News & Media

Latest Stories

280 results found
Filtered by Advanced Hydrocarbon Conversion, Earth System Science, Energy Storage, Geothermal Energy, Nuclear & Particle Physics, Science of Interfaces, and Secure & Adaptive Systems
JANUARY 10, 2020
Web Feature

Clark Recognized for Nuclear Chemistry Research

The world’s largest scientific society honored Sue B. Clark, a PNNL and WSU chemist, for contributions toward resolving our legacy of radioactive waste, advancing nuclear safeguards, and developing landmark nuclear research capabilities.
DECEMBER 6, 2019
Web Feature

Converging on Coastal Science

Advancing a more collective understanding of coastal systems dynamics and evolution is a formidable scientific challenge. PNNL is meeting the challenge head on to inform decisions for the future.
OCTOBER 31, 2019
Web Feature

The World’s Energy Storage Powerhouse

Pumped-storage hydropower offers the most cost-effective storage option for shifting large volumes of energy. A PNNL-led team wrote a report comparing cost and performance factors for 10 storage technologies.
SEPTEMBER 13, 2019
Web Feature

Charting the Frontier of Electron Microscopy

A gathering of international experts in Portland, Oregon, explored the future of electron microscopy and surfaced potential solutions in areas including new instrument designs, high-speed detectors, and data analytics capabilities.
AUGUST 30, 2019
Web Feature

Optimize, not Oversize

Energy storage is slowly shifting utility planning practices from the current paradigm, which ensures grid reliability by building reserve generation resources, to ensuring grid reliability by optimizing grid services.
AUGUST 14, 2019
Web Feature

Modeling the Future of a Sea

The inner Salish Sea’s future response to climate change, while significant, is predicted to be less severe than that of the open ocean based on parameters like algal blooms, ocean acidification, and annual occurrences of hypoxia.
JULY 23, 2019
Web Feature

Molecular Mayhem at Root of Battery Breakdown

PNNL researchers demonstrate how the excitation of oxygen atoms that contributes to better performance of a lithium-ion battery also triggers a process that leads to damage, explaining a phenomenon that has been a mystery to scientists.