
 PNNL-SA-106581 
 
 

 
 
 
 

Prepared for the U.S. Department of Energy  
under Contract DE-AC05-76RL01830 

Commercial Building Tenant Energy Usage Data 
Aggregation and Privacy:  
Technical Appendix 
November 2014 

OV Livingston  
TC Pulsipher 
DM Anderson 
 



 

  



PNNL-SA-106581 

 

 
 
 
 
 
 
 
 
 

 
 
Commercial Building Tenant Energy 
Usage Data Aggregation and Privacy: 
Technical Appendix 
 
 
 
 
 
OV Livingston  
TC Pulsipher 
DM Anderson 
  
 
 
 
 
November 2014 
 
 
 
 
 
Prepared for 
the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 
 
 
 
 
 
 
 
Pacific Northwest National Laboratory 
Richland, Washington  99352 





 

iii 

Acronyms and Abbreviations 

ABMP average building meter profile 
CBECS Commercial Buildings Energy Consumption Survey 
CPUC California Public Utilities Commission 
DOE U.S. Department of Energy 
EDA exploratory data analysis 
EFF Electronic Frontier Foundation 
ESPM ENERGY STAR Portfolio Manager 
IQR inner quartile range 
NG natural gas 
PII personally identifiable information 
RECS Residential Energy Consumption Survey 
 





 

v 

Contents 

  
Acronyms and Abbreviations ........................................................................................................... iii 
1.0 Introduction ................................................................................................................................ 1 
2.0 Analysis ...................................................................................................................................... 2 

2.1 K-means Cluster Analysis .................................................................................................. 2 
2.2 Statistical Analysis ............................................................................................................. 2 

3.0 Data and Results – Dataset 1 ...................................................................................................... 3 
3.1 Building profile variability ................................................................................................. 4 

3.1.1 Optimal Number of Clusters for Building Profiles ................................................. 4 
3.1.2 Cluster Sizes for the Optimal Number of Clusters .................................................. 8 
3.1.3 Cluster Composition ................................................................................................ 9 

3.2 Meter Profile Variability .................................................................................................. 13 
3.2.1 Clustering of Meter Profiles with ABMP .............................................................. 13 
3.2.2 Correlations between Individual Meter Profiles and their ABMP ........................ 25 
3.2.3 Ratio of Individual Meter Annual Consumption and ABMP ................................ 26 

4.0 Conclusions for Dataset 1 – Natural Gas .................................................................................. 28 
 



 

vi 

 
Figures 

Figure 3.1.  Natural Gas 12 Month Profiles for Dataset 1 .................................................................. 5 
Figure 3.2.  Natural Gas 12 Month Profiles for Dataset 1, Normalized .............................................. 5 
Figure 3.3.  Elbow plot of the building NG profile clusters, K-means, original data ......................... 7 
Figure 3.4.  Elbow plot of the building NG profile clusters, K-means, normalized data.................... 7 
Figure 3.5.  Histogram of Cluster Sizes for Original NG Data, Dataset 1 .......................................... 8 
Figure 3.6.  Histogram of cluster sizes for normalized NG data, dataset 1 ......................................... 9 
Figure 3.7.  Original Profiles Plotted by Cluster ............................................................................... 10 
Figure 3.8.  Normalized Profiles Plotted by Cluster ......................................................................... 11 
Figure 3.9.  Cluster Analysis Based on Meter and ABMP, Original Meter Profiles (k = 20) .......... 14 
Figure 3.10.  Cluster Analysis Based on Meter and ABMP, Normalized Meter Profiles (k=75) ..... 14 
Figure 3.11.  Histogram for the Optimal Number of Clusters, Unnormalized Data ......................... 15 
Figure 3.12.  ABMP and their Meter Profiles Plotted by Cluster (k=20), Unnormalized Profiles ... 16 
Figure 3.13.  Histogram for the Optimal Number of Clusters, Normalized Data ............................. 17 
Figure 3.14.  ABMP and their Meter Profiles Plotted by Cluster (k=75), Normalized Profiles ....... 18 
Figure 3.15.  Comparison of Annual Meter Energy Use across Clusters in Unnormalized Data ..... 20 
Figure 3.16.  Percent of Normalized Meter Profiles Clustered Together with their ABMP for 

k=75 .......................................................................................................................................... 21 
Figure 3.17.  Example for a Hypothetical 3-Meter Building ............................................................ 22 
Figure 3.18.  Percentage of Meters in the Same Cluster as their ABMP (k=50, 75, 100) ................ 24 
Figure 3.19.  Boxplot of Correlation between Building and ABMP ................................................ 26 
Figure 3.20.  Distribution of the Ratio of Meter Annual Consumption to the ABMP Annual Total 27 
Figure 3.21.  Boxplot of the Ratio of Meter Annual Consumption to the ABMP Annual Total ...... 27 
 

Tables 

Table 3.1.  Sample Size by Category .................................................................................................. 4 
Table 3.2.  Average Probability of Reidentification under Analyzed Aggregation Thresholds ....... 23 
Table 4.1.  Probability of Reidentification under Analyzed Aggregation Thresholds ...................... 29 
 
 



 

1 

1.0 Introduction 

This technical appendix accompanies report PNNL–23786 “Commercial Building Tenant Energy 
Usage Data Aggregation and Privacy”. The objective is to provide background information on the 
methods utilized in the statistical analysis of the aggregation thresholds. 

 The goal of performing the same analysis on different datasets across multiple utilities is to 
determine whether the results and conclusions share any similarities across utilities in distinct geographic 
and climatic regions.  The specific intent is to find a universal method for comparing the aggregation 
thresholds, illustrate how it is applied, and explain how the analysis results inform the choice of the 
threshold.  While we understand that the datasets are region-specific, and each dataset may produce a 
slightly different result, the objective is to identify if there are any emerging trends despite the differences 
in the datasets.  

No customer PII (names, phone numbers, etc.) or building addresses were provided; utilities were 
specifically requested to remove all PII from the dataset.  The names of the participating utilities and 
sample data are subject to nondisclosure agreement.  Therefore, only summary statistics and comparative 
results are included in the discussion.   

Single-meter instances were removed from the analysis.  This was done to enable the required 
simplifying assumption that one meter equals one tenant.  Therefore, single-meter buildings are treated as 
a proxy for single-entity or single-tenant buildings, and are excluded from the analysis.  This analysis is 
focused on the aggregation of the tenants/meters within multi-tenant buildings to form the building total 
monthly energy consumption profile. 

Aggregation of meters into subgroups of meters within a building is not allowed, as manipulating 
subgroup composition from query to query allows for re-identification within the group via composition 
attack.  For example, if the aggregation threshold is 6 and there are 12 tenants in the buildings, the 
aggregated profile is comprised by summing up all 12 individual tenant/meter profiles into one total, as 
opposed to having two aggregate profiles for two groups of 6. Aggregation of buildings into broader 
groups as defined in Section 2.0 of the main report is outside the scope.  

While analysis of only one dataset is described in detail in this Appendix, the analysis flow is 
identical for all of the datasets analyzed in the report.  Generalized results are reported in the main body 
of the study as well. 
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2.0 Analysis 

Exploratory data analysis (EDA) tools employed in this study relied on unsupervised machine 
learning, specifically k-means cluster analysis,  as well as descriptive statistics including, but not limited 
to, correlation, range, and standard-deviation estimation across several cross-sections of data—all used to 
describe the within- and between-group variability.  These generally well known statistical methods are 
described below in the context of this effort. 

2.1 K-means Cluster Analysis 

Hastie et.al. (2001)1 provide a simple explanation of k-means clustering.  The idea is to group the 
buildings with similar/correlated buildings such that differences between the groups are maximized and 
the differences within groups are minimized.  Another way of saying this is to maximize the between-
group variability, or distance, while simultaneously minimizing the within-group variation.  Other 
clustering methods exist, though k-means is widely applied, and avoids the pitfalls of hierarchical 
methods that do not allow for a repartitioning of the cluster assignments. 

The number of clusters, k, is determined a priori in k-means cluster analysis.  Numerous metrics have 
been developed to determine the appropriate number of naturally occurring clusters.  This analysis uses 
the “elbow method” for diagnosing the optimal number of clusters k.  The elbow refers to the balance 
point between minimizing the total within-cluster variation while simultaneously minimizing the number 
of clusters. 

K-means clustering will not return a specific building’s profile as a representative profile for a cluster.  
Instead, k-means clustering finds the center, calculated as the mathematical average, for each cluster.  
Useful information extracted from EDA and clustering should identify outliers, provide understanding of 
the relationship between meter-level data and aggregated building level data, and help us understand 
meters and buildings data that should be tested against the aggregation strategies to determine a more 
robust algorithm/methodology for aggregation. 

Another advantage of k-means clustering over other clustering procedures is that it can help 
determine the number of natural clusters (groups) in the data.  For this report, we clustered both original 
and normalized profiles multiple times in an attempt to understand the variability between building 
profiles and to understand the similarity of the meter profiles to their building profiles. 

2.2 Statistical Analysis 

Correlation between the building consumption profile and the consumption profiles of individual 
meters in that building may inform as to the variability/uniqueness of each meter’s profile.  The initial 
expectation is that the majority of meters in a building exhibit the same behavior in their profiles as that 
of their aggregate, the building profile.  The greater the number of meters in the building, the more likely 
this assumption does not hold.  

                                                      
1 Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2001). The Elements of Statistical Learning. Springer Series in Statistics Springer New 
York Inc., New York, NY, USA, (2001) 

http://en.wikipedia.org/wiki/K-means_clustering
http://www.bibsonomy.org/author/Hastie
http://www.bibsonomy.org/author/Tibshirani
http://www.bibsonomy.org/author/Friedman
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The maximum correlation (minimum distance) suggests that a particular meter is most like the 
aggregate profile, whereas the minimum correlation (maximum distance) indicates the meter least like the 
aggregate profile.  This analysis was performed on each category and visually displayed to give an 
indication of the variability of the relationships between meters and their aggregate by account size 
(number of meters).   

To understand the degree of similarity between both shape and magnitude profiles across different 
dimensions, other general ad hoc statistical techniques were applied to the data.  Analysis was performed 
on both normalized and original (untransformed) profiles in order to separate variability in shapes from 
variability in magnitudes. The higher is the homogeneity, the easier it is to estimate an individual meter 
profile from the building total.   

Out of all the statistical methods that were applied to the meter and building monthly energy 
consumption data, the most relevant and easily interpretable results were obtained from   

1. Investigating building profile variability 

– Clustering building profiles to determine the optimal number of groups and typical annual profile 
shapes 

– Analyzing the relationship between building attributes and cluster composition 

2. Comparing the typical building profiles with typical meter profiles  

– Clustering with average building meter profile (ABMP) 

– Correlations between individual meter profiles and ABMP 

– Ratio of individual meter profiles and ABMP 

The next section of the Appendix contains a more detailed description of the data, discussion of the 
observed variability, and figures of relevant results and their implications for estimating the individual 
meter profiles.  Recommendations regarding the aggregation threshold for the explored data are provided 
in the conclusions. 
 
 

3.0 Data and Results – Dataset 1 

While analysis of only one dataset is described in detail in this Appendix, the analysis flow is 
identical for all of the datasets analyzed in the report.  Generalized results are reported in the main body 
of the study as well. Dataset 1 contained information on both natural gas meter profiles and electricity 
meter profiles for June 2012-May 2013 along with the clear indication of which meters belonged together 
in one building.  Dataset 1 is the only dataset out of 6 that comprised the actual metering data at the 
building level, not utility billing accounts.  After matching the building data to the meter data and 
removing all the single-meter instances from the dataset, the subset with NG meter data (Dataset 1 – NG) 
included over 17,000 buildings spanning  more than 57,000 meter profiles, while the subset with 
electricity meter data (Dataset 1 – Electricity) included approximately 9,600 buildings spanning over 
26,000 meter profiles.  
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Since this is one of the few datasets that contained both NG and Electricity data by building, data 
across NG and Electricity meters were first analyzed separately, but then converted to common units and 
rolled up to the building level to gain a better understanding of  the full picture. Results here are reported 
for a Natural Gas subset only to explain the analytical approach. The main report contains the summary of 
the generalized result across both subsets. Generalized results across 6 analyzed utilities are reported in 
the main body of the study. 

The subset with NG meter data included 17,318 buildings spanning 57,242 meter profiles for June 
2012-May 2013. Buildings with 15 or more NG meters were excluded from the analysis as they represent 
only 2% of the multi-meter buildings1 in the coverage area of the utility according to the building data 
count.  The results discussion will focus on the buildings with up to 12 units, because the sample data for 
buildings with 12 or more units is limited as well. 

Sampled building count by number of meters in the analyzed subsample (Dataset 1 - NG) is presented 
in Table 3.1 below.  

Table 3.1.  Sample Size by Category 
Category Number of buildings Number of meters 

2 8447 16894 
3 3721 11163 
4 2006 8024 
5 1145 5725 
6 700 4200 
7 456 3192 
8 325 2600 
9 187 1683 

10 115 1150 
11 84 924 
12 60 720 
13 41 533 
14 31 434 

15 - excluded 22 330 
Total count  17318 57242 

3.1 Building profile variability 

3.1.1 Optimal Number of Clusters for Building Profiles 

Figure 3.1 illustrates building-level monthly energy use profiles for the sample (log scale). The intent 
is to identify predominant building profile shapes within the dataset. Figure 3.1 shows that majority of the 
NG building-level profiles for this utility are either mostly flat or bell-shaped (shown with two red lines).  
The seemingly abnormal behavior in the bottom third of the plot (zigzag decreases and increases) is 
simply an artifact of using a log scale for display purposes. 

                                                      
 
 



 

5 

 
Figure 3.1.  Natural Gas 12 Month Profiles for Dataset 1 

One of the method objectives is to understand variability of profile shapes and profile magnitudes. To 
separate the variability of shapes from the variability of magnitudes the analysis of normalized profiles is 
also performed in parallel. Normalization is done by subtracting the profile mean, estimated as annual 
average, from each of the 12 monthly values and then dividing the difference by the standard deviation. 
This normalization suppresses magnitudes and allows focusing on variability in shapes.  

Normalized profiles are presented in Figure 3.2.  Note that the normalized profiles are centered at 
zero and their value indicates how many standard deviations the observation is above or below the mean. 
Two distinct shapes are shown in different colors.  

 
Figure 3.2.  Natural Gas 12 Month Profiles for Dataset 1, Normalized 
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To answer the question whether there are essentially two typical profiles (flat and bell-shaped), a 
cluster analysis was performed on both original and normalized profiles. K-means clustering takes into 
account distance between profiles when partitioning the profiles into groups. Thus not just the shape but 
also the magnitudes dictate how the profiles are partitioned. To determine the number of naturally 
occurring groupings, which represent distinct profile shapes in this data, it is necessary to perform 
clustering on the normalized profiles as well.  

The K-means procedure requires an analyst to specify the number of partitions or clusters. This is 
something of a drawback of  k-means cluster analysis: in trying to find out what typical profile shapes 
look like, an analyst has to tell an algorithm how many of them are there in the data to start with, i.e. how 
many partitions or bundles the data should be split into. Then by comparing the distance between the 
profiles, the algorithm decides which profiles belong together and which one of the groups they fall into.  

There are multiple methods for choosing the optimal or natural number of clusters.  Figure 3.3 shows 
a diagnostic plot that is used as one of the standard methods to determine the optimal number of clusters. 
The horizontal axis shows the number of clusters.  The vertical axis shows the total within the sum of 
squared distances between the members of the cluster. The latter is a measure of how tight the clusters are 
for each selected number of clusters, as explained below.  

Within sum of squared distances is a standard measure of cluster tightness which represents the 
degree of similarity between cluster members. Within sum of squared distances is calculated as a distance 
between the cluster members (12-month profiles that fall in the grouping) and the cluster center. The 
cluster center is the mathematical average of all the members in the cluster.   

The smaller the within sum of squares is, the tighter the cluster is. In general, the clusters get tighter 
as the number of clusters increases. The curve in Figure 3.3, often called an “elbow plot,” captures this 
relationship. To determine the optimal number of clusters, the researcher looks for the elbow in the curve, 
nominally the area of the curve where increasing the number of clusters results in a diminishing reduction 
of the total within sums of squares. This metric suggests that for the NG dataset with 17,318 buildings, 
k = 100 is the optimal number of clusters in unnormalized profiles.  
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Figure 3.3.  Elbow plot of the building NG profile clusters, K-means, original data 

Figure 3.4 shows the elbow plot for the normalized profiles. The optimal number of clusters for 
normalized data is k = 50. Given the two basic building profile shapes that are observed in the data as 
illustrated in Figure 3.1 (flat and bell-shaped), this large number of natural clusters in the normalized data 
implies that because of the variation in building profile shapes the generalization at the level of the two 
basic shapes will result in crude oversimplification.  

 

 
Figure 3.4.  Elbow plot of the building NG profile clusters, K-means, normalized data 

Optimal number of clusters (100) in 
the unnormalized data  

Optimal number of clusters (50) in the 
normalized data  
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3.1.2 Cluster Sizes for the Optimal Number of Clusters 

Figure 3.5 and Figure 3.6 show the breakdown of the optimal clusters for the original and normalized 
data by size (k=100 and k =50, respectively). The horizontal axis shows the number of buildings in a 
cluster, the vertical axis (height of the bar) shows how many clusters of that size are present under 
optimal clustering.  

  
Figure 3.5.  Histogram of Cluster Sizes for Original NG Data, Dataset 1 

As shown in Figure 3.5, there is a large amount of smaller clusters in the original unnormalized data. 
For example, the first bar in Figure 3.5 indicates that out of 100 optimal clusters there are 33 clusters that 
include 50 buildings or less, the second bar shows there are 11 clusters with 50-100 buildings, 9 clusters 
with 100 -150 buildings, 10 clusters with 150-200 buildings and so on. Note that there are quite a few 
larger clusters, specifically several clusters with 650-700 and 700-750 members, as well as one with 900-
950 members. In the context of this analysis, the clusters with the relatively high number of members 
represent the dominant building profile types in the unnormalized data. This point is explained in more 
detail within the Cluster Composition section.  
 

33 clusters containing 1-50 buildings 

Clusters with a high 
number of members 
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Figure 3.6.  Histogram of cluster sizes for normalized NG data, dataset 1 

Figure 3.6 shows the same cluster size breakdown, but for normalized data. When the profiles are 
normalized (i.e. magnitudes are suppressed to give more emphasis to the differences in shapes), a 
significant portion of the buildings end up in clusters with 700-1000 members (5 bars circled in red in the 
middle of Figure 3.6 ), and clusters with over 1000 members (the last three bars on the right). These 8 
clusters with high number of members represent dominant profile shapes in the normalized data.  The 
remainder of the profiles are grouped together in the clusters with less than 500 members (first 7 bars on 
the left of Figure 3.6).  

3.1.3 Cluster Composition 

Further review of the clusters indicates that besides the clusters with a high number of members, 
which represent dominant profiles, there are quite a few small clusters. Presence of unique profiles in the 
data explains the large number of small clusters. Figure 3.7 and Figure 3.8 depict cluster composition for 
original and normalized data. Cluster number is indicated above each individual graph. Circles on   
Figure 3.7 and Figure 3.8 denote clusters with the large number of members, i.e., the dominant profiles in 
each set.  

 

5 clusters with 
700-1000 
members 

3 clusters with over 
1000 members 
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Figure 3.7.  Original Profiles Plotted by Cluster 
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Figure 3.8.  Normalized Profiles Plotted by Cluster 
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Cluster composition for original data (Figure 3.7) shows that while there are only a few dominant 
building profile shapes (flat and bell-shaped profiles captured by the clusters with the highest number of 
members), mid-size and large clusters are formed based on minor variations of these dominant profile 
types. Black ovals on Figure 3.7 denote dominant profile types represented by the largest clusters  
(3 largest clusters from Figure 3.5).  

Cluster composition for the normalized data (Figure 3.8) emphasizes the most dominant profile 
shapes captured by 8 clusters with the highest number of members depicted in Figure 3.6. 

One key insight revealed by the cluster composition analysis is that buildings with the same number 
of meters are not clustered together.  For example, the two-meter buildings are spread throughout all the 
clusters. An argument can be made that it is the climate/weather and building type that drives the 
clustering. While climate defines whether the profile is predominantly flat or bell-curved, it does not seem 
to be the case that building type strongly correlates with the number of meters in a building or cluster 
membership.  

To summarize, when clustering is done on the original data, where both shape and magnitude affect 
how the building profiles are bundled together, the natural number of clusters is k = 100. When the 
impact of the magnitudes on clustering is suppressed via normalization, the natural number of clusters 
drops to 50. This could serve as an indication that, along with variability in shape, there is a desirable 
degree of variability in the magnitude of the building profiles.  

The degree of variability at the building level, not just at the meter level, is important for the 
following reason. There is a handful of dominant building profile types in the dataset.  If the buildings of 
the same type/size with the same number of meters/tenants are highly homogeneous, successful 
estimation of tenant profiles in one building from the group can be used to compromise tenant data in the 
rest of the buildings with the similar profile type and building characteristics. The higher is the energy 
profile variability at the building level, the less is the likelihood of this type of attacks (homogeneity 
attacks) being successful. However, extremely high variability is not beneficial either, as it translates to 
higher distinguishability of buildings within the dataset.  

Since there is an indication of desirable degree of variability in building profiles and cluster 
membership, in both shape and magnitude (i.e., buildings with the same number of tenants/meters are not 
bundled together), estimation of individual tenant profile would be more difficult. Therefore aggregation 
may provide an adequate degree of protection for this data: if reidentification of meters occurs for one 
building, variability in shapes and magnitudes of building profiles will make it harder to generalize that 
information to the other buildings.  

While this aspect might not be of immediate relevance in the discussion of estimating tenant or meter-
level profile within a specific building, it becomes more important within the context of turnover 
discussed in the main report.  
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3.2 Meter Profile Variability  

The main metric of interest is the percentage of meter profiles that are similar to their overall building 
profile.  This metric indicates how easily any individual meter profile can be guessed or estimated from 
dividing the building profile by the number of meters in the building. The latter, namely building profile 
divided by the number of meters in the building, is denoted as the average building meter profile 
(ABMP). This is the primary mode of attack considered in the analysis: guessing a tenant/meter monthly 
energy profile from dividing the building profile by the number of meters in the building (i.e. based on the 
similarity of individual meter profile to ABMP).  

Cluster analysis is one of the methods used here to determine whether the individual meters within a 
building resemble the overall building profile and, as a result, the ABMP. If the resemblance is high, a 
large portion of individual meter profiles clusters together with the corresponding ABMPs.  

By design, cluster analysis captures the variability in shape and magnitude between individual meter 
profiles and ABMPs.  A more detailed examination of correlation statistics and analysis of the ratio of the 
ABMP to the individual meter profiles elucidate further the degree of similarity between overall building 
and meter profiles.  

3.2.1 Clustering of Meter Profiles with ABMP  

Figure 3.9 shows the elbow plot for clustering together the actual meter profiles and the ABMPs.  
This plot suggests k = 20 is the optimal number of clusters for original profiles before normalization. This 
means that once the ABMPs (17,318) and actual meter profiles (57,242) are pooled together, the overall 
set of 74,560 monthly profiles has 20 natural groupings. Breaking data into distinct groups any further 
does not result in a reduction of the total within sum of squares.  The natural number of clusters in the 
normalized data is 75 as shown in Figure 3.10. 
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Figure 3.9.  Cluster Analysis Based on Meter and ABMP, Original Meter Profiles (k = 20) 

 
Figure 3.10.  Cluster Analysis Based on Meter and ABMP, Normalized Meter Profiles (k=75) 

It may appear that having 20 optimal groupings for 74,560 profiles immediately suggests that a large 
number of meter profiles are similar to the ABMP.  But the comparison of cluster composition for 
unnormalized and normalized pooled data indicates that the variability in profile magnitudes between the 
20 optimal groups is high. When the impact of magnitude on clustering is suppressed via normalization, 
the clustering algorithm is more sensitive to changes in the shape, thus picking up 75 types of profile 
shape in the data. 

Optimal number of clusters (75) for 
normalized meter profiles  
 

Optimal number of clusters 
(20) for unnormalized meter 
profiles  

Relatively small change in the cluster 
tightness beyond 20 clusters 
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Cluster count by size for original and normalized data is shown in Figure 3.11 and Figure 3.13.  
Cluster composition in original and normalized data is presented in Figure 3.12 and Figure 3.14. The 
clusters that contain the largest number of profiles, i.e. dominant profile shapes, are marked. 

 

 
Figure 3.11.  Histogram for the Optimal Number of Clusters, Unnormalized Data 

Note that in unnormalized data (Figure 3.11) Cluster 2 (which corresponds to the last bar on the right 
of Figure 3.11) contains 60K out of 74.5K profiles, or over 80% percent of the pooled dataset. Two 
clusters in the middle of Figure 3.11 contain 3222 and 8484 profiles each, which accounts for over 11K 
profiles, or another 15% of the pooled profiles. These three clusters together (2, 16 and 18) contain over 
95% of the unnormalized profiles.   

Cluster composition for unnormalized data with k = 20 (plotted on a log scale) shown in Figure 3.12 
confirms that magnitude indeed dominates the clustering, which is observed from the scale difference for 
each one of the cluster plots. There are several clusters that contain a small number of distinct profiles 
(for example, Clusters 5, 6, 7, 10 and 17). Several different clusters seem to contain profiles of identical 
shape, but their magnitudes are significantly different (for example, Clusters 12 and 15). 

Contain 15% of the 
pooled profiles Contains over 80% of 

the pooled profiles 
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Figure 3.12.  ABMP and their Meter Profiles Plotted by Cluster (k=20), Unnormalized Profiles 
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Figure 3.13.  Histogram for the Optimal Number of Clusters, Normalized Data 

The membership count for optimal clusters in the normalized profiles is more even and clusters are 
tighter. The largest clusters contain 4303 and 4532 profiles (the two last bars on Figure 3.13, which 
correspond to Clusters 51 and 18 in Figure 3.14). The smallest cluster contains 220 profiles (first bar in 
Figure 3.13, which corresponds to Cluster 12 in Figure 3.14).  

 

Higher number of tighter clusters 
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Figure 3.14.  ABMP and their Meter Profiles Plotted by Cluster (k=75), Normalized Profiles
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Cluster composition for normalized data shows the shape of the 75 dominant profile types in the data 
(Figure 3.14). The y-axis in Figure 3.14 indicates the number of standard deviations from the mean of the 
original profile, where original profiles indicate monthly natural gas consumption in therms.  

Figure 3.14 also indicates that meters from buildings with the same number of meters, on both the 
low and high ends of the count, are distributed across several clusters. For example, profiles from 
buildings with three meters are included in almost every cluster. This outcome confirms that individual 
meter profiles and ABMP within any specific building count category (eg, all 5 meter buildings) are not 
homogenous to the point that they would predominantly bundle together. This lowers the risk of 
homogeneity attack within a building-count category, as well as within any given building.  

 This is consistent with the results depicted in Figure 3.7, where building profiles for the buildings 
with the same number of meters do not cluster together either. Note this does not hold for unnormalized 
data because the current partition bundles over 80% of the profiles in the same cluster due to magnitude 
dominating the clustering.  

Figure 3.15 demonstrates that each cluster in unnormalized raw data is formed using primarily, and 
possibly only, the magnitude of the annual NG consumption. Number of meters per building is shown on 
the right of Figure 3.15.  Cluster number and order are unimportant here, whereas the lack of horizontal 
overlap of these distributions suggests cluster composition is based solely on magnitude of consumption. 
Compare this result to that of Figure 3.14.   

Based on this discrepancy in the cluster composition and concentration of unnormalized profiles in 
one cluster, it would be inappropriate to use unnormalized raw profiles for quantifying the similarity of 
the individual meter profiles with their respective ABMP. In order to understand how different each meter 
profile is from its building profile, the clustering to group profiles in this data should be based on shape 
and not magnitude.  Therefore, the clustering analysis should be performed on the normalized profiles 
instead.  
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Figure 3.15.  Comparison of Annual Meter Energy Use across Clusters in Unnormalized Data  

Boxplots in Figure 3.16 show one of the most relevant results of the cluster analysis: the percentage 
of the normalized meter profiles that fall in the same cluster as the corresponding ABMP.  The percentage 
of meters that cluster together with the ABMP is used to measure the similarity of profiles to the 
respective building average.  It is utilized as a proxy to indicate how likely individual meter profiles can 
be estimated from the building profile simply by dividing the building monthly totals by the number of 
meters. There is no formal definition or a metric for the probability of reidentification that could be 
immediately applied to the context of the analysis in this report. Therefore we are attempting to develop a 
specific practical definition and attach a metric that could provide a quantification meaningful for utilities 
and other stakeholders. The percentage of individual meter profiles that cluster with their respective their 
ABMP is such a metric.  

The middle line in the box plot indicates the median. The box represents the inner quartile range 
(IQR), which is the distance between the first and the third quartiles (25% and 75%). The upper whisker 
extends from the third quartile (75%) to the highest value that is within 1.5 x IQR. The lower whisker 
usually extends from the first quartile (25%) to the lowest value within 1.5 x IQR. Data that falls outside 
of the whisker range is plotted as points. Buildings are grouped based on the number of meters which is 
shown on the bottom of the chart. 
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Figure 3.16.  Percent of Normalized Meter Profiles Clustered Together with their ABMP for k=75 

Let’s first consider the boxplot for two-meter buildings (the very first boxplot on the left) and then 
generalize the interpretation for the remaining cases.  In two-meter buildings there are only three possible 
outcomes: 1) neither of the two meter profiles clusters with the ABMP, 2) only one of the meters clusters 
with the ABMP, or 3) both of the meters cluster with the ABMP. The median (50% of the two-meter 
buildings) at 0.5 means that for 50% of the two-meter buildings, one out of two meters cluster with their 
ABMP.  

There is an alternative way to look at the clustering results. In 27% of  2-unit buildings none of the 
profiles cluster with the ABMP. In 66% of the 2-unit buildings only one out of two meters (one but not 
the other) cluster with their ABMP, and approximately in 6% of 2-unit buildings both of the meters 
cluster with the AMBP. The average percentage of meters that cluster with their ABMP for buildings with 
2 units can be calculated as 27% * (0/2) + 66% * (1/2) + 6% * (2/2) = 0 + 33% + 6% = 39%.  

For a three-meter building (second boxplot in Figure 3.16), the median is at about 0.3, which means 
that in 50% of the buildings roughly one out of three meters resembles the ABMP. In other words, the 
shape of the monthly consumption profile for one meter can be guessed from the overall building profile 
via division by the number of meters. If more detailed information about the physical building and 
occupied square footage is not available, not only does this not tell you which one of the meters can be 
guessed in this manner, but it does not reveal any specific information about the remaining two meters.  

For example, from the mere dimensionality of the problem (three meters), if the shape of the profile 
for one meter can be approximated as 1/3 of the overall building profile, then the remaining two meters 
are underidentified in statistical terms. Simply put, when only one out of three profiles is estimated, it 
does not reveal the shape or the magnitude of the other two profiles. The number of unknowns exceeds 
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the number of known parameters, i.e., there are more variables than equations. This idea is illustrated in 
Figure 3.17.  

 

Figure 3.17.  Example for a Hypothetical 3-Meter Building 

In this example, the profiles T21, T22 and T23 are hypothetical meter profiles for a three-meter 
building (N=3). T2 total is the sum of T21, T22 and T23, i.e. the building total profile. Let’s assume that 
profile T23 was reidentified, since it closely follows the shape of the total building profile. If we take 12 
monthly consumption totals for the building (T2Total, the bottom section of the graph), subtract 1/N from 
each of the monthly values (of our supposedly identified meter profile T23), then we know that the 
remaining N − 1/N have to be allocated between two profiles (which do not resemble the building total 
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profile in this case, although that is not known to an attacker, who was able to identify only T23). Only 
the sum of monthly totals for the remaining two profiles (T21 and T22) is known to the attacker. Multiple 
linear combinations of profiles can produce the same total profile as the sum of T21 and T22.  As the 
number of meters per building increases, accurate estimation of individual meters becomes progressively 
harder, because the degree of what is known in statistics as underidentification gets higher—an increasing 
number of linear combinations can add up to the same total profile.  

Going back to Figure 3.16, the alternative metric, average percentage of meters that are similar to 
their ABMP for 3-meter buildings, is approximately 24%. In 37% of the 3-meter buildings none of the 
meters cluster with the ABMP, for 50% of the buildings only one out of 3 meter profiles clusters with the 
ABMP (but the other 2 meter profiles do not). In 10% of the buildings 2 meter profiles cluster with the 
ABMP, while in only 1% of the 3-meter buildings all meter profiles cluster with ABMP. Taking weighted 
average 37% * (0/3) + 50% * (1/3) + 10% * (2/3) + 1% * (3/3) produces the estimate of the average 
percentage of meters that are similar to their respective ABMPs (24.3%) across 3-unit buildings.  

For four-meter buildings, the median of the boxplot is at 0.25, which implies that in 50% of cases, 
one out of the four individual meter profiles in four-meter buildings clusters together with its ABMP.  
The median for five-meter buildings is at 0.20, implying that in 50% of the five-meter buildings, one out 
of the five individual meter profiles clusters with the ABMP.  Connecting the boxplot medians in  
Figure 3.16 forms a curve that shows this decrease for six-, seven-, eight- and nine-meter cases.  

The alternative metric, average percentage of meters that resemble their ABMP, for four- and 5-meter 
buildings is calculated in the same fashion as explained in the example with the 3-meter buildings.   

Table 3.2 summarizes the weigted average percentage of meters that cluster together with their 
ABMP.  

Table 3.2.  Average Percentage of Meters Similar to ABMP under Analyzed Aggregation Thresholds 

Threshold 
(# of meters) 

Percentage of meters 
clustering with ABMP 

2 39% 
3 24% 
4 19% 
5 17% 
6 13% 
7 13% 
8 12% 
9 12% 
10 11% 
11 12% 
12 11% 
13 11% 
14 8% 

The average percentage of meters similar to ABMP for 4-meter buildings is 19%. Starting at four 
meters, percentage of meters clustering with ABMP for each consecutive threshold drops first by about 3 
percentage points for two levels, and then continues to drop by less than 1% for the next two levels. Thus 
the percentage of meters similar to ABMP under a four-meter aggregation rule encompasses the 
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percentage of meters similar to ABMP under any subsequent aggregation levels (i.e. the similarity of 
meters to the ABMP does not increase with higher number of meters in this dataset).   

Note that because of how clustering works, reducing the number of clusters in the data makes it easier 
to achieve a higher percentage of meter profiles clustering together with their building profiles. As the 
target number of clusters gets smaller, the clusters themselves become wider, i.e., the degree of similarity 
required to fall into a particular cluster is more forgiving, each cluster increases the within-cluster 
variation, and as a result, more dissimilar profiles are clustered together.  Reducing the number of clusters 
will overstate the percentage of meters clustering with their building, and subsequently overestimate the 
probability of being able to deduce an individual meter from the overall account or building profile.  

Alternatively, increasing the number of clusters results in smaller/tighter clusters, restricting the 
degree of similarity required for profiles to bundle together. As a result, fewer meters will cluster with 
their building profile, thus underestimating the probability of guessing an individual meter profile from 
the building average. 

Figure 3.18 illustrates this change in cluster composition and the percentage of meter profiles that can 
cluster with their respective ABMP. Change in percentage of meters that cluster together with ABMP is 
caused by the changes in the number of target clusters and, as a result, cluster tightness. 

 
Figure 3.18.  Percentage of Meters in the Same Cluster as their ABMP (k=50, 75, 100) 

Figure 3.18 shows the distribution around the percentage of the profiles that cluster with their ABMP 
for three different cases. The blue distribution shows how meter profiles and ABMP profiles are broken 
down into 100 clusters, green shows the same for 75 clusters, and orange for 50 clusters. For buildings 
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with the number of meters not exceeding eight, the cluster composition does not shift much from case to 
case (k = 50, k = 75 or k = 100). For buildings with nine and more meters the difference is more easily 
observable. For example, consider the buildings with 12 meters. As the number of clusters increases from 
50 to 100, the probability density function shifts to the left (from the orange probability density plot to the 
blue probability density plot shown by the arrows), and, as a result, the median of the displayed 
probability distribution function shifts to the left, indicating that the percentage of meters that clusters 
with ABMP for 50% of the buildings decreases. The average percentage of meters similar to the ABMP 
decreases as well.   

Therefore this analysis of percentage of meters clustering with their ABMP as the proxy for the 
probability of identification is valid only in the context of the optimal number of clusters, as informed by 
the elbow plot in Figure 3.10.  

The percentage of meters clustering with their ABMP tells us what fraction of the meters are similar 
to the ABMP without any specific characterization of what that similarity looks like. To understand the 
degree and direction of the relationship, analysis of the correlation between ABMP and individual profiles 
is included below. To understand the relationship between the magnitudes of individual meter profiles 
and ABMP, the ratios of annual meter total consumption to total ABMP consumption are described in the 
section that follows after.  

3.2.2 Correlations between Individual Meter Profiles and their ABMP 

Correlation between individual meter profiles and their ABMP illustrates the degree and direction of 
linear relationship between an individual meter profile and the corresponding building profile. It provides 
additional information on the similarity between profiles, and, as a result, also informs how easily the 
individual meter can be backed out from the overall building monthly total.    

Figure 3.19 is a box and whisker plot of the correlation between the building profile and its meter 
profiles by each building size (number of meters per building).  

As expected, individual meter profiles are highly correlated with their ABMPs with the median being 
in the 0.9-0.95 interval.  Overall, there does not appear to be an effect due to the number of meters per 
building. Meter profiles in 4-meter buildings are not significantly more correlated with their ABMPs than 
meter profiles in the buildings with 8 meters are correlated with their respective ABMPs. Rather the 
figure shows consistency, especially in the median correlation (the middle line of the box).   

The IQRs and the medians for three- and four-meter buildings are nearly identical. The medians (and 
IQRs) for the rest of the boxes are also very similar.  The significance of this figure is that meter profiles 
in four-meter buildings are no less correlated with their ABMP than buildings in three-, six-, seven-, or 
eight-meter buildings. In fact for buildings with five to nine meters, the distributions of correlation 
coefficients are indistinguishable from each other. The distributions of correlation coefficients for 
buildings with four to nine meters are very similar.  
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Figure 3.19.  Boxplot of Correlation between Building and ABMP 

3.2.3 Ratio of Individual Meter Annual Consumption and ABMP 

Figure 3.20 and Figure 3.21 show the distributions (in density and boxplot form, respectively) of the 
ratio of individual meter annual consumption to average building meter annual consumption. This ratio 
describes the degree of variability in the magnitudes of the individual meter profiles as compared to the 
ABMP. Buildings are grouped based on the number of meters, which are shown on the right side of the 
chart. The dotted vertical line is located at a ratio value of one.  The values to the left of that line represent 
meter annual totals that are less than ABMP annual total.  The values to far right show the presence of 
meters with the annual consumption much higher than that of the ABMP. This is indicative of the 
buildings where a few meters dominate the total profile of the building.  

The points outside of the boxplot whisker are traditionally interpreted as outliers. In the context of 
this analysis, the buildings with meter ratios so far to the right that they fall off the right whisker are the 
primary candidates for being removed from the reporting irrespective of the aggregation threshold. This is 
the group of meters/meters where the magnitude of one individual meter profile is high to the point of 
being uniquely distinguishable.  
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Figure 3.20.  Distribution of the Ratio of Meter Annual Consumption to the ABMP Annual Total  

 
Figure 3.21.  Boxplot of the Ratio of Meter Annual Consumption to the ABMP Annual Total 
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Mass concentrated at 1 (the vertical line) would indicate that annual consumption of meters is very 
close to the annual total of the ABMP. If the normalized profiles cluster closely together (i.e., are similar 
in shape to the ABMP) and distribution of the annual totals is narrowly amassed at 1 (i.e. similar in 
magnitude to ABMP), then individual meter profiles are homogeneous within their respective building 
groups to the point that they can be backed out fairly easily from the building total profile simply by 
dividing the building total profile by the number of meters.  

As can be observed from Figure 3.20, the distributions do have some differences across groups of 
buildings with different numbers of meters. But overall the differences are not large, and distributions of 
this ratio appear quite consistent, especially between 4-meter and 12-meter buildings.  

There is a large concentration on the left side of each distribution which indicates that there are many 
meters that are small in the profile magnitude as compared to their respective ABMPs. A fairly wide 
distribution with a long tail indicates that there is a significant number of meter profiles with relatively 
high magnitudes. This means that within the same building size (number of meters) there is a large 
number of meters with consumption much lower than that of the ABMP, and there is more than one meter 
with consumption higher than the ABMP.  

Having a reasonable range in the ratios along with a good spread of the mass on both sides of the 
value of 1 indicates that magnitudes of the meter profiles have a desirable balance between the variability 
of the profile magnitudes (range of the distributions) and dense representation along the range (shape of 
the distribution).  

The high degree of similarity in distributions for four- to nine-meter buildings is most easily 
observable in Figure 3.21. It shows that distributions of meter magnitudes as compared to building total 
are similar across these categories. To summarize, based on clustering analysis, only 25% of the meters in 
four-meter buildings cluster with their ABMP (i.e., the shape for one out of four profiles can be roughly 
estimated by dividing the building profile by the number of meters), and distribution of the ratio of profile 
magnitude to the ABMP is wide, thick and has a median of 0.5. Four meters is a first threshold for 
aggregation that is not subject to immediate decomposition due to turnover. Increasing the threshold from 
four to five does not lead to a dramatic change in the percentage of meters that are similar to ABMP.   

 

4.0 Conclusions for Dataset 1 – Natural Gas 

Analysis of variability in building profiles, meter profile cluster analysis, analysis of meter profile 
correlations and magnitude ratios relative to ABMP jointly indicate that there is a desirable degree of 
variability in both shapes and magnitudes of individual meter profiles, even within the buildings with the 
same number of meters. In addition, cluster membership analysis shows that accurately guessing all 
individual meter profiles from the building total is unlikely.  

Not only do buildings with the same number of meters not cluster together in this dataset, but also 
individual meters from buildings with the same number of meters do not either a) cluster narrowly 
together with meters from “similar-sized” buildings,  or b) cluster with the ABMPs from the 
corresponding building.  In other words, the variability in shapes and magnitudes of individual meter 
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profiles within same-size buildings is such that there is only a small portion of meters from, e.g., four-
meter buildings, that looks like the ABMP for that building (19% ).  

The percentage of normalized individial meter profiles that clustered together with their respective 
ABMP was used as a proxy for how likely individual meter profile can be estimated from the building 
average. On average, only 19% of the meters in four-meter buildings cluster with their ABMP (i.e., shape, 
but not magnitude, can be identified by dividing the building profile by the number of meters).  That 
percentage decreases even further for buildings with a higher number of meters.  

Variability across buildings with three-, four, and five or more meters is high enough that even in the 
unlikely case that all meter-level monthly totals are guessed correctly (e.g., any one four-meter building), 
that guess or its mechanics will be of limited use when applied to another four-meter building.  

The percentage of meters similar to ABMP across various aggregation thresholds in this dataset is 
summarized in Table 4.1.  

Table 4.1.  Percentage of Meters Similar to ABMP under Analyzed Aggregation Thresholds 

Threshold  
(# of meters) 

Pecentage of Meters 
Similar to ABMP 

Percentage of Multi-Meter 
Buildings by Category 

Multi-Meter  
Buildings Coverage 

2 39% 48.8% 100.0% 
3 25% 21.5% 51.2% 
4 19% 11.6% 29.7% 
5 17% 6.6% 18.2% 
6 13% 4.0% 11.5% 
7 13% 2.6% 7.5% 
8 12% 1.9% 4.9% 
9 12% 1.1% 3.0% 
10 11% 0.7% 1.9% 
11 12% 0.5% 1.2% 
12 11% 0.3% 0.8% 
13 11% 0.2% 0.4% 
14 8% 0.2% 0.2% 

The third column in Table 4.1 shows the percentage of multi-meter buildings that fall into each 
category in the analyzed dataset. For example, two-meter buildings comprise almost 49% of all multi-
meter buildings in this dataset. The fourth column shows the percentage of multi-meter buildings that 
would be eligible for reporting if the aggregation threshold was established at the level shown in the first 
column. For example, if the threshold is set at 3, 51% of multi-meter buildings are eligible for reporting 
under this aggregation rule, since two-meter buildings are automatically excluded. If the aggregation rule 
were to be moved up one level (to four meters), all two-meter and three-meter buildings would be 
excluded from the reporting, resulting in 30% coverage.  

If the aggregation threshold was increased even further, to five meters, the incremental change in the 
percentage of meters clustering with ABMP is small. But the coverage drops from 29% of the multi-meter 
buildings to 18%.   

Clustering results at the building and meter level, analysis of correlation and magnitude ratios 
consistently showed similarity in the results for four-, five- and six-meter buildings. The incremental 
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change in the percentage of meters similar to ABMP is small (from 19% down to 17% - moving the 
threshold from four to five, and then from 17% to 13% moving from 5 to 6). The loss in coverage from 
increasing the aggregation threshold from 4 to 5 and then from 5 to 6 is about 8-10% of the multi-meter 
building.  

This tradeoff between the percentage of meters similar to their respective building average compared 
to reporting eligibility guided the comparison of candidate aggregation thresholds. 

Comparison of the candidate aggregation thresholds for this dataset shows that  

a) Incremental change in the probability of profile matching is 2 percentage points for increasing the 
aggregation threshold from 4 to 5 meteres, less than 4 percentage points for going from 5 to 6, 
and then drops by less than one percentage point for all subsequent candidate thresholds 

b) The drop in the number of buildings that would be eligible for reporting for each subsequent 
aggregation threshold after four meters is significantly higher than the change in percentage of 
meters similar to ABMP (over 10 percentage points in going from 4 to 5, 7 percentage points 
in going from 5 to 6, and another 4 percentage points in going from 6 to 7); 

c) While clustering meters with their ABMP produces the main result of this analysis (percentage of 
meters that resemble their ABMP and, as a result, can be estimated from ABMP),  clustering 
does not indicate the direction of degree of similarity. Auxiliary results (analysis of correlation 
and analysis of ratios between total annual meter energy and ABMP total) show a consistent 
trend. Correlation coefficients for building count categories show that while the correlation 
between individual meters and their ABMP is high, it is no different statistically for 4-meter 
buildings than it is for 5, 6, ,7 and 8 meter buildings (Figure 3.19). Similarly, ratios of total 
annual meter energy consumption to their ABMP is not drastically different for 4-, 5-, 6-, 7 and 
8-meter buildings (Figure 3.20). 

d) Jointly this suggests using the tradeoff between the probability of consumption profile matching 
and reporting eligibility as the primary criteria for the aggregation threshold selection.  
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