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Abstract 

The power system balancing process, which includes the scheduling, real-time dispatch (load 
following) and regulation processes, is traditionally based on deterministic models.  Because conventional 
generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and 
load following processes use load and wind power production forecasts to achieve future balance between 
conventional generation and energy storage on one side and system load, intermittent resources (such as 
wind and solar generation), and scheduled interchange on the other.  Although in real life the forecasting 
procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only 
their mean values are actually used in the generation dispatch and commitment procedures.  Since the 
actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear 
(especially with the increasing penetration of renewable resources) whether the system would be able to 
meet conventional generation requirements within the look-ahead horizon, what additional balancing 
efforts would be needed as real time nears, and what additional costs those needs would incur.    

To improve the system control performance characteristics, maintain system reliability, and minimize 
expenses related to system balancing functions, it becomes necessary to incorporate predicted uncertainty 
ranges into the scheduling, load following, and, in some extent, the regulation processes.  It is also 
important to address the uncertainty problem comprehensively by including all sources of uncertainty 
(load, intermittent generation, forced outages of generators, etc.) for consideration.  All aspects of 
uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) 
and generation ramping requirement must be taken into account.  The unique features of the latter make 
this work a significant step forward toward the objective of incorporating wind, solar, load, and other 
uncertainties into power system operations. 

This report presents a new methodology to predict the uncertainty ranges for the required balancing 
capacity, ramping capability, and ramp duration.  Uncertainties created by system load forecast errors, 
wind and solar forecast errors, and generation forced outages are taken into account.  The uncertainty 
ranges are evaluated for different confidence levels of having the actual generation requirements within 
the corresponding limits.  The methodology helps to identify system balancing reserve requirement based 
on a desired system performance levels, identify system “breaking points” where the generation system 
becomes unable to follow the generation requirement curve with the user-specified probability level, and 
determine the time remaining to these potential events.  The approach includes three stages: statistical and 
actual data acquisition, statistical analysis of retrospective information, and prediction of future grid 
balancing requirements for specified time horizons and confidence intervals.  Assessment of the capacity 
and ramping requirements is performed using a specially developed probabilistic algorithm based on a 
histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast 
and load forecast errors) and discrete (forced generator outages and failures to start up) nature.  
Preliminary simulations using California Independent System Operator (California ISO) real-life data 
have shown the effectiveness of the proposed approach.  A tool developed based on the new methodology 
described in this report will be integrated with the California ISO systems.  Contractual work is currently 
in place to integrate the tool with the AREVA Energy Management System (EMS).   
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Executive Summary 

The work reported herein was performed by the Pacific Northwest National Laboratory (PNNL) and 
funded by the U.S. Department of Energy, Office of the Energy Efficiency and Renewable Energy (DOE 
EERE).   

The work pursues the following objectives:  

• Develop a probabilistic model to evaluate uncertainties of wind and load forecast errors and to 
provide rapid (every 5 minutes) look-ahead (up to 5-8 hours ahead) assessments of their uncertainty 
ranges. 

• Elaborate similar models to evaluate uncertainties caused by generator random forced outages, 
failures to start up, and contingency reserve activation processes. 

• Create an integrated tool that consolidates the above-mentioned continuous and discrete random 
factors contributing to the overall uncertainty to evaluate look-ahead, worst-case balancing generation 
requirements (performance envelopes) in terms of the required capacity, ramping capability, and 
ramp duration.   

• Build a methodology and procedures for self-validation of the predicted performance envelope for 
each look-ahead step. 

• Develop visualization displays to communicate information about expected ramps and their 
uncertainty ranges. 

• Implement a prototype Unit Commitment program incorporating future uncertainties. 

• Integrate the developed tools into the AREVA Energy Management System (EMS). 

• Use actual California Independent System Operator (California ISO) data to perform the simulation.   

The following results have been achieved in the current phase of the work: 

• Innovative methodology and prototype tools have been developed that can evaluate future generation 
requirements including the required capacity, ramping capability, and ramp duration capability 
(performance envelope) in view of uncertainties caused by wind generation and load forecast errors 
as well as unexpected generation outages.  The approach includes three stages: (1) statistical and 
actual data acquisition, (2) statistical analysis of retrospective information, and (3) prediction of 
future grid balancing requirements for specified time horizons and confidence intervals.  Assessment 
of the capacity and ramping requirements is performed using a specially developed probabilistic 
algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a 
continuous and discrete nature. 

• A “flying brick” method has been developed to assess the look-ahead, worst-case performance 
envelope requirement to ensure system capability to balance against the uncertainties with a certain 
specified degree of confidence.  The “flying brick” method simultaneously includes the ramp rate, 
ramp duration, and capacity requirements directly into the balancing process.   
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• A self-validation approach has been proposed.  The purpose of the self-validation algorithm is to 
verify that the uncertainty ranges predicted based on retrospective information are valid for future 
dispatch intervals. 

• A MATLAB prototype of the new probabilistic tool has been developed and tested. 

• Simulations have been carried out using real-life data from California ISO.  The data were provided 
by the California ISO engineering support team created for this project.  Simulation results have 
shown that the proposed methodology is quite accurate and efficient. 

• The concept of probabilistic tool integration into EMS has been developed.  The concept includes 
three levels of integration: passive, active, and proactive.  The passive integration level implies 
integration of wind forecast information and its visualization without introducing any changes to the 
EMS algorithms.  On the active level, the Unit Commitment (UC) and Economic Dispatch (ED) 
procedures are repeated several times for every dispatch interval to determine whether the system can 
meet extreme generation requirements caused by uncertainties for a certain confidence level.  The 
system “break points” are communicated to the user.  The proactive level requires some modifications 
of the UC and ED algorithms in order to directly incorporate uncertainties into these procedures.  In 
this case, the generation units will be committed and dispatched to prevent these uncertainties from 
creating “breaking points.” 

• A framework of probabilistic tool integration into the AREVA EMS has been developed. 

The following are recommendations for the next phase: 

• Develop a prototype and specification for an industrial software tool. 

• Integrate PNNL’s tool into the AREVA EMS.  Continue similar integration work with the California 
ISO. 

• Conduct real-time simulation using AREVA’s test system. 

• Continue development of the proactive integration approach. 
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1.1 

1.0 Introduction  

Because conventional generators need time to be committed and dispatched to a desired megawatt 
(MW) level, the scheduling and load following processes use load and wind power production forecasts to 
achieve future balance between conventional generation and energy storage on one side and system load, 
intermittent resources (such as wind and solar generation), and scheduled interchange on the other.  The 
power system balancing process, which includes scheduling, real-time dispatch (load following) and 
regulation processes, is traditionally based on deterministic models. 

Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as 
well as system loads, are not reflected in an existing energy management system (EMS) and tools for 
generation commitment, dispatch, and market operation.  With the growing penetration of intermittent 
resources, these uncertainties could result in significant unexpected load following and dispatch problems 
and pose serious risks to control and operation performance characteristics as well as the reliability of a 
power grid.  Without knowing the risks posed by the uncertainties, system operators have limited means 
to assess the likelihood of occurrence and the magnitude of problems to mitigate adverse impacts they 
might cause.  Some important questions need to be addressed in counteracting the impact of uncertainties.  
For instance, should one start more units to balance against possible fast ramps in the future over a given 
time horizon, and if so, when? 

Furthermore, these uncertainties could require procuring additional costly balancing services.  Major 
unexpected variations in wind power, unfavorably combined with load forecast errors and forced 
generator outages, could cause significant power mismatches that could be essentially unmanageable if 
these variations are not known in advance.   

Because the actual load and intermittent generation can deviate from forecasts, it becomes 
increasingly unclear (especially with the increasing penetration of renewable resources) whether the 
system would be able to meet the conventional generation requirements within the look-ahead horizon, 
what additional balancing efforts would be needed as real time nears, and what additional costs would be 
incurred by those needs.   

To improve the system control performance characteristics, maintain system reliability, and minimize 
expenses related to the system balancing functions, it becomes necessary to incorporate the projected 
uncertainty ranges into the scheduling, load following, and to some extent, regulation processes.  This 
need has been realized already, and some wind forecast service providers already offer the uncertainty 
information for their forecasts.  Efforts are already in place to develop methodologies and tools to 
incorporate these uncertainties into power system operations.  Unfortunately, in many cases these efforts 
are limited to wind generation uncertainties only and ignore the fact that there are additional sources of 
uncertainty such as system loads and forced generation outages.  Most of these efforts consider only the 
uncertainty ranges for MW imbalances and do not address additional essential characteristics such as 
ramps and ramp duration uncertainties. 

It is very important to address the uncertainty problem comprehensively by including all sources of 
uncertainty (load, intermittent generation, forced outages of generators, etc.) for consideration.  All aspect 
of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the 
imbalance) and generation ramping requirement must be taken into account.  The unique features of the 
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latter make this work a significant step forward toward the objective of incorporating wind, solar, load, 
and other uncertainties into power system operations. 

In this preliminary report, the uncertainties associated with wind power generation forecasting, load 
demand forecasting, and generation supply interruptions caused by forced outages are taken into account 
in the evaluation of uncertainty ranges for the required generation performance envelope, including 
balancing capacity, ramping capability, and ramp duration.  A probabilistic algorithm based on the 
proposed histogram analysis to assess the capacity and ramping requirements is presented.  Preliminary 
simulation was performed using the California Independent System Operator (California ISO)’s system 
model and data.  This report presents these simulation results confirming the validity and efficiency of the 
proposed solutions.   

The report is organized as follows.  Chapter 2 discusses the main proposed uncertainty tool concepts.  
Chapter 3 provides a methodology for evaluating the uncertainties associated with wind and load 
forecasts.  Generation outages and generation requirements as sources of uncertainty are analyzed in 
Chapters 4 and 5, respectively.  Chapter 6 describes how the newly developed tools can be integrated into 
the EMS environment (with the ARIVA EMS) of independent system operators (California ISO) and 
other potential customers.  Preliminary results of simulation studies are given in Chapter 7.  Conclusions 
are given in Chapter 8 followed by references provided in Chapter 9.
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2.0 Main Uncertainty Analysis Tool Concepts 

This section describes a staged approach to evaluate future uncertainty ranges around such important 
characteristics of the balancing process as the required generation capacity, ramping capability, and ramp 
duration capability.  Without being able to provide for those characteristics, the generation fleet would not 
be able to follow the needs dictated by the load following and regulation processes.  To address this 
challenge, Pacific Northwest National Laboratory (PNNL) is developing a set of new concepts and 
algorithms for the uncertainty prediction tool.  Such a tool, integrated with a real EMS system, would 
help system operators to see potential balancing problems ahead of time, and ultimately, to modify the 
generation commitment patterns to successfully mitigate these problems. 

The proposed methodology evaluates the uncertainty ranges for the required generation performance 
envelope, which includes the required balancing generation capacity, ramping capability, and ramp 
duration.  It consists of three stages.  The first stage deals with acquiring the actual retrospective data 
needed for the subsequent statistical analysis.  The retrospective information is collected for a user-
specified preceding period (e.g., for 1 to 2 months).  It includes forecasted system load and its actual 
values, wind and solar generation forecasts and their actual values, as well as generation schedules.  The 
second stage of the proposed approach includes a statistical analysis of the retrospective information 
acquired at stage 1.  It consists of the following tasks: 

• Determining statistical characteristics of the generation capacity requirements based on an empirical 
analysis of forecast errors; 

• Evaluating statistical characteristics of the generation ramping requirements based on the “swinging 
door” algorithm; 

• Calculating generation-forced outage statistical information based on the Markov models. 

The third stage is an evaluation of future generation requirements for specified time horizons; e.g., 
5 to 8 hours ahead and for the next day.  These generation requirements include regulation and load 
following capacity requirements, ramping requirements, and ramp duration requirements for different 
confidence levels, such as, for example, 90 or 95 %.   

The information provided by the three-stage approach described above could be used in three ways 
reflecting different levels of integration with the EMS system: passive, active, and proactive.  In the 
passive level, the projected performance requirements can be compared against the actual capabilities of 
generators that are currently or will be online within the look-ahead horizon and are capable of 
performing relevant services.  If the actual generation capability does not match the requirements, a 
warning will be issued to the system operators.  The operators will be informed about the type and the 
size of the expected problem, its probability, and the time remaining for that situation.  In the active level, 
the Unit Commitment (UC) and Economic Dispatch (ED) procedures are repeated several times for every 
dispatch interval to determine whether the system can meet the extreme generation requirements caused 
by uncertainties for a certain confidence level.  The system “break points” are communicated to the user.  
The proactive level requires some modifications of the UC and ED algorithms to directly incorporate 
uncertainties into these procedures.  In this case, the generation units will be committed and dispatched so 
that these uncertainties would not create “breaking points.”
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3.0 Load and Wind Generation Uncertainties Evaluation 

This section describes an innovative methodology and prototype tools that are capable of evaluating 
future generation requirements including the required capacity, ramping capability, and ramp duration 
capability (the so-called performance envelope).  The methodology incorporates uncertainties caused by 
wind generation and load forecast errors, as well as uninstructed generation deviations of conventional 
generation.  These tools meet industry needs in a more robust (that is, more reliable for a range of 
possible future operating conditions) assessment of the balancing reserves required in a control area. 

The efforts discussed in chapter 2 address only one source of uncertainty: that related to wind 
generation.  Because the influence of other sources of uncertainty is not reflected in the resulting 
uncertainty assessment, the resulting confidence intervals could be misleading for system operators.  
Unlike existing approaches, the methodology discussed in this report addresses all sources of uncertainty 
including uncertainties surrounding load forecasts and those associated with forced generator outages. 

The proposed approach includes three stages: (1) statistical and actual data acquisition, (2) statistical 
analysis of retrospective information, and (3) prediction of future grid balancing requirements for 
specified time horizons and confidence intervals.  Assessment of the capacity and ramping requirements 
is performed using a specially developed probabilistic algorithm based on a histogram analysis1

A “flying brick” method has been developed to assess the look-ahead, worst-case performance 
envelope requirement to ensure system capability to balance against the uncertainties with a certain 
specified degree of confidence.  The “flying brick” approach includes simultaneously the ramp rate, ramp 
duration, and capacity requirements directly into the balancing process and then looks for the worst 
combinations of these parameters located along the vertices’ trajectories of the “brick”.   

 
incorporating all sources of uncertainty and random parameters of a continuous and discrete nature. 

3.1 Data Acquisition 

A sliding window technique is used to acquire continuous statistical information on system load, wind, 
and solar power generation forecast errors.  The time length and refreshment rate of the sliding window 
used in this study are from 1 to 2 months and once every 5 minutes, respectively.  For future applications, 
these parameters need to be adjusted based on the characteristics of the actual power system.   

Figure 3.1 represents a typical structure of the load and wind generation forecasts.  The forecast 
resolution is the time interval between any two subsequent data records.  The time horizon is the length of 
the look-ahead time interval, and the forecast update interval is the time interval for updating the forecast. 

3.2 Assessment of Capacity Requirements 

Wind generation has more features in common with electrical load than with traditional 
(dispatchable) generation.  Therefore, it is assumed that wind generation can be considered as a negative 
load. 

                                                      
1 This approach is also called the time-varying probability density function (PDF) method, or the quantile method.  
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Electrical load and wind generation cannot be considered as independent statistical variables.  Many 
studies show a correlation between the system load and wind generation (Makarov et al. 2009, General 
Electric 2008, CAISO 2007).  To reflect this statistical dependence, the commonly used net load is 
applied in this work.  Net load has the following definition: net load is total electrical load minus total 
wind generation output. 

 
Figure 3.1.  Example of Wind or Load Generation Forecast Structure 

Statistical analysis based on the time-varying probability density function (PDF) approach is used in 
this study to determine the combined uncertainty ranges of wind and load forecast errors.  When the data 
do not follow standard probability distribution, nonparametric models may be applied to reflect the 
statistical characteristics of the data.  These models make no assumptions about the mechanism producing 
the data or the form of the underlying distribution, so no approximations are made (MathWorks Inc. 
2009).  Thus, instead of estimating parameters of a selected distribution, a nonparametric PDF can be 
assessed using the empirical cumulative distribution function (CDF). 

The idea behind the empirical CDF is rather simple.  It is a function that assigns probability 1 over n 
to each n observation in a sample.  Its graph has a stair-step appearance, where the stair goes through the 
range of the analyzed random parameters changing from zero level to 1, and increases by 1/n at each 
point where a sample parameter is found.  If a sample comes from a distribution in a parametric family 
(such as a normal distribution), its empirical CDF is likely to resemble this distribution.  If not, its 
empirical distribution still gives an estimate of the CDF for the data (MathWorks Inc. 2009).  Net load 
forecast error distribution and empirical CDF are presented in Figure 3.2. 
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 a)                                                                             b) 

Figure 3.2. Net Load Forecast Error Distribution (CAISO data, June-August 2007); a) Histogram; 
b) Empirical CDF. 

Figure 3.3 presents an example of wind generation forecast PDF for different look-ahead periods (1, 2, 
3, 4, and 5 hours ahead).  It can be observed that with shorter forecasting horizons, forecast errors become 
smaller, which results in higher PDF peaks and narrower shapes.   

 
Figure 3.3.  Wind Generation Forecast PDFs for Different Look-Ahead Periods 

The uncertainty range defines an interval within which a random parameter is expected to lie with a 
specified level of confidence.  To determine the uncertainty range, it is necessary to find solutions x1 and 
x2 of the inverse CDF function corresponding to certain levels of probability p1 and p2: 
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(3.1)  

The inverse of the CDF is also called the quantile function.  Inverse CDF functions for wind 
generation forecast errors for different look-ahead periods are presented in Figure 3.4.  Uncertainty ranges 
evaluated at a 95% confidence level are also shown.  The 95% uncertainty range corresponds to 2.5 to 
97.5 percentile of the distribution.  It is obvious from Figure 3.4 that the size of uncertainty ranges 
depends on look-ahead time.  It can be seen that for the longer look-ahead period, the uncertainty range 
becomes larger. 

 
Figure 3.4. Inverse CDFs of Wind Generation Forecast for Different Look-Ahead Periods and 95% 

Uncertainty Ranges 

3.3 Enhanced Capacity Uncertainty Assessment   

Statistical characteristics of the wind generation forecast error depend on the level of predicted wind 
generation among some other variables.  Therefore, the accuracy of the uncertainty range model can be 
further improved if the level of predicted wind generation is taken into account. 
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The wind generation forecast can be divided into several intervals depending on the level of predicted 
power production.  The empirical statistical analysis presented in the previous section can be performed 
separately for each interval. 

Figure 3.5 shows an example of inverse CDFs of wind generation forecast errors calculated for 
different wind generation levels.  In the example, five intervals of wind generation forecast were 
considered: “low wind,” “medium low wind,” “average wind,” “medium high wind,” and “high wind,” 

The error distribution of the “low wind” forecast is close to normal and varies within a ±20% range.  
The error distribution of “high wind” is biased.  It can be explained by the fact that the forecasted wind 
generation cannot exceed the maximum installed wind generation capacity.  Therefore, for the “high 
wind” forecast, the actual wind generation frequently is less than that forecasted. 

 
Figure 3.5.  Inverse CDFs for Different Levels of Forecasted Wind Generation 

3.4 Assessment of Ramping Requirements 

The required ramping capability needed to follow the net load curve (which includes all system 
imbalances) can be derived from the shape of the regulation and load following curves – see details in 
Makarov et al. (2009.).  The “swinging door” algorithm is proposed for this purpose (Makarov et al. 
2009).  This is a proven and widely used technical solution to compress and store time-dependent 
datasets.  
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Figure 3.6 demonstrates the concept of the “swinging door” approach.  A point is classified as a 
“turning point” whenever, for the next point in the sequence, any intermediate point falls out of the 
admissible accuracy range ±ε∆G.  For instance, for point 3, one can see that point 2 stays inside the 
window abcd.  For point 4, both points 2 and 3 stay within the window abef.  But for point 5, point 4 goes 
beyond the window, and therefore, point 4 is marked as a turning point. 

Based on this analysis, we conclude that points 1, 2, and 3 correspond to the different magnitudes of 
the regulation signal, π1, π2 and π3, whereas the ramping requirement at all these points is the same, ρ1-3.  
The “swinging door” algorithm also helps to determine the ramp duration δ.   
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Figure 3.6.  Illustration of the "Swinging Door" Concept 

3.5 “Flying Brick” Method 

A method called “flying brick” is proposed in this study to analyze the time-varying extreme (worst-
case) requirements applied to the future generation capacity, ramping capability, and ramp duration.  In 
the previous sections of this report, only the required generation capacity information was analyzed.  The 
idea of the “flying brick” is to include the worst-case (for a given confidence level) combination of the 
ramp rate, ramp duration, and capacity requirements into the scheduling process.  The three requirements 
are visualized as a three-dimensional probability box.  Figure 3.7 demonstrates the idea of the “flying 
brick” method.  In Figure 3.7, the blue curve in the center is the expected generation requirement curve, 
which meets the expected net load.  The pink curve is the actual net load, which can deviate from its 
expected values.  The generator requirement ranges with 95% and 93% confidence levels are also shown 
in Figure 3.7.   

Suppose t0 is the current time point.  At this point, we apply the probability box algorithm to the 
1-hour-ahead forecast errors.  The three dimensions of the box are the ranges of the capacity, ramp rate, 
and ramp duration requirements.  The worst combinations of these parameters shown by the vertices of 
the probability box set a criterion for the generation characteristics needed to meet the system needs with 
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a certain level of confidence.  For example, the edge could correspond to the maximum capacity, 
maximum ramp, and maximum ramp duration within the covered uncertainty range for these parameters. 

For each time interval, the “flying brick” box is built based on the three-dimensional CDFs reflecting 
the ranges of the analyzed parameters induced by the forecasting errors.   
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Figure 3.7.  Idea of the “Flying Brick” Method 

Inverse CDF functions of the ramping requirement distribution for different ramp durations obtained 
using the “flying brick” approach are presented in Figure 3.8.  The uncertainty evaluation for the ramping 
requirements is similar to the capacity requirement evaluation (see Figure 3.4).  Ramping requirement 
uncertainty ranges evaluated at the 95% confidence level are shown in Figure 3.8.  It can be observed that 
the ramping ranges depend on ramp durations, and ramping requirements become lower for longer ramp 
durations. 
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Figure 3.8. Ramping Requirement Inverse CDFs for Different Ramp Duration and 95% Confidence 
Intervals 
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4.0 Generator Forced Outage Analysis 

This chapter presents the generator forced outage model.  The term “generator forced outage” usually 
refers to the shutdown of a generating unit for emergency reasons or a condition in which the generator 
unit is unavailable for supplying the load because of an unanticipated breakdown.  Generator outage is a 
discrete event and may or may not happen in any given dispatch interval.  This characteristic contrasts 
with the continuous nature of wind and load variations.  Also, the size of the power mismatch caused by a 
forced outage depends on the generator that is disconnected and the generators’ load at the moment of the 
event.  Any of the generators that are online within a dispatch interval could be forced out.  The main 
challenge to overcome in this development was to combine the uncertainty information on continuous 
parameters (such as the generation capacity requirement) with discrete information (such as forced 
generation outages).  This challenge was successfully met in this project. 

Forced outages of system generators cause temporary imbalances that must be eliminated within 
10 minutes by activating the contingency reserve.  Within this 10-minute interval, the system is exposed 
to an imbalance that can be as much as 1000 MW (the size of the largest generation unit in the system).  
The system inertia, governor response, and automatic generation control act to minimize the system 
power mismatch during the first seconds and minutes after the disturbance.  Therefore, the generation 
controls and generation characteristics needed to balance the system must be sufficient to mitigate these 
possible mismatches.  Again, there is an uncertainty associated with this process because the timing and 
the size of the forced outages are not known ahead of time, and the contingency reserve activation process 
is not a deterministic process (for example, it depends on the characteristics of activated generators and 
type of activated reserve – spinning or non-spinning).   

The project developed a methodology that evaluates additional uncertainty caused by forced 
generator outages and incorporates this information into the overall framework.  This advanced feature 
constitutes a significant step forward in handling the uncertainty information in modern EMS systems.  
As a result, the system reliability and control performance can be additionally improved. 

 Generator forced outages are stochastic events.  Modeling statistical characteristics of generator 
forced outages is important for a correct evaluation of the future generation requirement.  In this chapter, 
two types of generator forced outage models are described: the two-state Markov model and the four-state 
Markov model.  The capacity outage probability table (COPT) and an example of COPT calculation are 
provided as are simulation results on the forced outage model.  A contingency reserve activation model 
that incorporates the forced outage model is under development by a University of Washington team 
subcontracted by PNNL in this project (Dr. Richard D. Christie and Scott D. James Macpherson). 

4.1 Forced Outage Rate Calculation 

A generator outage is a discrete event, which may occur at any given moment.  This contrasts with 
the continuous nature of the wind and load variations (Doherty and O'Malley 2005). 

The simplest type of unit model is a two-state Markov model as shown in Figure 4.1.  Here, the unit 
is assumed to always be in one of two states: up-fully available, running and subject to failure; or down-
totally unavailable, not running, and undergoing repair (Billinton and Allan 1996, Billinton and Ge 2004). 
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Here, μ is the repair rate and r=1/μ is the mean downtime due to a forced outage (mean time to repair 
(MTTR)) and λ is the failure rate and m=1/λ is the mean up time between failure events (mean time to 
failure (MTTF)).  The unit’s forced outage rate (FOR), the probability that the unit is down is: 

 FOHSH
FOH

rm
rFOR

+
=

+
=

+
=

µλ
λ

 
(4.1)  

where FOH is the forced outage hours and SH is the service hours. 

 
Figure 4.1.  Two-State Markov Model 

The two-state model is a valid representation for base load units but does not adequately represent 
intermittent operating units used to meet peak load conditions.  The two-state model for a base load unit 
has been extended to the four-state peaking unit model shown in Figure 4.2, which is widely used in 
practice (Billinton and Ge 2004). 

The model assumes that the generating unit is either fully available or totally unavailable but also 
considers that the unit may be either needed or not needed (Billinton and Ge 2004). 

 
Figure 4.2.  IEEE Four-State Markov Model 
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The frequency balance equations (Billinton and Allan 1996) for the four-state model shown in Figure 
4.2 are as follows: 
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 (4.2) 

where Pi is the probability of the state i and  i=0…3. 

According to Billinton and Allan (1996) P1 and P3 can be calculated using the following equations:  
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Demand factor f can be expressed as the function of the parameters given in Figure 4.2 as follows 
(Billinton and Allan 1996): 
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Forced Outage Rate demand (FORd):  

  
SHFOHf

FOHfFORd
+×

×
=  (4.5)  

FORd is based on the four-state model and is the probability that a generating unit will not be 
available when required. 

Equivalent Forced Outage Rate demand (EFORd) (Billinton and Ge 2004): 

 SHFOHf
EFDHfFOHf

EFORd p

+×
×+×

=  (4.6)  

where fp is the partial outage factor; 

EFDH is the Equivalent Forced Derating Hours. 
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EFORd can be found in the North American Electric Reliability Corporation (NERC) Generating 
Availability Data System (GADS) (North American Electric Reliability Corporation 2009, Curley 2006).  
The difference between EFORd and FORd is that EFORd also includes derated states of the generator. 

The full outage probability (FOP) of a unit is the probability that the unit will stop providing all of its 
current output in an hour period.  Here, it is assumed that the trip causes the units output to be 
instantaneously unavailable.  The hourly FOP of a unit can be related to the FOR and MTTR as (Billinton 
and Allan 1996): 

 i

i
i MTTR

FORFOP =  (4.7) 

In the case of peaking units, EFORd can be used instead of FOR in (4.7) 

4.2 Capacity Outage Probability Table 

The capacity adequacy evaluation of generation systems requires the creation of a generation capacity 
model, known as COPT. 

COPT gives the probability of occurrence for each possible outage capacity level (Billinton and Allan 
1996). 

Let us assume that the system has n independent generating units, and unit i has mi discrete states 
with outage capacity Cij and individual probability pij=p(Xi=Cij), where j=1…mi (Morrow and Gan 1993).. 

Outage states of unit i are arranged in ascending order.   

The COPT contains N+1 discrete states, where N=Cmax/Δ,  Cmax is the installed capacity of the system, 
and Δ is the resolution of the COPT. 

The new individual state probabilities, after unit i is added to the system, can be calculated using the 
following recursive algorithm (Morrow and Gan 1993). 
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where p(·) is individual state probabilities after unit i is added; 

p’(·) is individual state probabilities before unit i is added; 

k is an index of discrete state. 

The recursive convolution process starts with the initial values: p(0) =1 and p(k)=0, k=1,2 ,... N. Note 
that p(k)=0 if k<0. 
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In summary, the recursive convolution procedure for building a COPT has the following basic steps 
(Morrow and Gan 1993): 

1. Read unit data, determine Δ and N=Cmax/Δ 

2. Set initial values: p(0) =1 and p(k)=0, k=1,2 ,... N 

3. Add unit i to the system, calculate p(k), k=0,1,2 ,... ,N using (Eqn. 4.8); 

4. Repeat Step 3 for all the units. 

Usually the table obtained by (Eqn. 4.8) is simplified by rounding the COPT to selected discrete 
capacity levels.  The size of the round-off increment depends on the desired accuracy.   

The cumulative probability of having kΔ MW to be forced out can be calculated using the following 
equation: 
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4.3 Example of COPT Calculation 

Let the system consist of two generators.   

The first generator has a capacity of 100 MW and outage probability 10%, and the second generator 
has a capacity of 50 MW and outage probability 20%.  Assume that generating units can have only two 
states: operating and forced out. 

Then, the capacity matrix: 
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where c11=0 and c21=0 – correspond to operating states of generators one and two (no forced outage) and 
c12=100 and c22=50 – correspond to forced out states (nominal generator capacity). 

Individual probability matrix is defined as: 
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where p11=0.9 and p21=0.8 are probabilities of operating state of generators one and two; p12=0.1 and 
p22=0.2 are probabilities of the forced out state. 

The installed system capacity is Cmax = 150MW and the COPT resolution is Δ = 50MW.  Therefore 
COPT contains four discrete states. 

Let us set initial probability values p(k)in the COPT (Table 4.1). 
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Table 4-1.  COPT (Initial Values) 

State, k Capacity, c(k) (MW) Probability, p(k) 
0 0 1 
1 50 0 
2 100 0 
3 150 0 

Now we will add unit one to the system and calculate new capacity outage probabilities using (Eqn. 
4.8) (Table 4.2): 
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Table 4-2.  COPT (Unit One Added) 

State, k Capacity, c(k) (MW) Probability, p(k) 
0 0 0.9 
1 50 0 
2 100 0.1 
3 150 0 

The next step is adding unit two and updating the values of COPT (Table 4.3): 
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Table 4-3.  COPT (Unit Two Added) 

State, k Capacity, c(k) (MW) Probability, p(k) 
0 0 0.72 
1 50 0.18 
2 100 0.08 
3 150 0.02 

Figure 4.3 and Figure 4.4 show the capacity discrete outage PDF and CDF based on calculated 
COPT. 

 
Figure 4.3.  Discrete Probability Density Function 

 
Figure 4.4.  Cumulative Distribution Function 
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4.4 Preliminary Simulation Results (Forced outage model) 

An example of a CAISO generation schedule is presented in Table 4.4 and Generation unit 
performance statistical characteristics taken from GADS (North American Electric Reliability 
Corporation 2009) are presented in Table 4.5. 

COPTs are calculated to the each hour taking into account the generators’ schedule.  Figure 4.5 and 
Figure 4.6 show the capacity outage PDF and CDF functions for a 1 hour look-ahead period. 

Table 4-4.  Generation Schedule 

Number UNIT_ID Unit Type 1h 2h 3h 4h 5h 
1 Unit1 STUR 16 16 16 16 16 
2 Unit2 STUR 20 20 20 20 20 
3 Unit3 HYDR 16 16 16 16 16 
4 Unit4 GTUR 0 0 0 0 0 

….. ……………………. …… … … … … … 
516 Unit516 STUR 3 3 3 3 3 
517 Unit517 WIND 10 10 10 10 10 

 Total Generation  17792.9 16512.06 16113.22 15813.15 15811.15 
 Wind  1344 1310.28 1313.55 1299.14 1256.3 

Table 4-5.  Annual Unit Performance Statistic 

GEN_TYPE GEN_TECH FUEL_TYPE FOR Service Hours Number of occurrences 
T STUR GEOT 0.5 8500 3.6 
T GTUR GAS 46.33 270 3 
T STUR GAS 8.29 2750 4 
H HYDR WATR 4.92 4981 3 
T WIND WIND - - - 
T CCYC GAS 7.33 3673 9 
H PTUR WATR 3.71 2634 3.86 
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Figure 4.5.  Capacity Outage Discrete PDF 
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Figure 4.6.  Capacity Outage CDF 
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5.0 Monitoring and Validation of Generation 
Requirements Uncertainty Range   

This section describes two procedures used to monitor the future generation requirement uncertainty 
range applied to the capacity, ramping capability, and ramp duration capability characteristics and to 
validate the predicted uncertainty ranges against the actual ranges for the same periods observed post 
factum. 

How future uncertainties around generation requirements for future dispatch intervals are presented to 
power system operators will influence acceptance of the methodology for developing industrial grade 
applications.  PNNL scientists worked with California ISO engineers and managers as well as 
professional artists to work out a state-of-the-art procedure for the monitoring of future uncertainties.    

The second procedure described in this section is for verifying the uncertainty ranges.  Because these 
ranges are predicted for future dispatch intervals, one needs to be certain the prediction is accurate 
enough.  This can be done by comparing the prediction against the actual uncertainty ranges observed 
later for the same periods.  Such a process can be organized on a continuous basis and provides 
information to the system operators about whether any significant errors are found.  In future 
development, this information could be fed back into the prediction algorithm to adjust the uncertainty 
ranges adaptively if significant errors are seen by the verification procedure. 

5.1 Generation Requirement Monitoring Display 

The generation requirement for the monitoring process includes assessment and visualization of 
generation capacity requirements, generation ramping, and ramp duration requirements. 

The conceptual regulation capacity requirements screen developed in this project is shown in 
Figure 5.1.  The blue line corresponds to the generation schedule or expected generation requirement 
determined based on load, wind, and solar generation forecasts and the interchange schedule.  The 1-hour 
dispatch interval is considered in this example for simplicity.  Uncertainty ranges are calculated for each 
dispatch interval by using the method presented in Chapter 3; i.e., by statistical analysis of historical 
information with consideration of the wind generation level.  Note that the red line shown in Figure 5.1 is 
not actually displayed but drawn to describe the verification procedure in the next section. 

This display is updated based on a repetitive process.  The generation schedule, load and wind 
generation forecasts, and statistical characteristics of historical data are recursively updated each hour.  A 
sliding window with a 1-hour refreshment rate is used to acquire statistical information.   

Accordingly, the uncertainty ranges are also updated hourly taking into account changing generation 
schedules, load forecasts, wind generation forecasts, and other statistical characteristics. 
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Figure 5.1.  Validation Procedure 

5.2 Validation Procedure 

To validate the accuracy of the generation requirements uncertainty model, a validation approach is 
developed in this project.  It is based on comparing the predicted uncertainty ranges against the actually 
observed ranges for the same dispatch intervals.  The algorithm includes the following steps. 

1. Acquire retrospective statistical information using the sliding window technique.  The sliding window 
is updated hourly (or according to some other specified refreshment rate).   

2. Perform a statistical analysis of the data acquired at step 1.  The derived statistical characteristics are 
also updated hourly (or according to some other specified refreshment rate).   

3. Evaluate uncertainty intervals for the future generation requirements using the statistical 
characteristics obtained at step 2.  Uncertainty intervals are also updated according to a specified 
refreshment rate.   

4. When the predicted dispatch interval is reached, overlay the actual generation values over the 
previously forecasted uncertainty intervals, as shown in Figure 5.1, and determine to which predicted 
uncertainty interval the actual generation value belongs.   
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At the end of simulation, the following calculations are made: 

1. Count how many points belong to the predicted intervals with a specified confidence level, and 
calculate the percentage of points found within the intervals.   

2. Compare the obtained percentages with targeted percentage values.  The targeted percentages 
correspond to the confidence level of the interval.  For example, for the 0 to 80% confidence interval, 
the targeted value is equal to 80%, and for the 80 to 85% uncertainty interval, the targeted value is 
equal to 5%, etc.   

The uncertainty algorithm is validated if the calculated percentages and the targeted percentages are 
close. 
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6.0 Integration Into the EMS Environment 

This section provides information regarding the California ISO generation dispatch timelines and 
considers practical aspects of integrating the developed methodologies into a real EMS system.  Examples 
of the California ISO system and AREVA EMS systems are used in this section.  The California ISO 
system is selected because the current PNNL project with the California Energy Commission (CEC) 
targets a practical allocation of the uncertainty prediction tool developed in this project at the California 
ISO.  A practical integration framework with the AREVA system targeted by this DOE project is also 
described.   

This section also describes the development of a concept of three different integration levels with a 
real EMS system.  The concept includes three levels of integration: passive, active, and proactive.  
Developing such a concept helps to outline a path from initial integration ideas to future advanced 
integration levels, where the potential of the developed approach is fully exploited to increase system 
control performance and reliability at higher penetration levels of intermittent resources in the system. 

6.1 California ISO Generation Dispatch Timelines 

Integration of probabilistic tools into the real energy market or EMS systems should take into account 
operating practices of the specific balancing authority into which these tools are being integrated.  To do 
this, an analysis of the California ISO system was undertaken. 

Figure 6.1 shows the scheduling timeline implemented in the California ISO market system.  The 
California ISO scheduling process includes day-ahead market (DAM), real-time unit commitment 
(RTUC), short-term unit commitment (STUC), and real-time economic dispatch (RTED).  Although 
regulation (REG) capacity is procured in the day-ahead market for each operating hour of the next 
operating day, it is controlled by the EMS automatic generation control (AGC) system rather than the 
market software (CAISO 2006, Loutan et al. 2009).  Additional ancillary services (AS) also can be 
procured in the real-time market (RTM) to meet additional AS requirements.  AS include regulation-up 
reserve, regulation-down reserve, spinning reserve, and non-spinning reserve. 

 
Figure 6.1.  CAISO Timeline 
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The California ISO RTM consists of several applications, three of which, STUC, RTUC, and RTED 
work together.  The STUC and RTUC applications ensure there is enough on-line capacity to meet a 5-
minute demand.  The STUC is performed in the RTM to commit units and balance the system resource 
and demand while enforcing transmission constraints.  STUC is run once an hour and looks out 5 hours to 
commit resources that have start up times greater than 90 minutes.  The RTUC application runs every 15 
minutes and looks out between four and seven 15-minute intervals to determine if short-start and fast-start 
units need to be committed or de-committed. 

The RTED process runs every 5 minutes to meet the imbalance energy requirements of the California 
ISO.  This process looks ahead 65 minutes to ensure that enough capacity is on-line to meet real-time 
demand.  It is expected that wind variability and the lack of accurate wind forecast would create 
challenges for the RTED applications.  RTED is the lowest granularity of dispatch in the ISO market, 
except for regulating reserves, which is procured in the RTM but dispatched through the EMS AGC 
system every 4 seconds. 

Figure 6.2 represents the California ISO new market design generation scheduling process.  In the 
day-ahead (DA) timeframe, wind resources are not required to bid into the California ISO markets, which 
can significantly impact the unit commitment process in the DA timeframe.  The California ISO must 
forecast the expected hourly production in the DA to ensure that enough resources are committed for 
next-day operation.  Similarly, the California ISO load forecast is done in the DA and RT timeframes.  In 
the DAM, the forecast of the California ISO’s hourly demand is for three days in advance.  The DA 
schedule is an hourly block energy schedule that includes 20-minute ramps between the hours.  It is 
provided at 10.00 a.m. the day before the operating day.  The real-time schedule is based on STUC/RTUC 
timelines.  The RTM closes 75 minutes before the actual beginning of an operating hour as shown in 
Figure 6.1.  RTED is provided 7.5 minutes before the dispatch operating target (DOT) and is based on 
real-time forecasts.   Symmetrical ramping is used, which means that by dispatching for the average, the 
DOT ends in the center of the interval.  In the RTM, the California ISO automatic load forecasting system 
provides a load forecast for each 15-minute and 5-minute interval.  Load and wind forecasting errors can 
cause the RTM application to dispatch incorrect amounts of imbalance energy needs.  RTED results are 
5-minute dispatch instructions and advisory notice for the look-ahead timeframe. 

 
Figure 6.2.  Generation Schedule 
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Thus, the load following or supplemental energy dispatch can be considered as the difference between 
RTED and STUC/RTUC curves.  This is an instructed deviation caused by the real-time dispatch.  
Regulation is the difference between actual demand and the RTED curves (Figure 6.2). 

The RTED, STUC, and DA schedules use forecasts provided for different look-ahead time horizons 
with different accuracies.  Therefore, these forecasts have statistical characteristics. 

6.2 Levels of EMS Integration 

Three levels of integration of probabilistic tools into market applications and EMS are considered. 

6.2.1 Level I (Passive) 

The passive integration level implies integration of wind forecast information and its visualization 
without introducing any changes to the EMS algorithms.  Passive integration is the initial and the simplest 
way of integration.  In this case, the probabilistic tool provides for uncertainty visualization capability 
only.  Displays with look-ahead generation capacity and ramping requirements are provided to system 
operators in real time.  The displays will help operators assess balancing needs and make the right 
decision for short-term generation scheduling. 

6.2.2 Level II (Active) 

Active integration of the probabilistic tool is a higher level of integration.  On the active level, the UC 
and ED procedures are repeated several times for every dispatch interval to determine whether the system 
can meet extreme generation requirements caused by uncertainties for a certain confidence level.  The 
tool interacts with the processes of unit commitment (STUC and RTUC) and economic dispatch (RTED).  
The system “break points” are communicated to the user.  In addition to an uncertainty visualization 
display, the probabilistic tool displays alerts of potential threats to the power system and advises operators 
on what kind of actions can be taken to avoid undesirable scenarios.   

Active integration with UC does not necessarily imply any modifications in current operating 
practices.  The probabilistic tool interacts with and uses existing UC engines to monitor the sufficiency of 
available balancing resources and to generate alternative generating schedules (advisories) in case of 
potential threats to power system reliability. 

6.2.3 Level III (Proactive) 

Proactive integration is the most advanced level of integration.  It requires not only interaction with 
the UC, ED, and other systems in the market and EMS environment, but also implies modifications of 
current operating practices and algorithms.  The proactive level requires modifications of the UC and ED 
algorithms in order to directly incorporate uncertainties into these procedures.  In this case, generation 
units are committed and dispatched to prevent these uncertainties from creating “breaking points.”  For 
instance, new constraints such as capacity requirements and ramping requirements based on uncertainty 
evaluation can be incorporated into the unit commitment process.  This will change the formulation of the 
UC problem and requires new algorithms to solve the new UC equations.   



 

6.4 

6.3 EMS Integration Design 

To demonstrate the performance of the probabilistic uncertainty evaluation tool and its applicability 
to actual grid operation environments, market system integration design with the AREVA EMS system 
was developed for the first two levels of integration (passive and active).  Figure 6.3 shows the overall 
design of the integration.  The uncertainty evaluation tool (labeled as “PNNL Wind/Load Confidence”) is 
a standalone module outside of the market and EMS environment.  As shown in Figure 6.3, the evaluation 
tool needs data from the market and EMS in addition to wind forecast information.  The output of the 
uncertainty tool needs to be imported back to the market systems and linked to applications such as 
RTUC and RTED.   

The data export interface is based on an interface provided by the EMS vendor.  The data to be 
exported from the market applications are shown in Figure 6.3.   

The wind forecast data are shown to be provided by a third-party forecast service company external to 
market applications.  This is based on the fact that current market applications do not have an interface for 
wind forecast information.  However, considering that wind forecasts would be directly linked to market 
applications in the future, the design can be slightly altered to have the uncertainty tool receive wind 
forecast information using the same data export interface.  
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Figure 6.3.  Concept of Probabilistic Tool Integration Into EMS. 

The uncertainty tool developed and described here can be integrated using any market system.  Slight 
modification in integration procedure could be required depending on the system. 



 

7.1 

7.0 Preliminary Results of Capacity Requirements Analysis 

Preliminary simulations were performed using a probabilistic prototype tool developed in MATLAB 
(MathWorks Inc. 2009).  The 2007 California ISO data were used.  The following parameters were used 
in the simulations:  

• Simulated period: 70 days 
• Sliding window length: 21 days 
• Sliding window refreshment rate: 1 hour 
• Generation schedule: Hour-ahead schedule (1 hour resolution) 
• Wind and load forecasts: 1 hour resolution, updated hourly, over a 5-hour time horizon. 

The results of model validation are presented in Figure 7.1.  The percentage numbers labeled on the 
pie chart are the calculated percentages of points found within the confidence intervals.  The targeted 
percentages are the intervals indicated in the legend; i.e., the blue portion of the pie has a targeted 
percentage of 80% and other colored portions have a targeted percentage of 5%.  Figure 7.1 shows that 
the uncertainty method provides a quite accurate prediction of the uncertainties because the obtained 
percentage values are very close to the targeted percentage values. 

78%

6%
5%

5%6%
1h-ahead

 

 

0-80%
80-85%
85-90%
90-95%
95-100%

78%

5%
5%

6%7%
2h-ahead

79%

6%
4%

5%6%
3h-ahead

81%

4%
4%5%6%

4h-ahead

81%

5%
5%

5%4%
5h-ahead

 

Figure 7.1.  Results of Model Validation for 5-Hour Horizon (70-day time period) 

 

 





 

8.1 

8.0 Conclusions and Future Work 

The conclusions are summarized as follows: 

• A methodology capable of evaluating the impact of wind generation uncertainty, load variability, and 
unexpected generation outages on balancing resource requirements has been developed. 

• A MATLAB prototype of a probabilistic tool based on the proposed methodology has been 
developed. 

• Preliminary simulation studies using actual California ISO data have been performed.  Study results 
have shown that the methodology of evaluating generation requirements for uncertainty management 
is quite accurate and efficient. 

• The concept of probabilistic tool integration into an EMS environment has been developed. 

Continuing and future work will be to implement the proposed design of the three-level integration 
and evaluate the implementation in terms of utility and usability for potential industry practices.   
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