News & Media

Latest Stories

258 results found
Filtered by Advanced Lighting, Building-Grid Integration, Data Analytics & Machine Learning, Electric Grid Modernization, Fossil Energy, Hydrogen & Fuel Cells, Materials Science, and Nuclear Nonproliferation
APRIL 6, 2020
Web Feature

Blue Light? Orange Light?

PNNL study evaluated "tunable" lighting and its effects on sleep at study in a California nursing home. Tunable refers to the ability to adjust LED light output and the warmth or coolness of the light color.

Oxide interfaces in disarray

Microscope image, bright blue background with bright green oxides

Atomic-scale imaging informs interface models for oxygen defect formation during disordering of oxides used in energy and computing.


Exploration of disorder at material interfaces could lead to better device performance

March 3, 2020
March 3, 2020

The structure of an interface at which two materials meet helps determine the performance of the computers and other devices we use every day. However, understanding and controlling interface disorder at the atomic level is a difficult materials science challenge.

A research team at PNNL and Texas A&M University combined cutting edge imaging and numerical simulations to examine disordering processes in widely used oxide materials. They found that certain oxide interface configurations remain stable in extreme environments, suggesting ways to build better performing, more reliable devices for fuel cells, space-based electronics, and nuclear energy.

Visualizing the disordering process

As reported in Advanced Materials Interfaces (Asymmetric Lattice Disorder Induced at Oxide Interfaces,” DOI: 10.1002/admi.201901944) the team set out to examine interfaces between pyrochlore-like and perovskite oxides, two common classes of functional materials used in energy and computing technologies. While most past work has focused on individual bulk materials, less attention has been paid to interfaces connecting them, as would be the case in a device. In particular, it is not clear how interface features, such as composition, bonding, and possible defects, govern disordering processes.

Funded by PNNL’s Nuclear Process Science Initiative (NPSI), the team employed experimental and theoretical methods to study the interface at different stages of disorder introduced through ion irradiation. They imaged the local structure of the material using high-resolution scanning transmission electron microscopy and convergent beam electron diffraction, which showed that the bulk of the two materials disordered (amorphized) before the interface. After further irradiating the material, they found that a band region near the interface had remained crystalline, while the rest of the structure had become amorphous.

To understand this behavior, the team turned to a technique called electron energy loss spectroscopy, which allowed them to examine the atomic-scale chemistry and defects formed at the interface. Their measurements revealed the presence of substantial amounts of defects called oxygen vacancies, which can greatly affect properties such as magnetism and conductivity. Based on these observations, the team constructed a theoretical model of the interface and explored the effect of different interface configurations on the tendency to form vacancies.

“In our model we are able to systematically vary interface features, such as crystal structure, intermixing, and strain, to see their effect on defect formation. We found that the structure of the materials on both sides of the interface can influence where defects are likely to form first,” explained Steven R. Spurgeon, a PNNL materials scientist. “Our model suggests that by selecting appropriate crystal structures and controlling how they connect, it may be possible to dictate the sequence of defect formation, which would allow us to enhance the properties of these materials.”

The team is exploring other interface structures and chemistries, with an eye toward improving the performance of oxides used in extreme environments.

The study was conducted as part of the NPSI project, “Damage Mechanisms and Defect Formation in Irradiated Model Systems,” led by Spurgeon.

Research Team

Steven Spurgeon (PNNL), Tiffany Kaspar (PNNL), Vaithiyalingam Shutthanandan (Environmental Molecular Sciences Laboratory at PNNL), Jonathan Gigax (Texas A&M), Lin Shao (Texas A&M), Michel Sassi (PNNL).
February 20, 2020
FEBRUARY 25, 2020
Web Feature

Forces of Attraction

Weak forces are strong enough to align semiconductor nanoparticles; new understanding may help make more useful materials

Solving an ergonomic problem to enable safeguards research

WSU engineering students demonstrate their detector lifting device.

WSU engineering students (from left background) Jacob Lazaro, Darin Malihi , Martin Gastelum, and Jared Oshiro demonstrate their detector lifting device for PNNL Physicist Mike Cantaloub (left front).

PNNL-WSU collaboration develops the future workforce

February 24, 2020
February 24, 2020

Performing nuclear safeguards work safely and developing the next generation workforce are complementary goals of a longstanding program sponsored by the National Nuclear Security Administration’s Office of International Nuclear Safeguards. This program pairs PNNL research staff with Washington State University engineering students to provide solutions to enable nuclear safeguards research at PNNL.

In December, a team of WSU students delivered their solution to some ergonomic issues faced by PNNL physicist Mike Cantaloub and his team in a laboratory containing sensitive high-purity germanium detectors. These detectors are arranged in a tall fixture containing lead shielding to reduce the effects of naturally occurring atmospheric radiation and enable the accurate identification of radioactive isotopes in samples. Staff members using this instrument have to remove a 25-lb. plug detector, reach down to place samples, and then replace the plug detector. These activities have the potential for ergonomic injury to staff members and damage to the detectors.

WSU students Darin Malihi, Jared Oshiro, Martin Gastelum, Jacob Lazaro, Nicholas Takehara, and Saul Ramos designed and fabricated equipment that works similar to the weight training machines found in a gym—a lifting arm with a counter weight. The team also developed a solution to place the sample, a holder that is affixed to the bottom of the plug detector. Their solutions allow researchers to remove the detector quickly and efficiently and avoid reaching down to place the sample for detection.

“The solution devised by the team makes day-to-day operations in this laboratory safer and more efficient for the nuclear safeguards research team," said PNNL mechanical engineer and advisor to the WSU team, Patrick Valdez.

WSU engineering students assemble their lifting device.
WSU engineering students (from left) Jacob Lazaro, Saul Ramos, Jared Oshiro, and Nicholas Takehara assemble their lifting device and arrange the sample holders for a demonstration to PNNL research staff.
JANUARY 10, 2020
Web Feature

Clark Recognized for Nuclear Chemistry Research

The world’s largest scientific society honored Sue B. Clark, a PNNL and WSU chemist, for contributions toward resolving our legacy of radioactive waste, advancing nuclear safeguards, and developing landmark nuclear research capabilities.
DECEMBER 11, 2019
Web Feature

PNNL to Lead New Grid Modernization Projects

PNNL will lead three new grid modernization projects funded by the Department of Energy. The projects focus on scalability and usability, networked microgrids, and machine learning for a more resilient, flexible and secure power grid.