracking Toxics in the Salish Sea

With the help of a diagnostic tool called the Salish Sea Model, researchers found that toxic contaminant hotspots in the Puget Sound are tied to localized lack of water circulation and cumulative effects from multiple sources.
FEBRUARY 25, 2020
Web Feature

Forces of Attraction

Weak forces are strong enough to align semiconductor nanoparticles; new understanding may help make more useful materials
DECEMBER 11, 2019
Web Feature

PNNL to Lead New Grid Modernization Projects

PNNL will lead three new grid modernization projects funded by the Department of Energy. The projects focus on scalability and usability, networked microgrids, and machine learning for a more resilient, flexible and secure power grid.
NOVEMBER 13, 2019
Web Feature

Let There Be (Acceptable) Light

Advancements such as LEDs have changed consumers’ experience with lighting. Whereas there was once a simple choice of how much light a consumer desired, there’s now a variety of choices to be made about the appearance of light.
NOVEMBER 5, 2019
Web Feature

Magnesium Takes ShAPE™

Two forms of magnesium material were processed into tubing using PNNL’s Shear Assisted Processing and Extrusion™ technology. Both materials were found to have quite similar and improved properties—even though they began vastly different.
AUGUST 27, 2019
News Release

Smelling is Believing

Vapor detection technology developed at PNNL can quickly and accurately identify explosives, deadly chemicals, and illicit drugs.
AUGUST 2, 2019
Web Feature

The Flicker Phenomenon

A staple in horror movies, flickering lights can also summon potential human health and productivity concerns. PNNL studied hand-held meters that measure flicker, and the results could improve future measurement and lighting strategies.
JULY 23, 2019
Web Feature

Molecular Mayhem at Root of Battery Breakdown

PNNL researchers demonstrate how the excitation of oxygen atoms that contributes to better performance of a lithium-ion battery also triggers a process that leads to damage, explaining a phenomenon that has been a mystery to scientists.