Skip to Main Content U.S. Department of Energy
PNNL News Central

You can't teach old materials new tricks

Decades-old challenge has researchers seeking new materials for radiation detection

News Release

February 16, 2008 Share This!

  • Researchers at PNNL are integrating their expertise in a wide range of fields in order to accelerate the discovery and development of radiation detection and identification materials for a safer world.

1 of 1

BOSTON — A more sensitive, more selective and easily deployable radiation detection material is necessary to meet complex 21st century challenges. In the AAAS symposium “Radiation Detectors for Global Security: The Need for Science-Driven Discovery,” researchers addressed some of the technical challenges and gaps and proposed a science-driven approach to uncovering novel materials that will benefit national security and medicine.

“Until now, it can be argued that we’ve approached the challenge in an Edisonian-style; I think it’s time to make a drastic change in how we pursue solutions to radiation detection,” said Anthony Peurrung, director of the Physical and Chemical Sciences division at Pacific Northwest National Laboratory. “In order for us to make new discoveries, we need to improve our understanding of radiation physics so that we make educated choices about which materials will and will not perform as we need them to, thus working more efficiently toward a solution.”

Five primary materials are used for radiation detection, but they all have limitations, such as small size, challenges in manufacturing, poor discrimination of radionuclides and poor sensitivity. For example, single crystalline materials, used as semiconductors or scintillators, generally provide the highest sensitivity and best energy resolution. But, it can take a decade or more to develop high-quality, single crystals that are of sufficient size for use as radiation detectors, and there are a limited number of manufacturing facilities to produce the crystals.

Peurrung leads PNNL’s Radiation Detection and Material Discovery Initiative, which is a three-year, $4.5 million research effort aimed at discovering new materials for radionuclide identification, accelerating discovery processes and improving our fundamental understanding of radiation detection.

Bill Weber, a Laboratory Fellow, organized the symposium. He is a AAAS fellow and is internationally recognized for his seminal scientific contributions on the interaction of radiation with solids and radiation effects in materials.

 


 

The symposium was held at the 2008 AAAS Annual Meeting in Boston, Mass., on Saturday, February 16, 2008, at 10:30 a.m. Other speakers included Bill Moses, Lawrence Berkeley National Laboratory, Kanai Shah, Radiation Monitoring Services, Inc. and Lynn Boatner, Oak Ridge National Laboratory.

Tags: Energy, National Security, Operations, Radiation Detection, Facilities

PNNL LogoPacific Northwest National Laboratory is the nation's premier laboratory for scientific discovery in chemistry, earth sciences, and data analytics and for solutions to the nation's toughest challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle for the U.S. Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit PNNL's News Center. Follow us on FacebookInstagram, LinkedIn and Twitter.

News Center

Multimedia

Additional Resources