News & Media

Latest Stories

226 results found
Filtered by Advanced Hydrocarbon Conversion, Cybersecurity, Dark Matter, Fossil Energy, Fuel Cycle Research, Grid Cybersecurity, Human Health, Hydrogen & Fuel Cells, Integrative Omics, Nuclear & Particle Physics, Plant Science, Stakeholder Engagement, and Visual Analytics
SEPTEMBER 17, 2020
Web Feature

Not Your Average Refinery

In a new review, PNNL researchers outline how to convert stranded biomass to sustainable fuel using electrochemical reduction reactions in mini-refineries powered by renewable energy.
SEPTEMBER 9, 2020
Web Feature

When Nano Meets Bio

Pacific Northwest National Laboratory (PNNL) is part of a continuing National Science Foundation (NSF) team investigating the environmental impact of nanoparticles at the molecular level.

Study Shows Coastal Wetlands Aid in Carbon Sequestration

data collection in marsh

PNNL scientist, Amy Borde collects data in a marsh on the Columbia River estuary.

Photo: Heida Diefenderfer

Sea-level rise impacts will likely decrease ecosystem carbon stocks

August 13, 2020
August 13, 2020
Highlight

Tidal marshes, seagrass beds, and tidal forests are exceptional at absorbing and storing carbon. They are referred to as total ecosystem carbon stocks, yet little data exists quantifying how much carbon is absorbed and stored by tidal wetlands in the Pacific Northwest (PNW). Knowing this information is valuable, particularly in the context of sea level rise and with the associated need for Earth system modeling to predict changes at the coast.

The Science

Researchers found that the average total ecosystem carbon stock in the PNW is higher than in other areas of the U.S. and other parts of the world. Marsh carbon stocks, in particular, are twice the global average. Researchers found progressive increases in total ecosystem carbon stocks along the elevation gradient of coastal wetland types common in the PNW: seagrass, low marshes, high marshes, and tidal forests. Total carbon also increased along the salinity gradient, with more carbon occurring in lower salinity areas.

Additionally, this research showed that common methods used to estimate soil carbon actually underestimate soil carbon stocks in coastal wetlands. Soil carbon storage below the depth of 100 centimeters proved to be an important carbon pool in PNW tidal wetlands.

The Impact

The results suggest that long-term sea-level rise impacts, such as tidal inundation and increased soil salinity, will likely decrease ecosystem carbon stocks. This is a concern if wetlands can’t migrate with increased sea level due to being bound by topography and human development.  

Summary

This research arose from the Pacific Northwest Blue Carbon Working Group, of which Amy Borde and Heida Diefenderfer of Pacific Northwest National Laboratory’s Coastal Sciences Division are members. The team studied 28 tidal ecosystems across the PNW coast, from Humboldt Bay, California, to Padilla Bay, Washington. They sampled common coastal wetland types that occur along broad gradients of elevation, salinity, and tidal influences, collecting the data necessary to calculate total carbon stocks in both above ground biomass and the soil profile.

In three years of study, the researchers found that most carbon is in the wetland soils not aboveground, and much of it is deeper than one meter—a typical lower limit of sampling. Total ecosystem carbon stocks progressively increased along the terrestrial-aquatic gradient of coastal wetland ecosystems common in the temperate zone including seagrass, low marshes, high marshes, and tidal forests. The findings were reported in “Total Ecosystem Carbon Stocks at the Marine-Terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, USA,” published in the August 2020 online edition of Global Change Biology (DOI: 10.1111/gcb.15248).

Research Team: PNNL’s Amy Borde and Heida Diefenderfer, along with J. Boone Kauffman, Leila Giovanonni, James Kelly, Nicholas Dunstan, and Christopher Janousek (Oregon State University); Craig Cornu and Laura Brophy (Institute for Applied Ecology/Estuary Technical Group); and Jude Apple (Padilla Bay National Estuarine Research Reserve).

Funding

The grant award was administered by the Institute of Applied Ecology, and other partners included Oregon State University and the Padilla Bay National Estuarine Research Reserve. This research was supported by the National Oceanic and Atmospheric Administration, through a cooperative agreement with the University of Michigan. 

10.1111/gcb.15248

Kauffman, J Boone, Leila Giovanonni, James Kelly, Nicholas Dunstan, Amy Borde, Heida Diefenderfer, Craig Cornu, Christopher Janousek, Jude Apple, and Laura Brophy. “Total Ecosystem Carbon Stocks at the Marine‐terrestrial Interface: Blue Carbon of the Pacific Northwest Coast, United States.” Global change biology, no. 0 (August 11, 2020). DOI: 10.1111/GCB.15248

August 11, 2020

Digging into the Details of Phosphorus Availability

Photo of plant with roots under ground

Courtesy of Shutterstock

New root blotting technique visualizes relationship between root growth, microbial activity, and soil nutrients.

July 7, 2020
July 7, 2020
Highlight

The Science

Phosphorous is an important nutrient for plants. However, the mechanisms used by plants to extract phosphorus from soil and incorporate it into their biomass are not well understood. Now, researchers developed a new technique to visualize the activity and distribution of enzymes that mobilize phosphate around plant roots. Tracking the location of these enzymes can help researchers better understand the chemical dynamics between roots, microbes, and soil that influence how plants get nutrients. The approach could also be applied to other nutrient-cycling enzymes.

Diagram showing rhizosphere blotting nondestructive process
A new root blotting technique produces an imprint of plant roots growing in flat slabs. The paper imprints can then be probed with different fluorescent indicators to visualize both the distribution and activity of phosphate-mobilizing enzymes surrounding the roots.

The Impact

Phosphorus is an essential nutrient for plants and therefore, global demand for phosphorus fertilizers is expected to grow to accommodate the world’s growing population. However, most of these fertilizers are made from rock phosphorus, a non-renewable resource. This research provides new insights into the complex dynamics of phosphorous exchange between soil, microbes, and plant roots. Knowledge from this newly developed approach will help scientists identify strategies to improve phosphorus use efficiency for bioenergy crop production in marginal environments, as well as for agriculture in general.

Summary

Soil bacteria, fungi, and plants produce enzymes called phosphatases, which convert organic sources of phosphorus into a form that plants can absorb. Researchers have studied the microbial activity in bulk soil samples, providing information about the overall functional potential of the environment. But to better understand the dynamics between soil, plants, and microbes, more detail is needed. To accomplish that, a team of researchers developed a new technique based on root blotting to reveal phosphatase activity and distribution around plant roots. They grew switchgrass in flat pots or “rhizoboxes” containing soil with pellets of root matter as sources of organic phosphorus. Then, they applied a nitrocellulose membrane to capture proteins around the roots. Finally, the researchers stained the membrane with fluorescent indicators for phosphatase activity and protein concentration. This revealed the spatial distribution of phosphatase around the roots of plants, and highlighted regions of increased phosphatase activity.

This approach could be used to study phosphatase activity over time, as well as other nutrient-cycling enzymes. The combination of membrane extraction, with rapid analysis via fluorescent probes to reveal localization of phosphatase activity in the rhizosphere, offers a new technique for environmental applications. Expanding this approach could enable simultaneous visualization of multiple enzyme types in soil systems.

Funding

Development of this method was funded by DOE’s Office of Science, Biological and Environmental Research Program by the Early Career Research Award program (PI: Jim Moran).

10.1016/j.soilbio.2020.107820

V.S. Lin, et al. “Non-destructive spatial analysis of phosphatase activity and total protein distribution in the rhizosphere using a root blotting method.” Soil Biology and Biochemistry, 146 (2020). DOI: 10.1016/j.soilbio.2020.107820

JUNE 30, 2020
Web Feature

'Rooting' for Brachypodium Genes

Plant scientists at Pacific Northwest National Laboratory have garnered the most comprehensive—and first ever—genetic level dataset of the rooting process in a flowering model grass.
MAY 20, 2020
Web Feature

PNNL, OSU Superfund Collaboration Continues

A long-standing collaboration between PNNL and Oregon State University to study harmful chemicals at federally designated hazardous waste sites primarily across the Pacific Northwest has been awarded a five-year, $12.7 million grant.
MAY 15, 2020
Web Feature

Staying Ahead of Antibiotic Resistance

The recent coronavirus pandemic shows just how quickly a deadly pathogen can sweep across the globe, killing tens of thousands in the U.S. and disrupting daily life for millions more in the span of a few months.
MARCH 31, 2020
Web Feature

Scientists Take Aim at the Coronavirus Toolkit

A PNNL scientist is studying the structures of the proteins on the surface of the novel coronavirus, using NMR spectroscopy to reveal information about the molecular toolkit that holds the keys to a vaccine or treatment.