At a conference featuring the most advanced computing hardware and software, ML in its various guises was on full display and highlighted by Nathan Baker’s featured invited presentation.
PNNL and Argonne researchers developed and tested a chemical process that successfully captures radioactive byproducts from used nuclear fuel so they could be sent to advanced reactors for destruction while also producing electrical power.
It’s hot in there! PNNL researchers take a close, but nonradioactive, look at metal particle formation in a nuclear fuel surrogate material. What they found will help fill knowledge gaps and could lead to better nuclear fuel designs.
Researchers used novel methods to safely create and analyze plutonium samples. The approaches could prove influential in future studies of the radioactive material, benefitting research in legacy, national security and nuclear fuels.
In fast-neutron reactors, fuel is sealed in ~7 millimeter diameter steel tubes called cladding. When a high-energy "fast" neutron strikes an atom in the steel, it can knock the atom out of place, like a cue ball striking another billiard ball. This leaves two types of damage in the metal: an empty spot where the atom was, and the displaced atom wedged between other atoms. Over time, these defects typically drive undesirable rearrangement of the microstructure, potentially reducing the life of the cladding.