Skip to Main Content U.S. Department of Energy
PNNL News Central

PNNL awarded $3.8 million for advanced energy projects

Heat storage, A/C & heat for electric vehicles, cheap replacements for rare-earth magnets to be investigated

News Release

September 30, 2011 Share This!

  • PNNL researchers will receive $3.8 million funding for projects aimed at dramatically improving how the U.S. produces and uses energy, including improving air conditioning and batteries for electric vehicles.

  • Conceptual drawing for EMOF molecular heat pump for climate control in electric vehicles.

1 of 1

RICHLAND, Wash. — Pacific Northwest National Laboratory researchers will lead three projects whose $3.8 million funding was announced this week by the Department of Energy's Advanced Research Projects Agency for Energy. The projects are aimed at dramatically improving how the U.S. produces and uses energy.

One of the PNNL projects will explore improvements to storing heat from sources such as concentrated solar or nuclear power, which can then be released to generate electricity or be used to warm buildings. Another will investigate a novel technology capable of providing heating and air conditioning for electric vehicles using no moving parts. The third seeks to find a cheaper alternative to expensive rare-earth elements in magnets, to reduce dependence on rare-earth imports.

"History shows America is at its best when we innovate," said ARPA-E director Arun Majumdar when he announced this round of funding in a teleconference Thursday. "These innovative projects are at the forefront of a new technological frontier that plays a critical role in our future energy security and economic growth. It is now more important than ever to invest in game-changing ideas that will build the technological infrastructure for a new, clean energy economy," he added in a statement.

Thermal energy storage

Solar power technologies provide a source of clean electricity generation without emission. The heat from the sun needs to be stored as efficiently as possible to be used upon demand. To enhance efficiencies and expand applications, there is a need for new materials that can function at higher temperatures. PNNL scientists Ewa Ronnebro and Kevin Simmons, along with metallurgical materials scientist Zak Fang at University of Utah will receive $700,000 to investigate a metal hydride material that can store 10 times the amount of heat per mass than conventional molten salt. The team will first develop a metal hydride with a suitably long lifetime. If successful, they will then create a small prototype system.

Molecular heat pump for electric vehicles

Internal combustion engines in today's cars generate a lot of heat, which is great for heating the passenger cabin in winter. Electric vehicles produce very little waste heat, so providing electricity for the same amount of heat would reduce their driving range by as much as 40 percent. PNNL scientists Pete McGrail and Praveen Thallapally, and University of South Florida chemists Mike Zaworotko and Ma Shengqian will receive $800,000 to develop a material called an electrical metal-organic framework, or EMOF for short, for vehicle heating and cooling systems. The EMOF would work as a molecular heat pump, which efficiently circulates heat or cold as needed. By directly controlling the EMOF's properties with electricity, their design is expected to use much less energy than traditional heating and cooling systems. For example, a 5-pound EMOF-based heat pump the size of a 2-liter bottle could theoretically handle the heating and cooling needs of an electric vehicle with far less impact on driving distance.

Manganese-based permanent magnet

PNNL materials scientist Jun Cui and others will receive $2.3 million to develop a replacement for rare earth magnets — commonly used in wind turbines and electric vehicles — based on an innovative nano-composite using manganese-based alloys. Manganese composites could potentially be twice as strong as current state-of-the-art magnets at higher temperatures, possibly eliminating the need for a cooling system. Importantly, they are based on inexpensive and abundant raw materials. The team will develop stronger magnets by combining high-performance supercomputer modeling with experiments of various metal composite formulations that do not contain rare-earth materials. If developed successfully, these composite magnets will reduce dependence on expensive rare-earth material imports, and reduce the cost and improve efficiency of green technologies.

Click here for a full list of this week's ARPA-E funding recipients and dollar amounts.

Previous ARPA-E winners at PNNL

This work was supported by the U.S. Department of Energy.

Tags: Energy, EVs, Renewable Energy, Solar Power, Energy Production

PNNL LogoPacific Northwest National Laboratory draws on signature capabilities in chemistry, earth sciences, and data analytics to advance scientific discovery and create solutions to the nation's toughest challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle for the U.S. Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit PNNL's News Center. Follow us on Facebook, Instagram, LinkedIn and Twitter.

News Center


Additional Resources